Lab 6: the Earth's Magnetic Field

Total Page:16

File Type:pdf, Size:1020Kb

Lab 6: the Earth's Magnetic Field Lab 6: The Earth's Magnetic Field N Direction of the 1 Introduction S magnetic dipole moment m The earth just like other planetary bodies has a mag- netic ¯eld. The purpose of this experiment is to mea- Figure 1: Magnetic ¯eld lines of a bar magnet sure the horizontal component of the earth's magnetic Magnetic Axis ¯eld BH using a very simple apparatus. The measure- ment involves combining the results of two separate o Axis of Rotation 23.5 experiments to obtain BH . The ¯rst experiment will o involve studies of how a freely suspended bar magnet 11.5 interacts with the earth's magnetic ¯eld. The second experiment will involve an investigation of the com- bined e®ect of the magnetic ¯eld of a bar magnet and Plane of the S the earth's magnetic ¯eld on a compass needle. Earths orbit A magnetic dipole is the fundamental entity in mag- netostatics just like a point charge is the simplest con- N ¯guration in electrostatics. A bar magnet is an exam- ple of a magnetic dipole. The magnetic ¯eld lines of the magnet are closed loops that are directed from Geographic south north to south outside the magnet, and from south pole to north inside the magnet, as illustrated in ¯gure 1. The magnetic dipole moment (by convention) is a vector drawn pointing from the south pole toward Figure 2: Earth's magnetic ¯eld the north pole. At any point in space, the direction of the magnetic ¯eld is along the tangent to the ¯eld THE BACKGROUND CONCEPTS AND EX- line at that point. The earth is another example of ERCISES 3-4, 6-8 AND 10-13 PERTAIN TO a magnetic dipole, with the north magnetic pole lo- THE EXPERIMENTAL SECTIONS. cated at an inclination of » 11:5± with respect to the rotational axis passing through the north and south geographic poles. In fact, the north magnetic pole should be labeled as the south pole of the earth's mag- 2 Background netic dipole, and the south magnetic pole should be labeled as the north pole of the dipole (¯gure 2). This can be inferred by considering the behavior of a freely Gauss's Method: The procedure to be used in this ex- suspended bar magnet or compass needle. The north periment was developed by Gauss more than a century pole of the magnetic needle is attracted toward the ago. At that time it was known that the earth had a south pole of the earth's magnetic dipole. magnetic ¯eld, but the ¯eld had not been measured. Gauss used principles of classical mechanics and very Studies of the evolution of the earth's magnetic ¯eld simple tools. In fact, with the exception of a digital have revealed that magnetic poles migrate relative to stop watch (completely unnecessary, but nevertheless the geographic pole, and that the direction and the compact) the apparatus you will use is perhaps no magnitude of the ¯eld changes. Most interestingly, the di®erent from what Gauss may have used! magnetic poles reverse periodically, once every several hundred thousand years! The ¯rst part of the experiment involves measuring the period of oscillation of a bar magnet suspended in EXERCISES 1, 2, 5 AND 9 PERTAIN TO the earth's magnetic ¯eld, in order to obtain a value 6.1 for the product of m and BH . Here, m is the mag- F N netic dipole moment of the bar magnet and BH is the m horizontal component of the Earth's magnetic ¯eld. The second part of the experiment involves a deter- BH mination of the ratio m by measuring the deflection BH F of a compass needle due to the combined e®ects of the S magnetic ¯elds of the bar magnet and the horizontal component of the earth's magnetic ¯eld. Figure 3: Torque on a bar magnet BH can be measured by combining the results of both experiments. The result can be compared to current ² Two aluminum bases attached to a wooden board to support post holders (accepted) values of BH . To appreciate that some things have indeed become easier, you will be allowed ² Magnetic ¯eld sensor, controller and shield to measure the earth's magnetic ¯eld using a conven- tional method involving a Hall probe. ² 5V DC power supply for sensor ² Digital voltmeter 3 Suggested Reading ² BNC to banana cable to connect sensor to volt- meter Refer to the chapters on the Magnetic Field, 5 Experiment I: Oscillation period of R. Wolfson and J. Pasacho®, Physics with Mod- ern Physics (3rd Edition, Addison-Wesley Longman, a bar magnet suspended in the Don Mills ON, 