1986 an Evaluation of Alternative Technique for Mitigating Impacts Of

Total Page:16

File Type:pdf, Size:1020Kb

1986 an Evaluation of Alternative Technique for Mitigating Impacts Of I I fihtsrL,sf, I ffiJ-T'j I AN EVALUATION OT' ALTERNATIVE TECHNIQUES FOR MITIGATING IMPACTS OF TIIE SAN ONOFRE t NUCLEAR GENERAIING STATTON I I t I Richard F. Ambrose Mari-ne Science Institute University of California I Santa Barbara, California 93106 I I I I Prepared for: Marine Review Committee, fnc. 53I Encinitas BIvd., Suite J.05 T Encinj.tas, California 92024 I February, 1986 I I t AN EVALUATTON OF ALTERNAUVE TECHNTQUES FOR MITIGATTNG IUPACTS OF THE SAN ONOFRE NUCLEAR GENERJATINGSTATION TABLE OF CONTENTS EXECUTIVE SI'MMARY aaaaaaaaaaaaaaa ii O.O PREFACE vi 0.1 Purpose of this report ............... vii O.2 Previous work on rnitigation by the MRC vii,i 1.0 INTRODUCTION ..,............ ....... 1 1.1 Mitigation ..... .......... .. r... 1 1.1.1 Definition and General Application I 1.1.2 Procedure in California ..... ..... 6 1.1.3 Application to SONGS 7 L.2 Irnpact Evaluation at SONGS 9 9 13 L4 L7 18 18 I 24 2.I.3 Benthic Invertebrates 33 2.L.4 Plankton 35 2.2 Resource Substitution: Out-of-kind l,titir gation 37 I 2.2.1 Habitat Restoration ..... .. o.. 38 2.2.2 Coastal preservation 4t 2.2.3 Information Acquisition ..... ..... 42 I 2.2.4 Monetary payrnents ..... .o... 43 2.2.5 Water euality Improvement ......... o...... o.... 45 2.3 Mitigation Banking .o..........o.................... 46 prevention 2.4 Loss ..... 48 I 2.4.L rntake .................. r r r.....,... 49 2.4.2 Discharge ............... ...,...... 52 2.4.3 Cooling Towers ............. o.... r. 35 t 2.4.4 Restriction of Operations ..................... 55 2.5 Summary and Discussion .......... ..... 58 3.0 RECOMMENDATIONSFOR FUTURE SrUDY . O" " .... 63 4.0 LITERATURECITED .............................. 73 I TABLESAND FTGURES ........o........... ..... 85 Appendix I. Mitigation policy of the U.S. Fish and Wildl ife Senrice .. ...... .. .. .. AL I Appendix 2. Sumnrary of Habitat Evaluation Method.s (including HEp and others) 423 Appendix 3. Correspondence with U.S. Fish I and Wildlife Ser:rrice .. .. o A28 Appendix 4. List of species at San Onofre Kelp Bed 432 Appendix 5. Technigues for establishing kelp beds aaaaaaaaa 448 Appendix 6. Techniques for restoring coastal wetlands A'52 I Glossary a a a a a a a aaata a a aa oa aaaaa a a a a aa a a... a a a a G1 I I I EXECUTIVE SUMI{ARY This report presents an overview of options available for mitigating the possible effects of the san onofre Nuclear Generating Station (soNGS), and evaluates the appropriateness of each option. The three types of mitigation techni.ques consid,ered, are: (1) those replacing lost resources with identical resources (in-kind compensation) , (2) those substituting d,ifferent resources for the rost resources (out-of-kind compensation), and (3) those avoiding or minirnizing the loss of resources (Ioss prevention). Mit'igation is a process designed. to nininize the loss of resources or compensate for unavoidable resource losses that result from human activity. The ultirnate objective pf the mitigation process is to maintain the functional and productive capacity of the ecosystem, while accomod,ating necessary d.evelopment of natural resources. The U.S. Fish and Wildlife Service has an official nitigation policy that establishes the framework for mitigation and. priorit,izes rnitigation planning goals on the basis of the value of the resource; in calj.fornia, the other government agencies involve6 in nitigation in the marine environment folIow the same general philosophy as FWS. The fundamental principles guiding the FWSpolicy are that avoidance or compensation be reconmend,ed for the most valued, resources, and, the degree of rnitigation reguested correspond to the value and scarcity of the resource at risk. Two different kinds of rnitigative compensation are recognized: in-kind replacement of 11 resources involvinlt resources that are physically and. biologically similar to those being altered and that play sirnirar roles in ecosystem function, and out-of-kind substitution or resources involving dissiruilar resources. The most preferred, type of compensation is in-kind replacement of species at the location of the inpact ("on-sitet,). The FWSrnitigation poricy focuses on losses of rrhabitat valuerr. However, a broader perspective may be necessary to evaluate nitigation in an open coast ecosystem. In-kind