<Original Signed By>

Total Page:16

File Type:pdf, Size:1020Kb

<Original Signed By> Site C Clean Energy Project Joint Review Panel Public Hearing Procedures Attachment C – Public Hearing Registration Form This attachment outlines the process for registering to participate in the public hearing. When registering, please include the following information: Full name Organization Email address Mailing address Telephone In a general session – Location: In a community session – Location: I intend to In a topic-specific session – Location and Topic: participate In writing Orally (I request ___ minutes to present) If you require translation, specify language Please submit a synopsis of the information to be presented (attach a separate sheet if necessary) 1 Peter Bobrowsky, Ph.D. NRCan’s expert in engineering geology (landslides, paleoseismicity, aggregate studies) Natural Resources Canada Geological Survey of Canada 610, Booth Street Ottawa K1A 0E8 Current Occupation: Senior Research Scientist, Geological Survey of Canada (Natural Resources Canada), since 2002 Adjunct Full Professor, Simon Fraser University, since 2006 Education: 1989 Ph.D. (Quaternary Geology of Northern Rocky Mountain Trench, British Columbia) University of Alberta, Alberta 1982 M.A. (Paleoenvironmental studies using gastropods) Simon Fraser University, British Columbia 1979 B.Sc. (Geology) University of Alberta, Alberta 1977 B.A. (Anthropology) University of Alberta, Alberta Professional Experience: Dr. Bobrowsky has worked with the Geological Survey of Canada since 2002 where he has focussed his interests and obligations on landslide related research. During this period of work at the GSC he has worked on landslide issues around the world. From 1989 to 2002 he worked with the British Columbia Geological Survey Branch studying all aspects of terrain geology across British Columbia including NE BC. His PhD thesis was centered on the Northern Rocky Mountain Trench north of Williston Lake. Dr. Bobrowsky’s current research activities include the application and testing of various methods to monitor slope movement in British Columbia. He is also spearheading a government initiative to provide guidelines and best practices documents for landslide studies completed by the professional landslide community in Canada. During his career he has published over 300 maps, reports, abstracts, books and articles on a variety of topics. As an adjunct professor he taught several courses for 10 years at the University of Victoria, supervised 4 BSc and 5 MSc student theses; was a committee member for 9 MSc and 1 PhD theses and was an external examiner for 5 MSc., and 2 PhD theses. He has mentored 28 students and 2 international Visiting Scientists at the GSC since 2002. During his tenure at the BC Geological Survey he was responsible for coordinating, developing and publishing both the Terrain Mapping Guidelines and Terrain Stability Guidelines for the Province of BC now widely used by engineering geologists and others involved in forestry, fisheries, mining, etc. where surficial mapping and landslides are of concern. 1 Dr. Bobrowsky is currently the Past President of the Geological Association of Canada. He now holds or has held a number of other positions including: Secretary General and Vice President for the International Union of Geological Sciences (IUGS), President and Vice President of the Canadian Quaternary Association (CANQUA), International Director for the Canadian Geoscience Council (CGC), Senior Scientific Advisor for the International Year of Planet Earth (IYPE), Director for the Canadian Federation of Earth Sciences (CFES), International Technical Advisor to the UNESCO Slope Instability Study of Petra, Jordan, Subject Matter Expert to Geoscientists Canada, Earth and Space Sciences Representative for the Committee on International Science, Engineering and Technology – National Research Council (CISET- NRC), Scientific Advisor to the International Union for Conservation of Nature World Heritage Programme (IUCN), Member of the Railway Ground Hazards Research Program Technical Committee (RGHRP), Member of the Canadian Geoscience Foundation (CGF), Editor in Chief of the Encyclopedia of Natural Hazards, Associate Editor for Quaternary International, Associate Editor for the journal Landslides amongst others. Selected Publications: Bobrowsky, P.T., VanDine, D. and R. Couture (2014) Technical Landslide Guidelines and Best Practices for Professional Geoscientists. IAEG (International Association of Engineering Geology and the