Influences on Proxemic Behaviors in Human-Robot Interaction

Total Page:16

File Type:pdf, Size:1020Kb

Influences on Proxemic Behaviors in Human-Robot Interaction The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems October 11-15, 2009 St. Louis, USA Influences on Proxemic Behaviors in Human-Robot Interaction Leila Takayama and Caroline Pantofaru Abstract— As robots enter the everyday physical world of human proxemic behaviors around robots, and how human people, it is important that they abide by society’s unspoken factors such as experience with robots can affect them. social rules such as respecting people’s personal spaces. In By gaining a deeper understanding of the factors that this paper, we explore issues related to human personal space around robots, beginning with a review of the existing literature most influence human-robot proxemic zones, one may gain in human-robot interaction regarding the dimensions of people, a better sense of how to design better models of human- robots, and contexts that influence human-robot interactions. robot interaction, optimizing algorithms for how close robots We then present several research hypotheses which we tested should approach people. Indeed, using proxemic distances to in a controlled experiment (N=30). Using a 2 (robotics experi- alter interactive system behavior has already been effective ence vs. none: between-participants) x 2 (robot head oriented toward a participant’s face vs. legs: within-participants) mixed in human-computer interactions with systems such as digital design experiment, we explored the factors that influence white boards [12]. Similar research is currently being done proxemic behavior around robots in several situations: (1) on how end-users might teach robots to engage in acceptable people approaching a robot, (2) people being approached by an proxemic behaviors [13]. autonomously moving robot, and (3) people being approached The goals of this study are to more thoroughly explore by a teleoperated robot. We found that personal experience with pets and robots decreases a person’s personal space the human and robot factors that influence optimal proxemic around robots. In addition, when the robot’s head is oriented behaviors in human-robot interaction and to turn those find- toward the person’s face, it increases the minimum comfortable ings into implications for human-robot interaction design. As distance for women, but decreases the minimum comfortable such, we first present a review of existing literature on issues distance for men. We also found that the personality trait of of human proxemics, human dimensions of HRI proxemics, agreeableness decreases personal spaces when people approach robots, while the personality trait of neuroticism and having robot dimensions of HRI proxemics, and pose hypotheses to negative attitudes toward robots increase personal spaces when be tested by this study. robots approach people. These results have implications for Our theoretical stance is that people will engage in prox- both human-robot interaction theory and design. emic behavior with robots in much the same way that they interact with other people, thereby extending the Computers I. INTRODUCTION as Social Actors theory [14][16] to human-robot interaction. Based on the existing empirical literature in human prox- Simple robots such as robotic vacuum cleaners are becom- emics and HRI, we present more specific research hypothe- ing increasingly prevalent in everyday human environments, ses and test them with a controlled experiment, focusing and it is only a matter of time until larger and more complex on personal experience with pets and robots, personality robots join them. As in human-to-human interactions, a characteristics, and the robot’s head direction (facing the contributing factor to human acceptance of such machines person’s face vs. facing the person’s legs), as they influence may be how well the robots obey comfortable human-robot the personal spaces between people and robots. spatial relationships. There is a wealth of information from both natural field observations and controlled laboratory II. RELATED LITERATURE experiments regarding the personal spaces of interacting A. Human Proxemics people (e.g., [2][8]), but it is unclear exactly how this will Fifty years ago, Edward T. Hall [8] introduced the concept inform human-robot personal spaces. of proxemics, which refers to the personal space that people The media equation theory states that people interact maintain around themselves. Much of the research on this with computers as they interact with people [14][16]. This topic is summarized by Michael Argyle [2], who introduced may become increasingly true for human-robot interaction, an intimacy equilibrium model [1], which reasons about the where the computers that take action in the physical human interactions between mutual gaze and proxemic behavior. If environment. However, people do not always orient toward a person feels that someone else is standing too close for robots as they orient toward people. At times, people engage comfort, that person will share less mutual gaze and/or lean with robots in the way that they engage with tools [20], away from the other person. As noted by Argyle [2], there are particularly when they are roboticists whose job it is to build many factors that influence proxemic behaviors, including and maintain the robot. Thus, it is necessary to gain a better individual personalities, familiarity between people, to what understanding of which robot design decisions influence degree people are interacting, the social norms of their culture, etc. L. Takayama and C. Pantofaru are Research Scientists at Wil- low Garage Inc., 68 Willow Road, Menlo Park, CA 94025, USA The unspoken rules of personal space tend to hold true