replacement of resources that are lost due to the operation of SoNGsrnight be accomplished by enhancing existing kelp beds, creating new kelp beds, constructing artificial reefs, constructing fish hatcheries, restoring fish nursery habitats, constructing invertebrate hatcheries, or manipulating natural habitats. In-kind, replacernent of resources is the most preferred method of compensationr so these techniques should be consid.ered for the majority of the resources and/or the most varuable resources. The techniqrres that seem best for application at SONGS are (1) creating a kelp bed, and (2) constructing an artificiar reef. out-of-kind substitution of lost resources could be acconplished by any of the in-kind techniques, or by habitat (especially wetland) restoration or enhancement, preserx/ation of coastal 1ands, information acquisition, or water quality improvement. For resources that cannot feasibly be replaced by in- kind techniques, out-of-kind techniques must be used to achieve compensation. The three out-of-kind, technigues that seem best for 111 application at soNGS are (1) restoring or enhancing a habitat, (2) acguiring inforrnation, and (3) acquiring and preserving coastal Iand. The prevention of resource losses is generally the most favored technj-que for rnitigation. However, loss prevention technigues at SONGScannot be integrated. into project planni.ng or construction. Two loss prevention technigues, the Fish Return System and velocity caps, have already been implemented. at sONGs. Implementing other techniques involving structural changes to SoNGS would involve unknowns in the areas of engineering, biorogical effects, and economics. Two loss prevention techniques that do not reguire structural changes are: restricting the flow rate of water through the cooling system, and shutting down operations d,uring seasons of high potential impact. It is not clear that seasonal restriction of operations wourd, be effective at soNGS. There are many unknowns associated with the techniques discussed in this report, making it difficult to evaluate their feasibility for use at soNcs. I have reconmend.ed,three stud.ies that will assess the feasibility of the most pronising mitigation techniques. Fj.rst, r recornrnend,stud.ying the feasibility of creating kelp beds. Techniques used, for establishing keJ.p. and the potential of different locations could be evaluated.. second, r reconmend studying the production of fish on artificial reefs. The relationship between fish production on natural versus artificial reefs could be investigated by surrreys of natural and, artificial reefs. Additional stud.ies of Pendleton Artificial Reef would also 1V be useful, and the MRCnight consider beconing involved in the planning and monitoring of large-scale experimental reefs to be built by the Department of Fish and Game. Final1y, r recommend determining the critical life stages of fish species at risk at SONGS. Identifying potential life-history bottlenecks through a detailed review of existing information would aid in evaluat,ing the feasibirity of utirizing fish hatcheries or restoring nursery habitat to compensate for fish losses. Finalry, r note that the lack of information about possible nitigation techniques is a significant obstacle to evaluating their feasibility, yet previous rnitigation efforts have not been studied closely. f suggest that, regardless of the technigue(s) chosen, the MRCrecornmend. appropriate evaluative stud.ies be cond,ucted.. A glossary of terms related to nitigation is includ,ed. v PREFACE The Marine Review Committee has been charged with d.eterrnining the effects of the cooling system of the san onofre Nuclear Generating station (soNcs) on the surrounding marine biota. Initially, the aim of the MRC was to provid.e information to the California coastal Comrnission (ccc) concerning possible changes in the cooring systern of soNGS to prevent or red.uce any ad.verse effects to the marine environment. rn Lg7g, the cornmission recognized that some effects rnight be mitigated, without requiring changes in the cooling system, as indicated by the following excerpt from staff reconmendat,ions (Fischer 1979): n1he Commission also recognizes that operational changes or rnitigation measures night adequately compensate for any marine life damages resulting from the operation of Units 2 and 3. The Cornmission, therefore, requests the MRC to study the feasibility and. effects of selected, prornising nitigation