Environment) Congress, Turin, Italy 15 – 19 September 2014 (paper in press) Bobrowsky, P.T., Sladen, W., Huntley, D., Qing, Z., Bunce, C., Edwards, T., Hendry, M., Martin, D. and E. Choi (2014) Multi-parameter monitoring of a slow moving landslide: Ripley Site, British Columbia, Canada. IAEG (International Association of Engineering Geology and the Environment) Congress, Turin, Italy 15 – 19 September 2014 (paper in press) Bobrowsky, P.T. (2013) (Editor) Encyclopedia of Natural Hazards. Springer, New York, 1141 pages. Couture, R., Blais-Stevens, A., Bobrowsky, P.T., B. Wang and D. VanDine (2013) Canadian technical guidelines and best practices related to landslides: a national initiative for less reduction. In: Landslides: Global Risk Preparedness, edited by K. Sassa. Springer Verlag Publishing; p. 327-334. Peppolini, S., Bobrowsky, P. and G. Di Capua (2013) Geoethics: a challenge for the research integrity in geosciences. Paper presented at the 3rd World Conference on Research Integrity, Montreal, Quebec, Canada 5 – 8 May 2013 (paper in press) Bobrowsky, P.T. and M.J. Dominguez (2012) The Landslide Susceptibility Map of Canada. Geological Survey of Canada Open File 7228. Crow, H.L., Hunter, J.A. and P. Bobrowsky (2012) National shear wave measurement guidelines for Canadian seismic site assessment. Proceedings of the 63rd Canadian Geotechnical Society Conference, GeoManitoba, Winnipeg, Manitoba, 1-3 October 2012, 7 pages. Couture, R., Bobrowsky, P.T., Blais-Stevens, A., VanDine, D., and Wang, B. (2012) An Introduction to the Canadian Technical Guidelines and Best Practices related to Landslides. Paper accepted to the Joint 11th ISL & 2nd NASL, Banff (Canada), 4-8 June 2012, 6 pages. (Contribution to Chapter A). In: Landslides and Engineered Slopes: Protecting Society through Improved Understanding, edited by E. Eberhardt, C. Froese, A.K. Turner and S. Leroueil, A. Balkema (Netherlands), pp. 217-222. Jackson, L.E., Jr. Bobrowsky, P.T. and A. Bichler (2012) Identification and Mapping – Canadian Technical Guidelines and Best Practices Related to Landslides: A National Initiative for Loss Reduction. Geological Survey of Canada, Open File 7059. 2 Couture, R., Bobrowsky, P.T., Blais-Stevens, A., Wang, B. and D. VanDine (2011) National Technical Guidelines and Best Practices related to Landslides: a national initiative for loss reduction. Proceedings, 5th Canadian Conference on Geohazards, Kelowna (BC), May 15-17, 2011, 6 pages, Paper #118 Clague, J.J. and P.T. Bobrowsky (2010) Natural Hazards in Canada. Geoscience Canada, 37(1):17-37. Hervas, J. and P. Bobrowsky (2009) Mapping: Inventories, Susceptibility, Hazards and Risk. In: Landslides – Disaster Risk Reduction, edited by K. Sassa and P. Canuti. Springer Verlag Publishing, p. 321-349. Lipovsky P., Evans, S.G., Clague J.J, Hopkinson C., Couture, R., Bobrowsky, P., Ekstrom G., Demuth M., Delaney K., Roberts N., Clarke G. and A. Schaeffer (2008) The July 2007 rock and ice avalanches at Mount Steele, St. Elias Mountains, Yukon. Landslides, 5:445-455 Highland, L. and P. T. Bobrowsky (2008) The Landslide Handbook – A Guide to Understanding Landslides. USGS Circular 1325. 129 pages. This book has been translated and published into the following languages: Mandarin, Spanish, Portueguese, and Japanese. The Ukrainian and Farsi versions are translated and await publication. It has won two awards. Best, M., Bobrowsky, P., Carlotto, V., Pari, W. and M. Douma (2008) Geophysical surveys at Machu Picchu, Peru: preliminary results for landslide hazard investigations. 21st SAGEEP Symposium on the Application of Geophysics to Engineering and Environmental Problems, Philadelphia, PA, USA, April 6- 10, 2008; p. 348-365. Bobrowsky, P. and H. Rickman (Editors) (2007) Comet/Asteroid Impacts and Human Society: an interdisciplinary approach. Springer Verlag Publishing, 546 p. Awards or Honours: Queen Elizabeth II Diamond Jubilee Medal in 2012 (in recognition for geoscientific contributions in Peru, China and India on behalf of the Government of Canada) International Programme on Landslides (IPL) World Centre of Excellence on Landslide Disaster Reduction (2011-2014) team recognition to the Geological Survey of Canada International Programme on Landslides (IPL) Award for Success for IPL Projects in 2011 (in recognition for Project M106 Best Practice Handbook for Landslide Hazard Mitigation 2002-2007) Edward B. Burwell Jr. Award – Engineering Geology Division, Geological Society of America for 2011 (in recognition for the co-authored publication entitled The Landslide Handbook) Eugene Shoemaker Communications Award for Best Book 2009 (in recognition for the co-authored publication entitled The Landslide Handbook – USGS Circular 1325) Government of Canada Earth Science Sector 2008 Merit Award (China-Canada and India-Canada research project success) Gold Medal 1999 - Universidad Nacional de San Antonio Abad (Cusco, Peru) Natural Sciences and Engineering Research Council of Canada (Post-Doctoral Visiting Fellowship) Geological Society of America (Student Research Award/Grant) Boreal Institute for Northern Studies