1999) earth's magnetic ¯eld D. Halliday, R. Resnick and K. S. Krane, Physics (Volume 2, 5th Edition, John Wiley, 2002) Consider a bar magnet suspended in the earth's (uni- form) magnetic ¯eld. If the magnet is displaced from the position of equilibrium, a torque due to the earth's ¯eld acts on the magnet and tends to align it with the 4 Apparatus direction of the ¯eld, as shown in ¯gure 3. The torque is given by, ¡! ¡! ¡! ¿ = m £ BH (1) Refer to Appendix E for photos of the appara- Here, ¡!m is the magnetic moment of the magnet, and tus ¡! BH is the horizontal component of the earth's mag- netic ¯eld. ² Bar magnet Exercise 1: If the magnet is displaced from its posi- ² Sensitive compass needle mounted on a protractor tion of equilibrium by a small angle £, show that it will oscillate with a period T given by, ² Stopwatch for timing the oscillations s I ² Balance to measure the mass of the magnet T = 2¼ M (2) mBH ² Aluminum post and clamp for suspending the magnet Here, IM is the moment of inertia of the bar magnet. It is given by, ² Torsionless string for suspending the magnet M(L2 + a2) I = (3) ² Meter stick (without magnetized metal ends) M 12 ² Two aluminum posts and two clamps for support- where, L is the length of the magnet, a is its width, ing the meter stick on 3" post holders and M is its mass (which can be measured using a 6.2 Suspension axis Suspension axis R N Clamp Meter stick w a SN Magnet L Compass L a L (b) (a) Figure 5: Magnetometer setup, top view Figure 4: Moments of Inertia for the bar magnet, (a) suspension m axis perpendicular to the surface of area La and (b) suspension 6 Experiment II: Determination of B axis perpendicular to the surface of area Lw H This part of the experiment requires the use of a com- pass needle that is extremely sensitive to magnetic ¯elds. So make sure that apart from the bar mag- balance). This is the moment of inertia with the `sus- net, there are no other magnetized materials in the pension axis' of the bar magnet perpendicular to the vicinity of the compass needle. This is crucial for surface of area La, ¯gure 4a. obtaining accurate results In ¯gure 4b the moment of inertia with suspension The experimental setup consists of a magnetometer as axis perpendicular to the surface of area Lw is IM = 2 2 shown in ¯gure 5. To set up the magnetometer, ¯nd M(L +w ) . It is important to realize that the torque 12 the direction of the Earth's magnetic ¯eld (i.e. the on the magnet restores the magnet to its equilibrium N-S direction) using the compass needle. Then place position. Hence ¿ = ¡mBH sin £. To solve for the the axis of the bar magnet perpendicular to the N/S period of oscillation, use the rotational analog of New- direction, with the magnet's center at a distance R ton's second law. from the center of the compass needle. It is assumed that the distance R is very much larger than L, the Exercise 2: Solve equation 2 to obtain an expression length of the magnet. for mBH . What are the SI units of m and BH ? If R À L, the magnitude of the magnetic ¯eld Bb Suspend the magnet from its midpoint by a torsion- produced by the bar magnet at the compass is given less string, so that only the horizontal component of by, the Earth's magnetic ¯eld will cause a torque. Deter- 2k m B = m (4) mine the period of small amplitude oscillations. Re- b R3 peat the experiment several times and obtain the aver- ¹0 ¡7 N age value of the oscillation period. During each trial where, km = 4¼ = 10 A2 is a constant, m is the measure the period of oscillation by timing »10 os- magnetic dipole moment of the bar magnet and R cillations. Make sure that there are no other is the distance from the center of the magnet to the magnets or magnetized materials in the vicin- center of the compass. ity of the magnet. Also make sure that you shield the experiment from air currents. If a Note that equation 4 can represent the magnetic ¯eld wooden bar is used instead of a magnet there would due to a single current carrying loop of wire for R À r, be no restoring torque. Why? where r is the radius of the loop (in this case m is the magnetic moment of the loop). Exercise 3a: Organize your experimental data in a table. Next determine the moment of inertia of the Equation 4 is also analogous to the expression for the bar magnet, using equation 3. Estimate the experi- electric ¯eld perpendicular to the axis of an electric mental errors associated with each measured quantity.