measures, including construction of an artificial reef, as suggested by Southern California Edison. The MRC should recommend what measures rnight be taken to assure there would be no net adverse effect, on the marine environment from operation of soNGS units 2 and 3.r The MRC began investigating arternat,e mitigation measures in 19g0. rn 1994, the commission requested (Tobin, June 8, L984) that the MRC rfreview the work done to date on nitigation and determine if any additional mitigation research is appropriate. At the end of MRC study, the comrnittee should be able to recommend sound, feasible rnitigation measures for proj ect impacts . rl 0.1 Purpose of this report The present project, ItA Study of Mitigationrr, was undertaken to summarize the rerevant work on rnitigation in the marine
Recommended publications
  • Anthopleura and the Phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria)
    Org Divers Evol (2017) 17:545–564 DOI 10.1007/s13127-017-0326-6 ORIGINAL ARTICLE Anthopleura and the phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria) M. Daly1 & L. M. Crowley2 & P. Larson1 & E. Rodríguez2 & E. Heestand Saucier1,3 & D. G. Fautin4 Received: 29 November 2016 /Accepted: 2 March 2017 /Published online: 27 April 2017 # Gesellschaft für Biologische Systematik 2017 Abstract Members of the sea anemone genus Anthopleura by the discovery that acrorhagi and verrucae are are familiar constituents of rocky intertidal communities. pleisiomorphic for the subset of Actinioidea studied. Despite its familiarity and the number of studies that use its members to understand ecological or biological phe- Keywords Anthopleura . Actinioidea . Cnidaria . Verrucae . nomena, the diversity and phylogeny of this group are poor- Acrorhagi . Pseudoacrorhagi . Atomized coding ly understood. Many of the taxonomic and phylogenetic problems stem from problems with the documentation and interpretation of acrorhagi and verrucae, the two features Anthopleura Duchassaing de Fonbressin and Michelotti, 1860 that are used to recognize members of Anthopleura.These (Cnidaria: Anthozoa: Actiniaria: Actiniidae) is one of the most anatomical features have a broad distribution within the familiar and well-known genera of sea anemones. Its members superfamily Actinioidea, and their occurrence and exclu- are found in both temperate and tropical rocky intertidal hab- sivity are not clear. We use DNA sequences from the nu- itats and are abundant and species-rich when present (e.g., cleus and mitochondrion and cladistic analysis of verrucae Stephenson 1935; Stephenson and Stephenson 1972; and acrorhagi to test the monophyly of Anthopleura and to England 1992; Pearse and Francis 2000).
    [Show full text]
  • Marine Invertebrate Field Guide
    Marine Invertebrate Field Guide Contents ANEMONES ....................................................................................................................................................................................... 2 AGGREGATING ANEMONE (ANTHOPLEURA ELEGANTISSIMA) ............................................................................................................................... 2 BROODING ANEMONE (EPIACTIS PROLIFERA) ................................................................................................................................................... 2 CHRISTMAS ANEMONE (URTICINA CRASSICORNIS) ............................................................................................................................................ 3 PLUMOSE ANEMONE (METRIDIUM SENILE) ..................................................................................................................................................... 3 BARNACLES ....................................................................................................................................................................................... 4 ACORN BARNACLE (BALANUS GLANDULA) ....................................................................................................................................................... 4 HAYSTACK BARNACLE (SEMIBALANUS CARIOSUS) .............................................................................................................................................. 4 CHITONS ...........................................................................................................................................................................................
