University of Birmingham Surface Plasmon Polariton Mediated
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dielectric Metamaterials with Toroidal Dipolar Response Alexey A
Dielectric Metamaterials with Toroidal Dipolar Response Alexey A. Basharin1,2, Maria Kafesaki1,3, Eleftherios N. Economou1,4 and Costas M. Soukoulis1,5 1 Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), P.O. Box 1385, 71110 Heraklion, Crete, Greece 2 National Research University "Moscow Power Engineering Institute", 112250 Moscow, Russia 3 Department of Materials Science and Technology, University of Crete, 71003 Heraklion, Greece 4 Department of Physics, University of Crete, 71003 Heraklion, Greece 5Ames Laboratory-USDOE, and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA Vassili A. Fedotov6, Vassili Savinov6 and Nikolay I. Zheludev6,7 6 Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, SO17 1BJ, UK 7 Centre for Disruptive Photonic Technologies, Nanyang Technological University, 637371, Singapore [email protected] Abstract: Toroidal multipoles are the terms missing in the standard multipole expansion; they are usually overlooked due to their relatively weak coupling to the electromagnetic fields. Here we propose and theoretically study all-dielectric metamaterials of a special class that represent a simple electromagnetic system supporting toroidal dipolar excitations in the THz part of the spectrum. We show that resonant transmission and reflection of such metamaterials is dominated by toroidal dipole scattering, the neglect of which would result in a misunderstanding interpretation of the metamaterials’ macroscopic response. Due to the unique field configuration of the toroidal mode the proposed metamaterials could serve as a platform for sensing, or enhancement of light absorption and optical nonlinearities. Toroidal dipole is a peculiar elementary current excitation corresponding to electrical currents circulating on a surface of a gedanken torus along its meridians (so-called poloidal currents). -
The Magnetic Moment of a Bar Magnet and the Horizontal Component of the Earth’S Magnetic Field
260 16-1 EXPERIMENT 16 THE MAGNETIC MOMENT OF A BAR MAGNET AND THE HORIZONTAL COMPONENT OF THE EARTH’S MAGNETIC FIELD I. THEORY The purpose of this experiment is to measure the magnetic moment μ of a bar magnet and the horizontal component BE of the earth's magnetic field. Since there are two unknown quantities, μ and BE, we need two independent equations containing the two unknowns. We will carry out two separate procedures: The first procedure will yield the ratio of the two unknowns; the second will yield the product. We will then solve the two equations simultaneously. The pole strength of a bar magnet may be determined by measuring the force F exerted on one pole of the magnet by an external magnetic field B0. The pole strength is then defined by p = F/B0 Note the similarity between this equation and q = F/E for electric charges. In Experiment 3 we learned that the magnitude of the magnetic field, B, due to a single magnetic pole varies as the inverse square of the distance from the pole. k′ p B = r 2 in which k' is defined to be 10-7 N/A2. Consider a bar magnet with poles a distance 2x apart. Consider also a point P, located a distance r from the center of the magnet, along a straight line which passes from the center of the magnet through the North pole. Assume that r is much larger than x. The resultant magnetic field Bm at P due to the magnet is the vector sum of a field BN directed away from the North pole, and a field BS directed toward the South pole. -
Neutron Electric Dipole Moment from Beyond the Standard Model on the Lattice
Introduction Quark EDM Dirac Equation Operator Mixing Lattice Results Conclusions Neutron Electric Dipole Moment from Beyond the Standard Model on the lattice Tanmoy Bhattacharya Los Alamos National Laboratory 2019 Lattice Workshop for US-Japan Intensity Frontier Incubation Mar 27, 2019 Tanmoy Bhattacharya nEDM from BSM on the lattice Introduction Standard Model CP Violation Quark EDM Experimental situation Dirac Equation Effective Field Theory Operator Mixing BSM Operators Lattice Results Impact on BSM physics Conclusions Form Factors Introduction Standard Model CP Violation Two sources of CP violation in the Standard Model. Complex phase in CKM quark mixing matrix. Too small to explain baryon asymmetry Gives a tiny (∼ 10−32 e-cm) contribution to nEDM CP-violating mass term and effective ΘGG˜ interaction related to QCD instantons Effects suppressed at high energies −10 nEDM limits constrain Θ . 10 Contributions from beyond the standard model Needed to explain baryogenesis May have large contribution to EDM Tanmoy Bhattacharya nEDM from BSM on the lattice Introduction Standard Model CP Violation Quark EDM Experimental situation Dirac Equation Effective Field Theory Operator Mixing BSM Operators Lattice Results Impact on BSM physics Conclusions Form Factors Introduction 4 Experimental situation 44 Experimental landscape ExperimentalExperimental landscape landscape nEDM upper limits (90% C.L.) 4 nEDMnEDM upper upper limits limits (90% (90% C.L.) C.L.) 10−19 19 19 Beam System Current SM 1010− −20 −20−20 BeamBraggBeam scattering SystemSystem -