Recommended publications
  • The Magnetic Moment of a Bar Magnet and the Horizontal Component of the Earth’S Magnetic Field
    260 16-1 EXPERIMENT 16 THE MAGNETIC MOMENT OF A BAR MAGNET AND THE HORIZONTAL COMPONENT OF THE EARTH’S MAGNETIC FIELD I. THEORY The purpose of this experiment is to measure the magnetic moment μ of a bar magnet and the horizontal component BE of the earth's magnetic field. Since there are two unknown quantities, μ and BE, we need two independent equations containing the two unknowns. We will carry out two separate procedures: The first procedure will yield the ratio of the two unknowns; the second will yield the product. We will then solve the two equations simultaneously. The pole strength of a bar magnet may be determined by measuring the force F exerted on one pole of the magnet by an external magnetic field B0. The pole strength is then defined by p = F/B0 Note the similarity between this equation and q = F/E for electric charges. In Experiment 3 we learned that the magnitude of the magnetic field, B, due to a single magnetic pole varies as the inverse square of the distance from the pole. k′ p B = r 2 in which k' is defined to be 10-7 N/A2. Consider a bar magnet with poles a distance 2x apart. Consider also a point P, located a distance r from the center of the magnet, along a straight line which passes from the center of the magnet through the North pole. Assume that r is much larger than x. The resultant magnetic field Bm at P due to the magnet is the vector sum of a field BN directed away from the North pole, and a field BS directed toward the South pole.
    [Show full text]
  • Neutron Electric Dipole Moment from Beyond the Standard Model on the Lattice
    Introduction Quark EDM Dirac Equation Operator Mixing Lattice Results Conclusions Neutron Electric Dipole Moment from Beyond the Standard Model on the lattice Tanmoy Bhattacharya Los Alamos National Laboratory 2019 Lattice Workshop for US-Japan Intensity Frontier Incubation Mar 27, 2019 Tanmoy Bhattacharya nEDM from BSM on the lattice Introduction Standard Model CP Violation Quark EDM Experimental situation Dirac Equation Effective Field Theory Operator Mixing BSM Operators Lattice Results Impact on BSM physics Conclusions Form Factors Introduction Standard Model CP Violation Two sources of CP violation in the Standard Model. Complex phase in CKM quark mixing matrix. Too small to explain baryon asymmetry Gives a tiny (∼ 10−32 e-cm) contribution to nEDM CP-violating mass term and effective ΘGG˜ interaction related to QCD instantons Effects suppressed at high energies −10 nEDM limits constrain Θ . 10 Contributions from beyond the standard model Needed to explain baryogenesis May have large contribution to EDM Tanmoy Bhattacharya nEDM from BSM on the lattice Introduction Standard Model CP Violation Quark EDM Experimental situation Dirac Equation Effective Field Theory Operator Mixing BSM Operators Lattice Results Impact on BSM physics Conclusions Form Factors Introduction 4 Experimental situation 44 Experimental landscape ExperimentalExperimental landscape landscape nEDM upper limits (90% C.L.) 4 nEDMnEDM upper upper limits limits (90% (90% C.L.) C.L.) 10−19 19 19 Beam System Current SM 1010− −20 −20−20 BeamBraggBeam scattering SystemSystem
    [Show full text]
  • Section 14: Dielectric Properties of Insulators
    Physics 927 E.Y.Tsymbal Section 14: Dielectric properties of insulators The central quantity in the physics of dielectrics is the polarization of the material P. The polarization P is defined as the dipole moment p per unit volume. The dipole moment of a system of charges is given by = p qiri (1) i where ri is the position vector of charge qi. The value of the sum is independent of the choice of the origin of system, provided that the system in neutral. The simplest case of an electric dipole is a system consisting of a positive and negative charge, so that the dipole moment is equal to qa, where a is a vector connecting the two charges (from negative to positive). The electric field produces by the dipole moment at distances much larger than a is given by (in CGS units) 3(p⋅r)r − r 2p E(r) = (2) r5 According to electrostatics the electric field E is related to a scalar potential as follows E = −∇ϕ , (3) which gives the potential p ⋅r ϕ(r) = (4) r3 When solving electrostatics problem in many cases it is more convenient to work with the potential rather than the field. A dielectric acquires a polarization due to an applied electric field. This polarization is the consequence of redistribution of charges inside the dielectric. From the macroscopic point of view the dielectric can be considered as a material with no net charges in the interior of the material and induced negative and positive charges on the left and right surfaces of the dielectric.