    [Show full text]
  • ANTIOXIDANT CAPACITY in the HEMOLYMPH of the MARINE ISOPOD PENTIDOTEA RESECATA by Leah E. Dann a THESIS Submitted to WALLA WALL
    ANTIOXIDANT CAPACITY IN THE HEMOLYMPH OF THE MARINE ISOPOD PENTIDOTEA RESECATA By Leah E. Dann A THESIS submitted to WALLA WALLA UNIVERSITY in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE April 26, 2017 ABSTRACT The isopod Pentidotea resecata inhabits Zostera marina eelgrass beds. Examination of oxygen levels in a Z. marina bed indicated that P. resecata frequently experience hyperoxia and potential hypoxia reperfusion events in these beds, which may lead to enhanced reactive oxygen species (ROS) production and increased oxidative damage if the antioxidant defenses cannot sufficiently suppress these toxic oxygen intermediates. The total antioxidant capacity of P. resecata hemolymph was compared to that of Ligia pallasii, a semi-terrestrial isopod living in normoxic conditions, and to that of Pandalus danae, a shrimp that lives below the photic zone. The hypothesis was that P. resecata hemolymph would have stronger antioxidant defenses than the other crustaceans because this isopod faces a more hostile oxygen environment. LCMS analysis of P. resecata hemolymph confirmed the presence of antioxidants including pheophorbide a, lutein, and β-carotene, while L. pallasii hemolymph contained pheophorbide a and lutein but no β-carotene. Pandalus danae hemolymph had no carotenoids or pheophorbide. Although L. pallasii hemolymph was missing β-carotene, it had a significantly higher total antioxidant capacity than that of P. resecata. Hemolymph from P. danae had an intermediate antioxidant capacity even though it contained none of the antioxidants detected in the other species. The unexpected antioxidant activities among the species could be explained by differences in metabolic functions or environmental factors that were not examined in this study; or perhaps P.
    [Show full text]
  • Tesis De Pablo David Vega García
    Programa de Estudios de Posgrado CAMBIOS HISTÓRICOS EN LAS POBLACIONES DE ABULÓN AZUL Y AMARILLO EN LA PENÍNSULA DE BAJA CALIFORNIA TESIS Que para obtener el grado de Doctor en Ciencias Uso, Manejo y Preservación de los Recursos Naturales Orientación Biología Marina P r e s e n t a PABLO DAVID VEGA GARCÍA La Paz, Baja California Sur, febrero de 2016 COMITÉ TUTORIAL Dr. Salvador Emilio Lluch Cota Director de Tesis Centro de Investigaciones Biológicas del Noroeste. La Paz, BCS. México. Dra. Fiorenza Micheli Dr. Héctor Reyes Bonilla Co-Tutor Co-Tutor Hopkins Marine Station, Stanford Universidad Autónoma de Baja University. California Sur. Pacific Grove, CA. EEUU. La Paz, BCS. México. Dr. Eduardo Francisco Balart Páez Dr. Pablo Del Monte Luna Co-Tutor Co-Tutor Centro de Investigaciones Biológicas Centro de Interdisciplinario de del Noroeste. Ciencias Marinas. La Paz, BCS. México La Paz, BCS. México. COMITÉ REVISOR DE TESIS Dr. Salvador Emilio Lluch Cota Dra. Fiorenza Micheli Dr. Eduardo Francisco Balart Páez Dr. Héctor Reyes Bonilla Dr. Pablo Del Monte Luna JURADO DE EXAMEN Dr. Salvador Emilio Lluch Cota Dra. Fiorenza Micheli Dr. Eduardo Francisco Balart Páez Dr. Héctor Reyes Bonilla Dr. Pablo Del Monte Luna SUPLENTES Dr. Fausto Valenzuela Quiñonez Dr. Raúl Octavio Martínez Rincón RESUMEN El abulón es un importante recurso pesquero en México que en las últimas décadas ha presentado una importante disminución de sus poblaciones, a pesar de las estrictas regulaciones a las que está sometida su explotación. Si bien la tendencia general de las capturas de abulón indica una disminución de las dos principales especies que la conforman (Haliotis fulgens y H corrugata), a partir de su máximo histórico en 1950, esta tendencia no ha sido uniforme ni entre especies ni entre las regiones de donde se extrae.