Recommended publications
  • Canadian Volcanoes, Based on Recent Seismic Activity; There Are Over 200 Geological Young Volcanic Centres
    Volcanoes of Canada 1 V4 C.J. Hickson and M. Ulmi, Jan. 3, 2006 • Global Volcanism and Plate tectonics Where do volcanoes occur? Driving forces • Volcano chemistry and eruption types • Volcanic Hazards Pyroclastic flows and surges Lava flows Ash fall (tephra) Lahars/Debris Flows Debris Avalanches Volcanic Gases • Anatomy of an Eruption – Mt. St. Helens • Volcanoes of Canada Stikine volcanic belt Presentation Outline Anahim volcanic belt Wells Gray – Clearwater volcanic field 2 Garibaldi volcanic belt • USA volcanoes – Cascade Magmatic Arc V4 Volcanoes in Our Backyard Global Volcanism and Plate tectonics In Canada, British Columbia and Yukon are the host to a vast wealth of volcanic 3 landforms. V4 How many active volcanoes are there on Earth? • Erupting now about 20 • Each year 50-70 • Each decade about 160 • Historical eruptions about 550 Global Volcanism and Plate tectonics • Holocene eruptions (last 10,000 years) about 1500 Although none of Canada’s volcanoes are erupting now, they have been active as recently as a couple of 4 hundred years ago. V4 The Earth’s Beginning Global Volcanism and Plate tectonics 5 V4 The Earth’s Beginning These global forces have created, mountain Global Volcanism and Plate tectonics ranges, continents and oceans. 6 V4 continental crust ic ocean crust mantle Where do volcanoes occur? Global Volcanism and Plate tectonics 7 V4 Driving Forces: Moving Plates Global Volcanism and Plate tectonics 8 V4 Driving Forces: Subduction Global Volcanism and Plate tectonics 9 V4 Driving Forces: Hot Spots Global Volcanism and Plate tectonics 10 V4 Driving Forces: Rifting Global Volcanism and Plate tectonics Ocean plates moving apart create new crust.
    [Show full text]
  • Anahim Volcanic Belt Nazko Cone…A Sleepy Little Volcano, Not Made in Canada: a Tuya Skoatl Point
    Geological Wonders of BC Farwell Canyon Wonder: an emotion comparable to surprise that people feel when perceiving something rare or unexpected Tags for 12 wonders for your geo-bucket list So much geology…so many wonders! Sullivan Ore body Main portal of the Sullivan mine near Kimberley when the mine was newly driven in 1915. The mine yielded over $42 billion in metals over its life Sullivan is a sedimentary exhalative (SEDEX) deposit formed around 1.5 Ga ago Since burial, geologic forces have affected the deposit…at depth the sulphides behaved more like tooth paste. Burgess Shale “the world’s most significant fossil discovery” Marrella splendens Specimen length (ex. ant.) = 20 mm 505 Million years ago Ottoia prolifica ate a Haplophrentis carinatus (maximum width of the worm = 1.2 cm) Reconstructions of two "weird wonders" from the Burgess Shale Odontogriphus (left, fossil length = 8 cm) and Nectocaris (right, fossil length = 4 cm, excluding tentacles), BC’s Contribution to Lagerstätten Portalia mira: of uncertain affinity Jade …an alteration product of ultramafic (high magnesium and iron, low silica) rock that is commonly called serpentinite… BC’s Provincial Gemstone Aldergrove BC The Curious Cache Creek Terrane It is characterized by an oceanic-rocks containing Tethyan-type fusulinid bearing limestone Terrane: a crustal block or fragment that is typically bounded by faults and that has a geologic genesis distinct from those of surrounding areas. Geologic Realms…. whoa! Realms = regions of origin The oceanic terranes, shown in red, are “bookmarks” that separate island arc and pericratonic blocks from each other. Hey, Ancient Rice? The Fusulinida is an extinct order within the Foraminifera in which the tests (shells) are composed of tightly packed, secreted microgranular calcite Yabeina colubiana in limestone This cannot be… Terrane theory was first proposed by Jim Monger of the Geological Survey of Canada and Charlie Rouse in 1971 as an explanation for a set of fusilinid fossils found in central British Columbia.