takayama,[email protected] with nonhuman agents. In virtual reality settings, people 978-1-4244-3804-4/09/$25.00 ©2009 IEEE 5495 adjust their proxemic behaviors to virtual people (e.g., avatars In controlled experiments that manipulated robot voices, and virtual agents) as they do with regular people in the adults tended to have longer approach distances from robots physical world [3]. This is consistent with the media equa- with synthesized voices as opposed to approach distances tion theory [14][16]. Given that people will interact with from robots with high quality male as opposed to high quality computers, on-screen characters, and virtual reality agents, female voices or no voices at all [24]. it is not unreasonable to posit that such proxemic behaviors In similar experiments that manipulated robot form might also hold true in human-robot interaction. We explore (mechanoid vs. humanoid PeopleBots), adults tended to have the related works in human-robot personal spaces in the longer approach distances from humanoid robots than from following sections. mechanoid ones [19]. Similar results were found on the B. Human Dimensions of HRI Proxemics Nomadic Scout II [5]. People have been shown to also be sensitive to mobile Among the many human factors that influence proxemics robot speeds, preferring that a robot move at speeds slower in HRI are a person’s age, personality, familiarity with than that of a walking human [5]; studies have found that robots, and gender. having a mobile personal robot moving at approximately 1 A person’s age influences how close a person will stand to meter per second is too fast for human comfort. a robot. In controlled experiments with children and adults interacting with the mechanistic robot PeopleBot, children Robot height is yet another contributing factor. The study tended to stand further away from the robot than adults [22]. in [23] argued that actual robot height does not systematically Peoples’ personalities also seem to influence the distances influence comfortable approach distances across the partici- they maintain to robots. In a laboratory experiment with pants, although robot appearance does. Height was a factor robots approaching seated people, it was found that people in overall perceptions, however, with the taller PeopleBot who are highly extroverted are tolerant of personal space perceived as being more capable, authoritative and human- invasion, regardless of whether the robot approaches from the like than the shorter version. front or rear; however, people who are low on extraversion D. Contextual Dimensions of HRI Proxemics are more sensitive to robot approach directions [17]. This is consistent with previous research in human interpersonal Depending upon the type of human-robot interaction activ- distance that found extroverts are tolerant of closer proxemic ity, proxemic behaviors may vary widely. In a more dynamic behaviors than introverts [25]. In somewhat of a contrast, interaction of people teaching robots to identify objects, another study of standing people found that those who adults were generally found to prefer to maintain a personal are more proactive (i.e., more aggressive, creative, active, distance (i.e., 0.46 to 1.22 meters) from the robot, but this excitement-seeking, dominant, impulsive, and less shy) tend varied by the type of task (i.e., following, showing, and to stand further away from robots [21]. Though the two validating missions) [10]. studies do not tap the exact same personality construct, they pose an interesting conflict in the existing literature regarding E. Research Hypotheses personality and human-robot spatial relationships. Based on the existing literature in human-robot interaction Consistent with the social science findings that people and proxemics, we pose four research hypotheses to be stand closer to other people with whom they are more explored in
Recommended publications
  • Lio - a Personal Robot Assistant for Human-Robot Interaction and Care Applications
    Lio - A Personal Robot Assistant for Human-Robot Interaction and Care Applications Justinas Miseikis,ˇ Pietro Caroni, Patricia Duchamp, Alina Gasser, Rastislav Marko, Nelija Miseikienˇ e,˙ Frederik Zwilling, Charles de Castelbajac, Lucas Eicher, Michael Fruh,¨ Hansruedi Fruh¨ Abstract— Lio is a mobile robot platform with a multi- careers [4]. A possible staff shortage of 500’000 healthcare functional arm explicitly designed for human-robot interaction employees is estimated in Europe by the year of 2030 [5]. and personal care assistant tasks. The robot has already Care robotics is not an entirely new field. There has been deployed in several health care facilities, where it is functioning autonomously, assisting staff and patients on an been significant development in this direction. One of the everyday basis. Lio is intrinsically safe by having full coverage most known robots is Pepper by SoftBank Robotics, which in soft artificial-leather material as well as having collision was created for interaction and entertainment tasks. It is detection, limited speed and forces. Furthermore, the robot has capable of voice interactions with humans, face and mood a compliant motion controller. A combination of visual, audio, recognition. In the healthcare sector Pepper is used for laser, ultrasound and mechanical sensors are used for safe navigation and environment understanding. The ROS-enabled interaction with dementia patients [6]. setup allows researchers to access raw sensor data as well as Another example is the robot RIBA by RIKEN. It is have direct control of the robot. The friendly appearance of designed to carry around patients. The robot is capable of Lio has resulted in the robot being well accepted by health localising a voice source and lifting patients weighing up to care staff and patients.