    [Show full text]
  • Appendix C - Invertebrate Population Attributes
    APPENDIX C - INVERTEBRATE POPULATION ATTRIBUTES C1. Taxonomic list of megabenthic invertebrate species collected C2. Percent area of megabenthic invertebrate species by subpopulation C3. Abundance of megabenthic invertebrate species by subpopulation C4. Biomass of megabenthic invertebrate species by subpopulation C- 1 C1. Taxonomic list of megabenthic invertebrate species collected on the southern California shelf and upper slope at depths of 2-476m, July-October 2003. Taxon/Species Author Common Name PORIFERA CALCEREA --SCYCETTIDA Amphoriscidae Leucilla nuttingi (Urban 1902) urn sponge HEXACTINELLIDA --HEXACTINOSA Aphrocallistidae Aphrocallistes vastus Schulze 1887 cloud sponge DEMOSPONGIAE Porifera sp SD2 "sponge" Porifera sp SD4 "sponge" Porifera sp SD5 "sponge" Porifera sp SD15 "sponge" Porifera sp SD16 "sponge" --SPIROPHORIDA Tetillidae Tetilla arb de Laubenfels 1930 gray puffball sponge --HADROMERIDA Suberitidae Suberites suberea (Johnson 1842) hermitcrab sponge Tethyidae Tethya californiana (= aurantium ) de Laubenfels 1932 orange ball sponge CNIDARIA HYDROZOA --ATHECATAE Tubulariidae Tubularia crocea (L. Agassiz 1862) pink-mouth hydroid --THECATAE Aglaopheniidae Aglaophenia sp "hydroid" Plumulariidae Plumularia sp "seabristle" Sertulariidae Abietinaria sp "hydroid" --SIPHONOPHORA Rhodaliidae Dromalia alexandri Bigelow 1911 sea dandelion ANTHOZOA --ALCYONACEA Clavulariidae Telesto californica Kükenthal 1913 "soft coral" Telesto nuttingi Kükenthal 1913 "anemone" Gorgoniidae Adelogorgia phyllosclera Bayer 1958 orange gorgonian Eugorgia
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Distribution and Inferred Evolutionary Characteristics of a Chimeric Ssdna Virus Associated with Intertidal Marine Isopods
    Article Distribution and Inferred Evolutionary Characteristics of a Chimeric ssDNA Virus Associated with Intertidal Marine Isopods Kalia S. I. Bistolas 1,*, Ryan M. Besemer 2,3, Lars G. Rudstam 4 and Ian Hewson 1 1 Department of Microbiology, Cornell University, Ithaca, NY 14850, USA; [email protected] 2 New Visions Life Sciences, Boards of Cooperative Educational Services of New York State, Ithaca, NY 14850, USA; [email protected] 3 University of North Carolina at Wilmington, Wilmington, NC 28403, USA 4 Department of Natural Resources and the Cornell Biological Field Station, Cornell University, Bridgeport, NY 14850, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-607-255-0151 Received: 26 October 2017; Accepted: 23 November 2017; Published: 26 November 2017 Abstract: Aquatic invertebrates are common reservoirs of a rapidly expanding group of circular Rep-encoding ssDNA (CRESS-DNA) viruses. This study identified and explored the phylogenetic relationship between novel CRESS-DNA viral genotypes associated with Pacific intertidal isopods Idotea wosnesenskii, Idotea resecata, and Gnorimosphaeroma oregonensis. One genotype associated with I. wosnesenskii, IWaV278, shared sequence similarity and genomic features with Tombusviridae (ssRNA) and Circoviridae (ssDNA) genomes and was putatively assigned to the Cruciviridae clade comprising chimeric viruses. The complete genome of IWaV278 (3478 nt) was computationally completed, validated via Sanger sequencing, and exhibited sequence conservation and codon usage patterns analogous to other members of the Cruciviridae. Viral surveillance (qPCR) indicated that this virus was temporally transient (present in 2015, but not 2017), specific to I. wosnesenskii at a single collection site (Washington, DC, USA), more prevalent among male specimens, and frequently detected within exoskeletal structures.