    [Show full text]
  • How to Introduce the Magnetic Dipole Moment
    IOP PUBLISHING EUROPEAN JOURNAL OF PHYSICS Eur. J. Phys. 33 (2012) 1313–1320 doi:10.1088/0143-0807/33/5/1313 How to introduce the magnetic dipole moment M Bezerra, W J M Kort-Kamp, M V Cougo-Pinto and C Farina Instituto de F´ısica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, CEP 21941-972, Rio de Janeiro, Brazil E-mail: [email protected] Received 17 May 2012, in final form 26 June 2012 Published 19 July 2012 Online at stacks.iop.org/EJP/33/1313 Abstract We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot–Savart law to obtain, explicitly, the dominant contribution of the magnetic field at distant points, identifying the magnetic dipole moment of the distribution. We also present a simple but general demonstration of the torque exerted by a uniform magnetic field on a current loop of general form, not necessarily planar. For pedagogical reasons we start by reviewing briefly the concept of the electric dipole moment. 1. Introduction The general concepts of electric and magnetic dipole moments are commonly found in our daily life. For instance, it is not rare to refer to polar molecules as those possessing a permanent electric dipole moment. Concerning magnetic dipole moments, it is difficult to find someone who has never heard about magnetic resonance imaging (or has never had such an examination).
    [Show full text]
  • Gauss' Theorem (See History for Rea- Son)
    Gauss’ Law Contents 1 Gauss’s law 1 1.1 Qualitative description ......................................... 1 1.2 Equation involving E field ....................................... 1 1.2.1 Integral form ......................................... 1 1.2.2 Differential form ....................................... 2 1.2.3 Equivalence of integral and differential forms ........................ 2 1.3 Equation involving D field ....................................... 2 1.3.1 Free, bound, and total charge ................................. 2 1.3.2 Integral form ......................................... 2 1.3.3 Differential form ....................................... 2 1.4 Equivalence of total and free charge statements ............................ 2 1.5 Equation for linear materials ...................................... 2 1.6 Relation to Coulomb’s law ....................................... 3 1.6.1 Deriving Gauss’s law from Coulomb’s law .......................... 3 1.6.2 Deriving Coulomb’s law from Gauss’s law .......................... 3 1.7 See also ................................................ 3 1.8 Notes ................................................. 3 1.9 References ............................................... 3 1.10 External links ............................................. 3 2 Electric flux 4 2.1 See also ................................................ 4 2.2 References ............................................... 4 2.3 External links ............................................. 4 3 Ampère’s circuital law 5 3.1 Ampère’s original
    [Show full text]
  • Magnetic and Electric Dipole Moments of the H 3 1 State In
    PHYSICAL REVIEW A 84, 034502 (2011) 3 Magnetic and electric dipole moments of the H 1 state in ThO A. C. Vutha,1,* B. Spaun,2 Y. V. Gurevich,2 N. R. Hutzler,2 E. Kirilov,1 J. M. Doyle,2 G. Gabrielse,2 and D. DeMille1 1Department of Physics, Yale University, New Haven, Connecticut 06520, USA 2Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA (Received 13 July 2011; published 29 September 2011) 3 The metastable H 1 state in the thorium monoxide (ThO) molecule is highly sensitive to the presence of a CP-violating permanent electric dipole moment of the electron (eEDM) [E. R. Meyer and J. L. Bohn, Phys. Rev. A 78, 010502 (2008)]. The magnetic dipole moment μH and the molecule-fixed electric dipole moment DH of this −3 state are measured in preparation for a search for the eEDM. The small magnetic moment μH = 8.5(5) × 10 μB 3 displays the predicted cancellation of spin and orbital contributions in a 1 paramagnetic molecular state, providing a significant advantage for the suppression of magnetic field noise and related systematic effects in the eEDM search. In addition, the induced electric dipole moment is shown to be fully saturated in very modest electric fields (<10 V/cm). This feature is favorable for the suppression of many other potential systematic errors in the ThO eEDM search experiment. DOI: 10.1103/PhysRevA.84.034502 PACS number(s): 31.30.jp, 11.30.Er, 33.15.Kr Measurable CP violation is predicted in many proposed was subsequently probed a few millimeters downstream by extensions to the standard model, and could provide a clue exciting laser-induced fluorescence (LIF).