Section 14: Dielectric Properties of Insulators
Physics 927 E.Y.Tsymbal Section 14: Dielectric properties of insulators The central quantity in the physics of dielectrics is the polarization of the material P. The polarization P is defined as the dipole moment p per unit volume. The dipole moment of a system of charges is given by = p qiri (1) i where ri is the position vector of charge qi. The value of the sum is independent of the choice of the origin of system, provided that the system in neutral. The simplest case of an electric dipole is a system consisting of a positive and negative charge, so that the dipole moment is equal to qa, where a is a vector connecting the two charges (from negative to positive). The electric field produces by the dipole moment at distances much larger than a is given by (in CGS units) 3(p⋅r)r − r 2p E(r) = (2) r5 According to electrostatics the electric field E is related to a scalar potential as follows E = −∇ϕ , (3) which gives the potential p ⋅r ϕ(r) = (4) r3 When solving electrostatics problem in many cases it is more convenient to work with the potential rather than the field. A dielectric acquires a polarization due to an applied electric field. This polarization is the consequence of redistribution of charges inside the dielectric. From the macroscopic point of view the dielectric can be considered as a material with no net charges in the interior of the material and induced negative and positive charges on the left and right surfaces of the dielectric. -
How to Introduce the Magnetic Dipole Moment
IOP PUBLISHING EUROPEAN JOURNAL OF PHYSICS Eur. J. Phys. 33 (2012) 1313–1320 doi:10.1088/0143-0807/33/5/1313 How to introduce the magnetic dipole moment M Bezerra, W J M Kort-Kamp, M V Cougo-Pinto and C Farina Instituto de F´ısica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, CEP 21941-972, Rio de Janeiro, Brazil E-mail: [email protected] Received 17 May 2012, in final form 26 June 2012 Published 19 July 2012 Online at stacks.iop.org/EJP/33/1313 Abstract We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot–Savart law to obtain, explicitly, the dominant contribution of the magnetic field at distant points, identifying the magnetic dipole moment of the distribution. We also present a simple but general demonstration of the torque exerted by a uniform magnetic field on a current loop of general form, not necessarily planar. For pedagogical reasons we start by reviewing briefly the concept of the electric dipole moment. 1. Introduction The general concepts of electric and magnetic dipole moments are commonly found in our daily life. For instance, it is not rare to refer to polar molecules as those possessing a permanent electric dipole moment. Concerning magnetic dipole moments, it is difficult to find someone who has never heard about magnetic resonance imaging (or has never had such an examination). -
Gauss' Theorem (See History for Rea- Son)
Gauss’ Law Contents 1 Gauss’s law 1 1.1 Qualitative description ......................................... 1 1.2 Equation involving E field ....................................... 1 1.2.1 Integral form ......................................... 1 1.2.2 Differential form ....................................... 2 1.2.3 Equivalence of integral and differential forms ........................ 2 1.3 Equation involving D field ....................................... 2 1.3.1 Free, bound, and total charge ................................. 2 1.3.2 Integral form ......................................... 2 1.3.3 Differential form ....................................... 2 1.4 Equivalence of total and free charge statements ............................ 2 1.5 Equation for linear materials ...................................... 2 1.6 Relation to Coulomb’s law ....................................... 3 1.6.1 Deriving Gauss’s law from Coulomb’s law .......................... 3 1.6.2 Deriving Coulomb’s law from Gauss’s law .......................... 3 1.7 See also ................................................ 3 1.8 Notes ................................................. 3 1.9 References ............................................... 3 1.10 External links ............................................. 3 2 Electric flux 4 2.1 See also ................................................ 4 2.2 References ............................................... 4 2.3 External links ............................................. 4 3 Ampère’s circuital law 5 3.1 Ampère’s original -
All-Optical Hall Effect by the Dynamic Toroidal Moment in a Cavity-Based Metamaterial