    [Show full text]
  • Biological and Geological Reconnaissance and Characterization Survey of the Tanner and Cortes Banks
    88073746 OCEANIC ENGINEERING Volume II SYNTHESIS OF FINDINGS I «=v. ?: BIOLOGICAL AND GEOLOGICAL RECONNAISSANCE AND CHARACTERIZATION SURVEY OF THE TANNER AND CORTES BANKS Prepared for UNITED STATES DEPARTMENT OF INTERIOR BUREAU OF LAND MANAGEMENT under contract AA551-CT8-43 TD 195 . P4 T36 1979 v. 2 j * ezbtfyi:* INTERSTATE 1001 East Ball Road ELECTRONICS Post Office Box 3117 CORPORATION Anaheim, California 92803 SUBSIDIARY OF Telephone (714) 635-7210 or (714) 772-2811 TWX U.S.A. 910-591-1197 TELEX 655443 i<m A%IO Volume II v. 2. Oceanic SYNTHESIS OF FINDINGS Engineering / BIOLOGICAL AND GEOLOGICAL RECONNAISSANCE AND CHARACTERIZATION SURVEY OF THE TANNER AND CORTES BANKS This study was supported by the Bureau of Land Management, Department of the Interior under contract AA551-CT8-43 SEPTEMBER 1979 This report has been reviewed by the Bureau of Land Man¬ agement and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Bureau, nor does mention of trade names or commercial products constitute endorsement nr ro^nmmon. dations for use. Prepared by - OCEANIC ENGINEERING OPERATIONS INTERSTATE ELECTRONICS CORPORATION VOLUME II PROGRAM PARTICIPANTS The following personnel participated in the conduct of the survey work and the writing and preparation of the final report and other deliverables under this contract to the Bureau of Land Management. Name Responsibility Discipline G.L. Bane General Manager M.S. Mechanical Eng W.B. Merselis Program Manager, Phase II M.S. Geology Party Chief, Principal Author N.B. Plutchak Chief Scientist, Data M.S. Oceanography Analysis, Author P.C.
    [Show full text]
  • Turf Assemblage of a Macrocystis Kelp Forest: Experiments On
    AN ABSTRACT OF THE THESIS OF A. Keith Miles for the degree of Doctor of Philosophy in Wildlife Science presented on June 16. 1986. Title: A m Macrosti t° Ex nmen n and Herbivory. Redacted for privacy Abstract approved: E. Charles Meslow Early and later successional stages of the assemblage of turf algae and sessile animals of a Macrocystis kelp forest were studied off San Nicolas Island, California from 1980 through 1981, and 1983 through 1984. Kelps were manipulated to determine if differences in illumination could account for dominance by turf algae or sessile animals. Caging and algal-removal experiments were conducted to determine if the effects of herbivory and competition could account for the low or variable recruitment and abundance of foliose turf algae. Plots were covered for different time intervals up to 1 year to determine if survival of overgrowth could explain the prevalence of competitively subordinate crustose coralline algae. Increased cover and recruitment of turf algae and decreased cover and low recruitment of sessile animals were correlated with the removal of canopy. In the presence of canopy, existing cover of crustose algae and sessile animalschanged little over time; sessile animals recruited at significantly higher levels thanalgae on cleared plots. Patiria (a common invertebrate grazer) removed certain ephemeral algae and appeared to slow recruitment by other algae, but had little effect on mature turf algae. These effects appeared dependent on a high density of Patiria. Algal recruitment on caged and open, near-bare plots was negligible, but sessile animals recruited heavily to these plots. These results were correlated with low illumination caused by a dense and persistent surface canopy of Macrocystis.