    [Show full text]
  • Report of Comest on Robotics Ethics
    SHS/YES/COMEST-10/17/2 REV. Paris, 14 September 2017 Original: English REPORT OF COMEST ON ROBOTICS ETHICS Within the framework of its work programme for 2016-2017, COMEST decided to address the topic of robotics ethics building on its previous reflection on ethical issues related to modern robotics, as well as the ethics of nanotechnologies and converging technologies. At the 9th (Ordinary) Session of COMEST in September 2015, the Commission established a Working Group to develop an initial reflection on this topic. The COMEST Working Group met in Paris in May 2016 to define the structure and content of a preliminary draft report, which was discussed during the 9th Extraordinary Session of COMEST in September 2016. At that session, the content of the preliminary draft report was further refined and expanded, and the Working Group continued its work through email exchanges. The COMEST Working Group then met in Quebec in March 2017 to further develop its text. A revised text in the form of a draft report was submitted to COMEST and the IBC in June 2017 for comments. The draft report was then revised based on the comments received. The final draft of the report was further discussed and revised during the 10th (Ordinary) Session of COMEST, and was adopted by the Commission on 14 September 2017. This document does not pretend to be exhaustive and does not necessarily represent the views of the Member States of UNESCO. – 2 – REPORT OF COMEST ON ROBOTICS ETHICS EXECUTIVE SUMMARY I. INTRODUCTION II. WHAT IS A ROBOT? II.1. The complexity of defining a robot II.2.
    [Show full text]
  • The Utilibot Project: an Autonomous Mobile Robot Based on Utilitarianism
    The Utilibot Project: An Autonomous Mobile Robot Based on Utilitarianism Christopher Cloos 9712 Chaparral Ct. Stockton, CA 95209 [email protected] Abstract Personal service robots are entering the home in greater numbers. As of 2003 there were 1.2 million service robots As autonomous mobile robots (AMRs) begin living in the sold for domestic use, and this number was projected to home, performing service tasks and assisting with daily reach 6.6 million by 2007 (U.N./I.F.R. 2004). This trend is activities, their actions will have profound ethical implica- sure to continue into the future as major technological cor- tions. Consequently, AMRs need to be outfitted with the porations (e.g. Sony, Honda and Mitsubishi) are in a race to ability to act morally with regard to human life and safety. ‘push-to-market’ a humanoid robot that acts as a personal Yet, in the area of robotics where morality is a relevant field of endeavor (i.e. human-robot interaction) the sub-discipline companion/domestic assistant (Economist 2005). These of morality does not exist. In response, the Utilibot project trends highlight another consideration behind the necessity seeks to provide a point of initiation for the implementation of implementing ethics in a robot—autonomous capabili- of ethics in an AMR. The Utilibot is a decision-theoretic ties (e.g. Khatib et al. 1999). AMR guided by the utilitarian notion of the maximization of As autonomous mobile robots begin living in the home, human well-being. The core ethical decision-making capac- doing our chores for us and interacting with us socially, it ity of the Utilibot consists of two dynamic Bayesian net- will be imperative that we can count on them acting in a works that model human and environmental health, a safe, predictable way.
    [Show full text]
  • Calo, Robot Privacy
    Robots and Privacy M. Ryan Calo Introduction Robots are commonplace today in factories and on battlefields. The consumer market for robots is rapidly catching up. A worldwide survey of robots by the United Nations in 2006 revealed 3.8 million in operation, 2.9 million of which were for personal or service use. By 2007, there were 4.1 million robots working just in people’s homes [Singer 2009, 7‐8; Sharkey 2008, 3]. Microsoft founder Bill Gates has gone so far as to argue in an opinion piece that we are at the point now with personal robots that we were in the 1970s with personal computers, of which there are now many billions [Gates 2007]. As these sophisticated machines become more prevalent—as robots leave the factory floor and battlefield and enter the public and private sphere in meaningful numbers— society will shift in unanticipated ways. This chapter explores how the mainstreaming of robots might specifically affect privacy. It is not hard to imagine why robots raise privacy concerns. Practically by definition, robots are equipped with the ability to sense, process, and record the world around them [Denning et al. 2008; Singer 2009, 67].ii Robots can go places humans cannot go, see things humans cannot see. Robots are, first and foremost, a human instrument. And after industrial manufacturing, the principle use to which we’ve put that instrument has been surveillance. Yet increasing the power to observe is just one of ways in which robots may implicate privacy within the next decade. This chapter breaks the effects of robots on privacy into three categories—direct surveillance, increased access, and social meaning—with the goal of introducing the reader to a wide variety of issues.