    [Show full text]
  • Phys102 Lecture 3 - 1 Phys102 Lecture 3 Electric Dipoles
    Phys102 Lecture 3 - 1 Phys102 Lecture 3 Electric Dipoles Key Points • Electric dipole • Applications in life sciences References SFU Ed: 21-5,6,7,8,9,10,11,12,+. 6th Ed: 16-5,6,7,8,9,11,+. 21-11 Electric Dipoles An electric dipole consists of two charges Q, equal in magnitude and opposite in sign, separated by a distance . The dipole moment, p = Q , points from the negative to the positive charge. An electric dipole in a uniform electric field will experience no net force, but it will, in general, experience a torque: The electric field created by a dipole is the sum of the fields created by the two charges; far from the dipole, the field shows a 1/r3 dependence: Phys101 Lecture 3 - 5 Electric dipole moment of a CO molecule In a carbon monoxide molecule, the electron density near the carbon atom is greater than that near the oxygen, which result in a dipole moment. p Phys101 Lecture 3 - 6 i-clicker question 3-1 Does a carbon dioxide molecule carry an electric dipole moment? A) No, because the molecule is electrically neutral. B) Yes, because of the uneven distribution of electron density. C) No, because the molecule is symmetrical and the net dipole moment is zero. D) Can’t tell from the structure of the molecule. Phys101 Lecture 3 - 7 i-clicker question 3-2 Does a water molecule carry an electric dipole moment? A) No, because the molecule is electrically neutral. B) No, because the molecule is symmetrical and the net dipole moment is zero.
    [Show full text]
  • Quantum Mechanics Electric Dipole Moment
    Quantum Mechanics_electric dipole moment In physics, the electric dipole moment is a measure of the separation of positive and negative electrical charges in a system of electric charges, that is, a measure of the charge system's overall polarity. The SI units are Coulomb-meter (C m). This article is limited to static phenomena, and does not describe time-dependent or dynamic polarization. Elementary definition Animation showing the Electric field of an electric dipole. The dipole consists of two point electric charges of opposite polarity located close together. A transformation from a point-shaped dipole to a finite-size electric dipole is shown. A molecule of water is polar because of the unequal sharing of its electrons in a "bent" structure. A separation of charge is present with negative charge in the middle (red shade), and positive charge at the ends (blue shade). In the simple case of two point charges, one with charge +q and the other one with charge −q, the electric dipole moment p is: where d is the displacement vector pointing from the negative charge to the positive charge. Thus, the electric dipole moment vector p points from the negative charge to the positive charge. An idealization of this two-charge system is the electrical point dipole consisting of two (infinite) charges only infinitesimally separated, but with a finite p. Torque Electric dipole p and its torque τin a uniform E field. An object with an electric dipole moment is subject to a torque τ when placed in an external electric field. The torque tends to align the dipole with the field, and makes alignment an orientation of lower potential energy than misalignment.
    [Show full text]
  • Dipole in an Electric Field
    Physics 2113 Isaac Newton (1642–1727) Physics 2113 Lecture 08: FRI 12 OCT CH22: Electric Fields Michael Faraday (1791–1867) Electric field due to a charged disk Idea: superpose several rings, of E P infinitesimal width dR q Charge per unit area σ = 2 a πb Charge of ring of radius R and width dR dq = 2π RdR σ q Electric field due to ring at point P R dR a dq dE = 2 2 3/ 2 b 4πε 0 (R + a ) Integrating b b aσ 2π R dR aσ ⎡ 1 ⎤ σ ⎡ a ⎤ E = = − = 1− ∫ 2 2 3/ 2 ⎢ 2 2 ⎥ ⎢ 2 2 ⎥ 0 4πε 0 (R + a ) 2ε0 ⎣ R + a ⎦0 2ε0 ⎣ b + a ⎦ Electric Dipole Moment The direction of dipole moment is taken from negative to positive charge. Using expression for the electric field of the dipole, we find qd p E = 3 = 3 2πε 0 x 2πε 0 x Dipole in an electric field A point charge feels a force proportional to the electric field ! ! F = q E Assume the field is constant throughout the size of the dipole. Forces are equal and opposite: no net force! Forces act at different points, therefore they have a nontrivial torque. τ = F d sinθ = q E d sinθ ! ! The torque acting on the dipole can be written as τ = P ×E The cross product takes care of the sin θ in the magnitude and the direction is given by the right hand rule (clockwise in the figure). The torque felt by a dipole in a field implies the ability to do work (for instance, turn the sha of a motor).