    [Show full text]
  • Coelenterata Actiniaria
    Re< Well. Aust Mus. 1991. 15(1159-6~ Redescription of A ulactinia veratra n. comb. (=Cnidopus veratra) (Coelenterata: Actiniaria) from Australia. Suzanne Edmands* and Daphne Gail Fautint Abstract The actinian described as Ac/inia vera/ra Drayton, 1846, and currently referred to as Cnidopus vera/ra, belongs to the genus A ulac/inia. Discrepancies in the literature, particularly concerning ectodermal specializations of the column, led to taxonomic uncertainties about its placement. Nomenclatural re-evaluation was necessitated by recent synonymization of the genus Cnidopus with Epiac/is. Cribrina verrucula/a Lager, 1911, is synonymized with Aulac/inia vera/ra. Introduction In this study we evaluate the taxonomic and nomenclatural status of the actiniid sea anemone originally described as Actinia veratra Drayton in Dana, 1846, and currently commonly referred to as Cnidopus verater. The genus Cnidopus. created by Carlgren (1934) for Epiactis ritteri Torrey, 1902, has been synonymized with Epiactis (Fautin and Chia 1986). Carlgren (1934: 351) erected Cnidopus on the basis of "very numerous nematocysts present at the sides of the protuberances and between them in the lowest parts of the column", which he identified as "probably atrichs" (= atrichous isorhizas). These cnidae actually possess small spines (Bigger 1976, 1982) and so are correctly termed holotrichous isorhizas (= holotrichs). Carlgren (1949) omitted this species from his catalog of Actiniaria, but later (1950a, b) referred Actinia veratra to Cnidopus. In the process, he inexplicably changed the species name to verater, which Ottaway (1975) considered a deliberate emendation that should not supercede the original spelling. Carlgren subsequently (1950b, 1952) referred the Japanese sea anemone called Epiactis prolifera Verrill, 1869, (e.g.
    [Show full text]
  • Mediterranean Marine Science
    CORE Metadata, citation and similar papers at core.ac.uk Provided by National Documentation Centre - EKT journals Mediterranean Marine Science Vol. 19, 2018 First record of the isopod Idotea hectica (Pallas, 1772) (Idoteidae) and of the brachyuran crab Matuta victor (Fabricius, 1781) (Matutidae) in the Hellenic waters KONDYLATOS Hydrobiological Station of GERASIMOS Rhodes CORSINI-FOKA MARIA Hellenic Centre for Marine Research, Hydrobiological Station of Rhodes. Cos Street, 85100 Rhodes PERAKIS EMMANOUIL Department of Fisheries Rhodes, South Aegean District. G. Mavrou 2, 85100, Rhodes https://doi.org/10.12681/mms.18106 Copyright © 2018 Mediterranean Marine Science To cite this article: KONDYLATOS, G., CORSINI-FOKA, M., & PERAKIS, E. (2018). First record of the isopod Idotea hectica (Pallas, 1772) (Idoteidae) and of the brachyuran crab Matuta victor (Fabricius, 1781) (Matutidae) in the Hellenic waters. Mediterranean Marine Science, 19(3), 656-661. doi:https://doi.org/10.12681/mms.18106 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 24/12/2020 06:42:54 | Short Communication Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net DOI: http://dx.doi.org/10.12681/mms.18106 First record of the isopod Idotea hectica (Pallas, 1772) (Idoteidae) and of the brachyuran crab Matuta victor (Fabricius, 1781) (Matutidae) in the Hellenic waters GERASIMOS KONDYLATOS1, MARIA CORSINI-FOKA1 and EMMANOUIL PERAKIS2 1 Hellenic Centre for Marine Research,
    [Show full text]