    [Show full text]
  • Pleistocene Volcanism in the Anahim Volcanic Belt, West-Central British Columbia
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2014-10-24 A Second North American Hot-spot: Pleistocene Volcanism in the Anahim Volcanic Belt, west-central British Columbia Kuehn, Christian Kuehn, C. (2014). A Second North American Hot-spot: Pleistocene Volcanism in the Anahim Volcanic Belt, west-central British Columbia (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/25002 http://hdl.handle.net/11023/1936 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY A Second North American Hot-spot: Pleistocene Volcanism in the Anahim Volcanic Belt, west-central British Columbia by Christian Kuehn A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN GEOLOGY AND GEOPHYSICS CALGARY, ALBERTA OCTOBER, 2014 © Christian Kuehn 2014 Abstract Alkaline and peralkaline magmatism occurred along the Anahim Volcanic Belt (AVB), a 330 km long linear feature in west-central British Columbia. The belt includes three felsic shield volcanoes, the Rainbow, Ilgachuz and Itcha ranges as its most notable features, as well as regionally extensive cone fields, lava flows, dyke swarms and a pluton. Volcanic activity took place periodically from the Late Miocene to the Holocene.
    [Show full text]
  • Review of National Geothermal Energy Program Phase 2 – Geothermal Potential of the Cordillera
    GEOLOGICAL SURVEY OF CANADA OPEN FILE 5906 Review of National Geothermal Energy Program Phase 2 – Geothermal Potential of the Cordillera A. Jessop 2008 Natural Resources Ressources naturelles Canada Canada GEOLOGICAL SURVEY OF CANADA OPEN FILE 5906 Review of National Geothermal Energy Program Phase 2 – Geothermal Potential of the Cordillera A. Jessop 2008 ©Her Majesty the Queen in Right of Canada 2008 Available from Geological Survey of Canada 601 Booth Street Ottawa, Ontario K1A 0E8 Jessop, A. 2008: Review of National Geothermal Energy Program; Phase 2 – Geothermal Potential of the Cordillera; Geological Survey of Canada, Open File 5906, 88p. Open files are products that have not gone through the GSC formal publication process. The Meager Cree7 Hot Springs 22 Fe1ruary 1273 CONTENTS REVIEW OF NATIONAL GEOTHERMAL ENERGY PROGRAM PHASE 2 - THE CORDILLERA OF WESTERN CANADA CHAPTER 1 - THE NATURE OF GEOTHERMAL ENERGY INTRODUCTION 1 TYPES OF GEOTHERMAL RESOURCE 2 Vapour-domi ate reservoirs 3 Fluid-domi ated reservoirs 3 Hot dry roc) 3 PHYSICAL QUANTITIES IN THIS REPORT 3 UNITS 4 CHAPTER 2 - THE GEOTHERMAL ENERGY PROGRAMME 6 INTRODUCTION THE GEOTHERMAL ENERGY PROGRAMME 6 Ob.ectives 7 Scie tific base 7 Starti 1 the Geothermal E er1y Pro1ram 8 MA4OR PRO4ECTS 8 Mea1er Mou tai 8 Re1i a 9 ENGINEERING AND ECONOMIC STUDIES 9 GRO6 TH OF OUTSIDE INTEREST 10 THE GEOTHERMAL COMMUNITY 10 Tech ical groups a d symposia 10 ASSESSMENT OF THE RESOURCE 11 i CHAPTER 3 - TECTONIC AND THERMAL STRUCTURE OF THE CORDILLERA 12 TECTONIC HISTORY 12 HEAT FLO6 AND HEAT
    [Show full text]
  • The Cheslatta Lake Suite: Miocene Mafic, Alkaline Magmatism in Central British Columbia1