    [Show full text]
  • The Electric Field II: Continuous Charge Distributions
    TIPL22_727-762-hr 3/30/07 8:41 AM Page 727 CHAPTER22 LIGHTNING IS AN ELECTRIC PHENOMENA. DURING A LIGHTNING The Electric Field II: STRIKE, CHARGES ARE TRANSFERRED BETWEEN THE CLOUDS AND THE Continuous Charge GROUND. THE VISIBLE LIGHT GIVEN OFF COMES FROM AIR MOLECULES Distributions RETURNING TO LOWER ENERGY STATES. (Photo Disc.) S 22.1 CalculatingE from Coulomb’s Law How would you calculate the 22.2 Gauss’s Law ? charge on the surface of Earth? S (See Example 22-15.) 22.3 Using Symmetry to CalculateE with Gauss’s Law 22.4 Discontinuity of En 22.5 Charge and Field at Conductor Surfaces * 22.6 The Equivalence of Gauss’s Law and Coulomb’s Law in Electrostatics n a microscopic scale, charge is quantized. However, there are often situa- tions in which many charges are so close together that the charge can be thought of as continuously distributed. We apply the concept of density to charge similarly to the way we use it to describe matter. In addition to continuous charge distributions, we examine the impor- O tance of symmetry within the electric field. The mathematical findings of Carl Friedrich Gauss show that every electric field maintains symmetric proper- ties. It is an understanding of charge distribution and symmetry within the electric field that aids scientists in a vast array of fields. In this chapter, we show how Coulomb’s law is used to calculate the electric field produced by various types of continuous charge distributions. We then introduce Gauss’s law and use it to calculate the electric fields produced by charge distributions that have certain symmetries.
    [Show full text]
  • Measuring the Electron Electric Dipole Moment with Trapped Molecular Ions
    Measuring the Electron Electric Dipole Moment with Trapped Molecular Ions by Matt Grau B.S., California Institute of Technology, 2009 M.S., University of Colorado Boulder, 2011 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Physics 2016 This thesis entitled: Measuring the Electron Electric Dipole Moment with Trapped Molecular Ions written by Matt Grau has been approved for the Department of Physics Prof. Eric Cornell Prof. Jun Ye Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Grau, Matt (Ph.D., Physics) Measuring the Electron Electric Dipole Moment with Trapped Molecular Ions Thesis directed by Prof. Eric Cornell An electron electric dipole moment (eEDM) directly violates time-reversal symmetry, a fact which has far reaching implications for physics beyond the Standard Model. An experiment us- ing trapped molecular ions offers high sensitivity because of the large effective electric fields and long coherence times that are possible. We demonstrate precision spectroscopy on many trapped HfF+ ions in a radiofrequency quadrupole trap with rotating electric and magnetic fields. The 3 spectroscopy performed is a Ramsey type experiment between spin states of the metastable ∆1 electronic state and has a coherence time exceeding 1 second. We have collected and analyzed over 200 hours of Ramsey spectroscopy data taken under a variety of experimental conditions.
    [Show full text]
  • Electromagnetism - Lecture 4
    Electromagnetism - Lecture 4 Dipole Fields • Electric Dipoles • Magnetic Dipoles • Dipoles in External Fields • Method of Images • Examples of Method of Images 1 Electric Dipoles An electric dipole is a +Q and a −Q separated by a vector a Very common system, e.g. in atoms and molecules The electric dipole moment is p = Qa pointing from −Q to +Q Potential of an electric dipole: Q 1 1 Q(r − r+) V = − = − 4π0 r+ r− 4π0r+r− Using cosine rule, where r is distance from centre of dipole: a2 r2 = r2 + ∓ ar cos θ 4 and taking the \far field” limit r >> a Qa cos θ p:^r V = 2 = 2 4π0r 4π0r 2 Electric Dipole Field Components of the electric field are derived from E = −∇V In spherical polar coordinates: @V 2p cos θ Er = − = 3 @r 4π0r 1 @V p sin θ Eθ = − = 3 r @θ 4π0r In cartesian coordinates, where the dipole axis is along z: p(3 cos2 θ − 1) Ez = 3 4π0r 3p cos θ sin θ Ex=y = 3 4π0r Electric dipole field decreases like 1=r3 (for r a) 3 Notes: Diagrams: 4 Magnetic Dipoles A bar magnet with N and S poles has a dipole field A current loop also gives a dipole field Example: atomic electrons act as current loops Think of current elements +Idl and −Idl on opposite sides of the current loop as equivalent to +Q and −Q The magnetic dipole moment points along the axis of the loop Direction relative to Idl is given by corkscrew rule m = Iπa2^z = IA^z For a current loop m is the product of current times area Magnetic dipole field has the same shape as electric dipole field: 2µ0m cos θ µ0m sin θ B = B = r 4πr3 θ 4πr3 5 Dipoles in External Fields An External Field is provided by some large and distant charge (or current) distribution Usually assumed to be uniform and constant, i.e.
    [Show full text]