    [Show full text]
  • Human–Robot Interaction: a Survey Full Text Available At
    Full text available at: http://dx.doi.org/10.1561/1100000005 Human–Robot Interaction: A Survey Full text available at: http://dx.doi.org/10.1561/1100000005 Human–Robot Interaction: A Survey Michael A. Goodrich Brigham Young University Provo UT 84602 USA [email protected] Alan C. Schultz US Naval Research Laboratory Washington DC 20375 USA [email protected] Boston – Delft Full text available at: http://dx.doi.org/10.1561/1100000005 Foundations and Trends R in Human–Computer Interaction Published, sold and distributed by: now Publishers Inc. PO Box 1024 Hanover, MA 02339 USA Tel. +1-781-985-4510 www.nowpublishers.com [email protected] Outside North America: now Publishers Inc. PO Box 179 2600 AD Delft The Netherlands Tel. +31-6-51115274 The preferred citation for this publication is M. A. Goodrich and A. C. Schultz, Human–Robot Interaction: A Survey, Foundation and Trends R in Human– Computer Interaction, vol 1, no 3, pp 203–275, 2007 ISBN: 978-1-60198-092-2 c 2007 M. A. Goodrich and A. C. Schultz All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers. Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen- ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users registered with the Copyright Clearance Center (CCC).
    [Show full text]
  • Robotics in Germany and Japan DRESDEN PHILOSOPHY of TECHNOLOGY STUDIES DRESDNER STUDIEN ZUR PHILOSOPHIE DER TECHNOLOGIE
    Robotics in Germany and Japan DRESDEN PHILOSOPHY OF TECHNOLOGY STUDIES DRESDNER STUDIEN ZUR PHILOSOPHIE DER TECHNOLOGIE Edited by /Herausgegeben von Bernhard Irrgang Vol./Bd. 5 Michael Funk / Bernhard Irrgang (eds.) Robotics in Germany and Japan Philosophical and Technical Perspectives Bibliographic Information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the internet at http://dnb.d-nb.de. Library of Congress Cataloging-in-Publication Data Robotics in Germany and Japan : philosophical and technical perspectives / Michael Funk, Bernhard Irrgang (eds.). pages cm ----- (Dresden philosophy of technology perspectives, ISSN 1861- -- 423X ; v. 5) ISBN 978-3-631-62071-7 ----- ISBN 978-3-653-03976-4 (ebook) 1. Robotics-----Germany----- Popular works. 2. Robotics----- Japan--Popular works. 3. Robotics-----Philosophy. I. Funk, Michael, 1985- -- editor of compilation. II. Irrgang, Bernhard, editor of compilation. TJ211.15.R626 2014 629.8'920943----- dc23 2013045885 Cover illustration: Humanoid Robot “ARMAR” (KIT, Germany), Photograph: Michael Funk An electronic version of this book is freely available, thanks to the support of libraries working with Knowledge Unlatched. KU is a collaborative initiative designed to make high quality books Open Access for the public good. More information about the initiative and links to the Open Access version can be found at www.knowledgeunlatched.org ISSN 1861-423X • ISBN 978-3-631-62071-7 (Print) E-ISBN 978-3-653-03976-4 (E-PDF) • E-ISBN 978-3-653-99964-8 (EPUB) E-ISBN 978-3-653-99963-1 (MOBI) • DOI 10.3726/978-3-653-03976-4 Open Access: This work is licensed under a Creative Commons Attribution NonCommercial NoDerivatives 4.0 unported license.