PHYSICAL REVIEW B 87, 245429 (2013) All-optical Hall effect by the dynamic toroidal moment in a cavity-based metamaterial Zheng-Gao Dong,1,2,* Jie Zhu,2 Xiaobo Yin,2 Jiaqi Li,1 Changgui Lu,2 and Xiang Zhang2 1Physics Department and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China 25130 Etcheverry Hall, Nanoscale Science and Engineering Center, University of California, Berkeley, California 94720-1740, USA (Received 6 December 2012; revised manuscript received 23 April 2013; published 24 June 2013) Dynamic dipolar toroidal response is demonstrated by an optical plasmonic metamaterial composed of double disks. This response with a hotspot of localized E-field concentration is a well-behaved toroidal cavity mode that exhibits a large Purcell factor due to its deep-subwavelength mode volume. All-optical Hall effect (photovoltaic) is observed numerically attributed to the nonlinear phenomenon of unharmonic plasmon oscillations, which exhibits an interesting analogy with the magnetoelectric effect in multiferroic systems. The result shows a promising avenue to explore various intriguing optical phenomena associated with this dynamic toroidal moment. DOI: 10.1103/PhysRevB.87.245429 PACS number(s): 42.70.Qs, 41.20.Jb, 73.20.Mf, 78.20.Ci I. INTRODUCTION when the light is incident with the H -field polarization parallel to the normal of the split ring.28 Since electric and magnetic A standard multipole expansion method conventionally dipoles are excited by parallel E- and H -field components, decomposes the scattering field into contributions of electric T and magnetic dipoles, quadrupoles, and so forth.1 As is known, respectively, an optical , characterized by a centrally confined E H electric polarization breaks the space-inversion symmetry field perpendicular to and attributed to the -vortex distri- while magnetization breaks the time-reversal symmetry, and bution, could be induced by an incidence polarized parallel to T. -
Magnetic and Electric Dipole Moments of the H 3 1 State In
PHYSICAL REVIEW A 84, 034502 (2011) 3 Magnetic and electric dipole moments of the H 1 state in ThO A. C. Vutha,1,* B. Spaun,2 Y. V. Gurevich,2 N. R. Hutzler,2 E. Kirilov,1 J. M. Doyle,2 G. Gabrielse,2 and D. DeMille1 1Department of Physics, Yale University, New Haven, Connecticut 06520, USA 2Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA (Received 13 July 2011; published 29 September 2011) 3 The metastable H 1 state in the thorium monoxide (ThO) molecule is highly sensitive to the presence of a CP-violating permanent electric dipole moment of the electron (eEDM) [E. R. Meyer and J. L. Bohn, Phys. Rev. A 78, 010502 (2008)]. The magnetic dipole moment μH and the molecule-fixed electric dipole moment DH of this −3 state are measured in preparation for a search for the eEDM. The small magnetic moment μH = 8.5(5) × 10 μB 3 displays the predicted cancellation of spin and orbital contributions in a 1 paramagnetic molecular state, providing a significant advantage for the suppression of magnetic field noise and related systematic effects in the eEDM search. In addition, the induced electric dipole moment is shown to be fully saturated in very modest electric fields (<10 V/cm). This feature is favorable for the suppression of many other potential systematic errors in the ThO eEDM search experiment. DOI: 10.1103/PhysRevA.84.034502 PACS number(s): 31.30.jp, 11.30.Er, 33.15.Kr Measurable CP violation is predicted in many proposed was subsequently probed a few millimeters downstream by extensions to the standard model, and could provide a clue exciting laser-induced fluorescence (LIF). -
All-Optical Hall Effect by the Dynamic Toroidal Moment in a Cavity-Based Metamaterial
All-optical Hall effect by the dynamic toroidal moment in a cavity-based metamaterial Zheng-Gao Dong,1,2,3,* Jie Zhu,2 Xiaobo Yin,2 Jiaqi Li,1,3 Changgui Lu,2 and Xiang Zhang2 1Physics Department, Southeast University, Nanjing 211189, China 25130 Etcheverry Hall, Nanoscale Science and Engineering Center, University of California, Berkeley, California 94720-1740, USA 3Research Center of Converging Technology, Southeast University, Nanjing 210096, People’s Republic of China Dynamic dipolar toroidal response is demonstrated by an optical plasmonic metamaterial composed of double disks. This response with a hotspot of localized E-field concentration is a well-behaved toroidal cavity mode that exhibits a large Purcell factor due to its deep-subwavelength mode volume. All-optical Hall effect (photovoltaic) due to this optical toroidal moment is demonstrated numerically, in mimicking the magnetoelectric effect in multiferroic systems. The result shows a promising avenue to explore various optical phenomena associated with this intriguing dynamic toroidal moment. PACS: 42.70.Qs, 41.20.Jb, 78.20.Ci, 73.20.Mf 1 A standard multipole expansion method conventionally decomposes the scattering field into contributions of electric and magnetic dipoles, quadrupoles, and so forth [1]. As is known, electric polarization breaks the space-inversion symmetry while magnetization breaks the time-reversal symmetry, and thus they are incomplete when confronting systems in particle physics with simultaneous violations of r space-inversion and time-reversal symmetries. In 1957, Dipolar toroidal moment T was introduced to interpret the parity violation in weak interactions [2], which is now widely acknowledged not only in nucleons [3], atoms [4], molecules [5], and other elementary particles [6], but even in condensed matters such as multiferroic materials r [7-9]. -