    Color profile: Disabled Composite Default screen 697 The Cheslatta Lake suite: Miocene mafic, alkaline magmatism in central British Columbia1 Robert G. Anderson, Jonah Resnick, James K. Russell, G.J. Woodsworth, Michael E. Villeneuve, and Nancy C. Grainger Abstract: New mapping, mineralogical, and geochemical studies help characterize late Tertiary primitive, alkaline, sodic basanite, alkali olivine basalt, transitional basalt, and diabase in the Nechako River, Whitesail Lake, and McLeod Lake map areas of central British Columbia and distinguish the Miocene Cheslatta Lake suite. The suite encompasses scattered erosional remnants of topographically distinct, columnar-jointed, olivine-phyric basalt and diabase volcanic necks, dykes, and associated lava flows north of the Anahim volcanic belt and west of the Pinchi Fault. Volcanic cen- tres at Alasla Mountain and at Cutoff Creek, near Cheslatta Lake, are proposed as type areas. Olivine, plagioclase, and pyroxene phenocrysts, megacrysts, and (or) xenocrysts; common ultramafic xenoliths; and rare but significant plutonic and metamorphic xenoliths are characteristic. Basanite, transitional basalt, and alkali olivine basalt groundmass contain plagioclase, clinopyroxene, Fe-Ti oxides, feldspathoid, olivine, and apatite. The Cheslatta Lake suite is characterized by its alkaline character, olivine-rich (>10 wt.%) normative mineralogy, and silica-undersaturated nature (>1 wt.% norma- tive nepheline; hypersthene-normative rocks are uncommon). Mg numbers vary between 72–42. Some samples encom- pass
    [Show full text]
  • Ridge Subduction and Slab Window Magmatism in Western North America
    Cenozoic to Recent plate confi gurations in the Pacifi c Basin: Ridge subduction and slab window magmatism in western North America J.K. Madsen*† D.J. Thorkelson* Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada R.M. Friedman* Pacifi c Centre for Isotopic and Geochemical Research, Department of Earth and Ocean Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada D.D. Marshall* Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada ABSTRACT Keywords: tectonics, magmatism, geochro- and temporally complex and spans Paleocene to nology, forearc, slab window, ridge subduc- Miocene time. The most spatially and tempo- Forearc magmatic rocks were emplaced in tion, western North America, Cordillera. rally coherent portion is the eastward-younging a semicontinuous belt from Alaska to Oregon Sanak-Baranof Belt in southern to southeastern from 62 to 11 Ma. U-Pb and 40Ar-39Ar dating INTRODUCTION Alaska (Bradley et al., 1993; Haeussler et al., indicates that the magmatism was concur- 1995; Bradley et al., 2003). The age progres- rent in widely separated areas. Eight new Forearcs are typically amagmatic with low sion has been attributed to the passage of an conventional isotope dilution–thermal ion- heat fl ow (Gill, 1981); however, subduction of a eastwardly migrating ridge-trench-trench triple ization mass spectrometry (ID-TIMS) U-Pb mid-ocean ridge imparts a thermal pulse into the junction related to the subduction of a mid-ocean zircon ages from forearc intrusions on Van- forearc, which may result in near-trench mag- spreading ridge in Paleocene to middle Eocene couver Island (51.2 ± 0.4, 48.8 ± 0.5 Ma, 38.6 matism (Marshak and Karig, 1977; DeLong et time (Hill et al., 1981; Bradley et al., 1993; Sisson ± 0.1, 38.6 ± 0.2, 37.4 ± 0.2, 36.9 ± 0.2, 35.4 al., 1979; Sisson et al., 2003).