    [Show full text]
  • Behavior Description and Control Using Behavior Module for Personal Robot
    Behavior description and control using behavior module for personal robot Yukiko Hoshino Tsuyoshi Takagi Ugo Di Profio Sony Corporation Sony Corporation and Masahiro Fujita Life Dynamics Laboratory Entertainment Robot Company Sony Corporation Preparatory Office 6-7-35 Kitashinagawa, Network CE Laboratory 6-7-35 Kitashinagawa, Shinagawa-ku, Tokyo, 6-7-35 Kitashinagawa, Shinagawa-ku, Tokyo, 141-0001 Japan Shinagawa-ku,Tokyo, 141-0001 Japan Email: [email protected] 141-0001 Japan Email: [email protected] Telephone: (+81) 3-5448-5901, Fax: (+81) 3-5448-6833 Abstract — This paper describes a module-based behavior selec- LongTermMemory tion architecture for a personal robot intended for a real world InternalStateModel environment. We adopt the Emotional GrOunded architecture Visual EmotionEngine for a basis, and define and describe a behavior module and an Auditory ShortTermemory associated tree structure for controlling many behavior modules. Perception Also we discuss the requirements and approach for controlling External the behavior module tree. Through experimentation and imple- Motivation mentation on QRIO SDR4X-II, we confirm the feasibility and Stimuli design of the behavior selection system. Behavior Selection Behavior I. INTRODUCTION There are many new research efforts involving robots that live with human users in daily life in recent years. [1][2][3] Fig. 1. Overview of EGO architecture To develop robots capable of sharing the life of a human for extended periods, it is indispensable that the robot not only the outline of EGO architecture. The robot integrates visual, perform useful tasks but also entertain people. To realize this auditory and other sensing informations into the short term concept, which we call “Robot Entertainment”, the key issue memory(STM) and uses those informations as external stimuli.
    [Show full text]
  • Robotics Cluster the Massachusetts Robotics Cluster
    THE MASSACHUSETTS ROBOTICS CLUSTER www.abiresearch.com THE MASSACHUSETTS ROBOTICS CLUSTER Dan Kara Research Director, Robotics ABI Research Phil Solis Research Director ABI Research Photo Credits: Amazon Robotics: www.amazonrobotics.com, Aquabotix Technology: www.aquabotix.com, Bluefin Robotics: www.bluefinrobotics.com, Boston Engineering: www.boston-engineering.com, Corindus Vascular Robotics: www.corindus.com, Endeavor Robotics: www.endeavorrobotics.com, iRobot: www.irobot.com, Jibo: www.jibo.com, Locus Robotics: www.locusrobotics.com, Neurala: www.neurala.com, Rethink Robotics: www.rethinkrobotics.com, ReWalk Robotics: www.rewalk.com, Robai: www.robai.com, Softrobotics: www.softroboticsinc.com, Vecna Technologies: www.vecna.com I www.abiresearch.com THE MASSACHUSETTS ROBOTICS CLUSTER TABLE OF CONTENTS 1. CONTRIBUTORS ....................................................................................................1 2. EXECUTIVE SUMMARY ........................................................................................2 3. INTRODUCTION ....................................................................................................7 3.1. INNOVATION ECONOMY ...............................................................................................7 3.2. STRATEGIC APPROACH ...................................................................................................7 4. ROBOTS AND ROBOTICS TECHNOLOGIES ......................................................9 4.1. AUTONOMY ....................................................................................................................9
    [Show full text]
  • Review Literature Review: Gender and Robotics
    Review Literature Review: Gender and Robotics Anna Pillinger September 2019 “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 741128”. 1 Contents 1 Introduction .....................................................................................................................3 1.1 Definitions and Demarcations: Robots and Non-Robots ...........................................3 1.2 Queering Gender and Sex ........................................................................................5 1.3 Sensitizing Concepts ................................................................................................5 1.3.1 Drawing Together Feminism and Technoscience: Donna Haraway’s Cyborg ....5 1.3.2 Drawing Together Feminism and Technoscience: Lucy Suchman’s Human ......6 1.3.3 Caring about Robots: Jutta Weber’s Helpless Machines and True loving ..........6 1.4 Excursion: Media Equation Theory ...........................................................................7 2 Gender & Robots.............................................................................................................8 2.1 Humans interacting with Robots and Robots interacting with Humans .....................8 2.1.1 An Abstract Portrayal and a Tangible Alternative ..............................................9 2.1.2 Alternatives .....................................................................................................10 2.1.3 Gender Studies in HRI ....................................................................................10
    [Show full text]
  • Machine Ethics and Robot Ethics the Library of Essays on the Ethics of Emerging Technologies
    MACHINE ETHICS AND ROBOT ETHICS THE LIBRARY OF ESSAYS ON THE ETHICS OF EMERGING TECHNOLOGIES Series editor: Wendell Wallach Titles in the series The Ethical Challenges of Emerging Medical Technologies Edited by Arthur L. Caplan and Brendan Parent The Ethics of Biotechnology Edited by Gaymon Bennett The Ethics of Nanotechnology, Geoengineering, and Clean Energy Edited by Andrew Maynard and Jack Stilgoe The Ethics of Sports Technologies and Human Enhancement Edited by Thomas H. Murray and Voo Teck Chuan Emerging Technologies Edited by Gary E. Marchant and Wendell Wallach The Ethics of Information Technologies Edited by Keith W. Miller and Mariarosaria Taddeo Machine Ethics and Robot Ethics Edited by Wendell Wallach and Peter Asaro The Ethics of Military Technology Edited by Braden Allenby Machine Ethics and Robot Ethics Wendell Wallach, Yale University, USA, and Peter asaro, New School for Public Engagement, USA THE LIBRAY OF ESSAYS ON THE ETHICS OF EMERGING TECHNOLOGIES First published 2017 by Routledge 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN and by Routledge 711 Third Avenue, New York, NY 10017 Routledge is an imprint of the Taylor & Francis Group, an informa business Editorial material and selection © 2017 Wendell Wallach and Peter Asaro; individual owners retain copyright in their own material. All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.