Phys102 Lecture 3 - 1 Phys102 Lecture 3 Electric Dipoles
Phys102 Lecture 3 - 1 Phys102 Lecture 3 Electric Dipoles Key Points • Electric dipole • Applications in life sciences References SFU Ed: 21-5,6,7,8,9,10,11,12,+. 6th Ed: 16-5,6,7,8,9,11,+. 21-11 Electric Dipoles An electric dipole consists of two charges Q, equal in magnitude and opposite in sign, separated by a distance . The dipole moment, p = Q , points from the negative to the positive charge. An electric dipole in a uniform electric field will experience no net force, but it will, in general, experience a torque: The electric field created by a dipole is the sum of the fields created by the two charges; far from the dipole, the field shows a 1/r3 dependence: Phys101 Lecture 3 - 5 Electric dipole moment of a CO molecule In a carbon monoxide molecule, the electron density near the carbon atom is greater than that near the oxygen, which result in a dipole moment. p Phys101 Lecture 3 - 6 i-clicker question 3-1 Does a carbon dioxide molecule carry an electric dipole moment? A) No, because the molecule is electrically neutral. B) Yes, because of the uneven distribution of electron density. C) No, because the molecule is symmetrical and the net dipole moment is zero. D) Can’t tell from the structure of the molecule. Phys101 Lecture 3 - 7 i-clicker question 3-2 Does a water molecule carry an electric dipole moment? A) No, because the molecule is electrically neutral. B) No, because the molecule is symmetrical and the net dipole moment is zero. -
Theory and Applications of Toroidal Moments in Electrodynamics
Nanophotonics 2018; 7(1): 93–110 Review article Nahid Talebia,*, Surong Guoa and Peter A. van Aken Theory and applications of toroidal moments in electrodynamics: their emergence, characteristics, and technological relevance https://doi.org/10.1515/nanoph-2017-0017 Received January 30, 2017; revised June 21, 2017; accepted July 9, 1 Introduction 2017 Although the history of Maxwell equations and light- Abstract: Dipole selection rules underpin much of our matter interaction started as early as 1861 [1], electromag- understanding in characterization of matter and its inter- netism has been the field of most challenging and rival action with external radiation. However, there are sev- concepts such as understanding the actual velocity of eral examples where these selection rules simply break the information transfer [2], the actual wave function of down, for which a more sophisticated knowledge of mat- photons [3–5], realization of cloaking, negative refraction, ter becomes necessary. An example, which is increasingly and transferring of the data beyond the diffraction limits becoming more fascinating, is macroscopic toroidization using plasmons and metamaterials [6–11], and the emer- (density of toroidal dipoles), which is a direct consequence gence of the Abraham-Minkowski controversy and the of retardation. In fact, dissimilar to the classical family of actual linear momentum of light [12, 13]. At the heart of electric and magnetic multipoles, which are outcomes our understanding of light-matter interaction, there exist of the Taylor expansion of the electromagnetic poten- multipole-expansion sets that tell us how to construct the tials and sources, toroidal dipoles are obtained by the extended electromagnetic sources according to the local- decomposition of the moment tensors. -
Lab 6: the Earth's Magnetic Field
Lab 6: The Earth's Magnetic Field N Direction of the 1 Introduction S magnetic dipole moment m The earth just like other planetary bodies has a mag- netic ¯eld. The purpose of this experiment is to mea- Figure 1: Magnetic ¯eld lines of a bar magnet sure the horizontal component of the earth's magnetic Magnetic Axis ¯eld BH using a very simple apparatus. The measure- ment involves combining the results of two separate o Axis of Rotation 23.5 experiments to obtain BH . The ¯rst experiment will o involve studies of how a freely suspended bar magnet 11.5 interacts with the earth's magnetic ¯eld. The second experiment will involve an investigation of the com- bined e®ect of the magnetic ¯eld of a bar magnet and Plane of the S the earth's magnetic ¯eld on a compass needle. Earths orbit A magnetic dipole is the fundamental entity in mag- netostatics just like a point charge is the simplest con- N ¯guration in electrostatics. A bar magnet is an exam- ple of a magnetic dipole. The magnetic ¯eld lines of the magnet are closed loops that are directed from Geographic south north to south outside the magnet, and from south pole to north inside the magnet, as illustrated in ¯gure 1. The magnetic dipole moment (by convention) is a vector drawn pointing from the south pole toward Figure 2: Earth's magnetic ¯eld the north pole. At any point in space, the direction of the magnetic ¯eld is along the tangent to the ¯eld THE BACKGROUND CONCEPTS AND EX- line at that point.