    [Show full text]
  • Internet of Robotic Things – Converging Sensing/Actuating, Hyperconnectivity, Artificial Intelligence and Iot Platforms
    4 Internet of Robotic Things – Converging Sensing/Actuating, Hyperconnectivity, Artificial Intelligence and IoT Platforms Ovidiu Vermesan1, Arne Broring¨ 2, Elias Tragos3, Martin Serrano3, Davide Bacciu4, Stefano Chessa4, Claudio Gallicchio4, Alessio Micheli4, Mauro Dragone5, Alessandro Saffiotti6, Pieter Simoens7, Filippo Cavallo8 and Roy Bahr1 1SINTEF, Norway 2SIEMENS AG, Germany 3National University of Ireland Galway, Ireland 4University of Pisa, Italy 5Heriot-Watt University, UK 6Orebro¨ University, Sweden 7Ghent University – imec, Belgium 8Scuola Superiore Sant’Anna, Italy Abstract The Internet of Things (IoT) concept is evolving rapidly and influencing new developments in various application domains, such as the Internet of Mobile Things (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Sys- tem of Things (ASoT), Internet of Autonomous Things (IoAT), Internet of Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc. that are progressing/advancing by using IoT technology. The IoT influence represents new development and deployment challenges in different areas such as seamless platform integration, context based cognitive network inte- gration, new mobile sensor/actuator network paradigms, things identification (addressing, naming in IoT) and dynamic things discoverability and many others. The IoRT represents new convergence challenges and their need 97 98 Internet of Robotic Things – Converging Sensing/Actuating to be addressed, in one side the programmability and the communication of multiple heterogeneous mobile/autonomous/robotic
    [Show full text]
  • MILO: Personal Robot Platform
    MILO: Personal Robot Platform Behnam Salemi Jorge Reis, Arash Saifhashemi, Fred Nikgohar Department of Computer Science RoboDynamics USC/Information Sciences Institute 2215 S. Sepulveda Blvd 4676 Admiralty Way, Marina del Rey, Ca.90292USA Los Angles, Ca 90064., USA [email protected] {jorge, arash, fred}@robodynamics.com Abstract – Recent advances in mobile robotic technology has ActivMedia Pioneer and PeopleBot [11] service robots, given rise to new types of robotic applications called Personal Evolution Robotics ER1 [12], and entertainment robots such Robotics. The main feature of these applications is that they as the Sony Aibo [13], and the Wow Wee RoboSapien [14]. require low cost robots that involve assisting people in doing Requirements of these new applications have raised new their everyday jobs such as providing personal assistance, challenges for robotic research community which includes commercial security, mobile tele-conferencing, tele-presence, home services, entertainment, and elderly care. In this paper we developing robots that are cost effective, reliable, safe, will introduce a low cost and general purpose mobile robotic efficient, flexible, expandable, secure, and easy to program, platform called MILO. It offers unique hardware and software maintain and interact with. Successful solutions to these features which make MILO suitable for a wide spectrum of challenges require novel designs that take issues such as personal robotic applications. MILO possesses PC architecture expandability, efficiency, extensibility, modularity, and and runs on Windows XP. We have experimentally evaluated reusability of the software and hardware components into MILO’s performance. Preliminary results show that MILO can account. be effectively used to develop personal robotic applications. Index Terms – Mobile robots, Internet robots, Personal robots, Service Robots, Tele-presence.
    [Show full text]