    [Show full text]
  • The 2007 Nazko, British Columbia, Earthquake Sequence: Injection of Magma Deep in the Crust Beneath the Anahim Volcanic Belt by J
    Bulletin of the Seismological Society of America, Vol. 101, No. 4, pp. 1732–1741, August 2011, doi: 10.1785/0120100013 The 2007 Nazko, British Columbia, Earthquake Sequence: Injection of Magma Deep in the Crust beneath the Anahim Volcanic Belt by J. F. Cassidy, N. Balfour,* C. Hickson,† H. Kao, R. White, J. Caplan-Auerbach, S. Mazzotti, G. C. Rogers, I. Al-Khoubbi, A. L. Bird, L. Esteban,‡ M. Kelman, J. Hutchinson, and D. McCormack Abstract On 9 October 2007, an unusual sequence of earthquakes began in central British Columbia about 20 km west of the Nazko cone, the most recent (circa 7200 yr) volcanic center in the Anahim volcanic belt. Within 25 hr, eight earthquakes of mag- nitude 2.3–2.9 occurred in a region where no earthquakes had previously been recorded. During the next three weeks, more than 800 microearthquakes were located (and many more detected), most at a depth of 25–31 km and within a radius of about 5 km. After about two months, almost all activity ceased. The clear P- and S-wave arrivals indicated that these were high-frequency (volcanic-tectonic) earthquakes and the b value of 1.9 that we calculated is anomalous for crustal earthquakes but con- sistent with volcanic-related events. Analysis of receiver functions at a station imme- diately above the seismicity indicated a Moho near 30 km depth. Precise relocation of the seismicity using a double-difference method suggested a horizontal migration at the rate of about 0:5 km=d, with almost all events within the lowermost crust.
    [Show full text]
  • Get Their Name from Their Broad Rounded Shape, Are the Largest
    Physical Geology, First University of Saskatchewan Edition is used under a CC BY-NC-SA 4.0 International License Read this book online at http://openpress.usask.ca/physicalgeology/ Chapter 11. Volcanism Adapted by Karla Panchuk from Physical Geology by Steven Earle Figure 11.1 Mt. Garibaldi (in the background), near Squamish BC, is one of Canada’s most recently active volcanoes, last erupted approximately 10,000 years ago. It is also one of the tallest, at 2,678 m in height. Source: Karla Panchuk (2017) CC BY-SA 4.0. Photograph: Michael Scheltgen (2006) CC BY 2.0. See Appendix C for more attributions. Learning Objectives After reading this chapter and answering the Review Questions at the end, you should be able to: • Explain what a volcano is. • Describe the different kinds of materials produced by volcanoes. • Describe the structures of shield volcanoes, composite volcanoes, and cinder cones. • Explain how the style of a volcanic eruption is related to magma composition. • Describe the role of plate tectonics in volcanism and magma formation. • Summarize the hazards that volcanic eruptions pose to people and infrastructure. • Describe how volcanoes are monitored, and the signals that indicate a volcano could be ready to erupt. • Provide an overview of Canadian volcanic activity. Why Study Volcanoes? Chapter 11. Volcanism 1 Volcanoes are awe-inspiring natural events. They have instilled fear and fascination with their red-hot lava flows, and cataclysmic explosions. In his painting The Eruption of Vesuvius (Figure 11.2), Pierre-Jacques Volaire captured the stunning spectacle of the eruption on Mt. Vesuvius on 14 May 1771.
    [Show full text]
  • Geochemical Expression in Soil and Water of Carbon Dioxide Seepages Near the Nazko Cone, Central British Columbia (NTS 093B/13)
    Geochemical Expression in Soil and Water of Carbon Dioxide Seepages Near the Nazko Cone, Central British Columbia (NTS 093B/13) R.E. Lett, Consultant, Victoria, BC, [email protected] W. Jackaman, Noble Exploration Services Ltd., Sooke, BC Lett, R.E. and Jackaman, W. (2014): Geochemical expression in soil and water of carbon dioxide seepages near the Nazko cone, central British Columbia (NTS 093B/13); in Geoscience BC Summary of Activities 2013, Geoscience BC, Report 2014-1, p. 35–42. Introduction Travertine deposits, soil gas see- pages, organic soil mixed with cal- cium carbonate mud and pools of stagnant or slow-flowing water are among surface features observed in two wetlands, informally called the North and South bogs, near the Nazko cone (unofficial place name), British Columbia (Figure 1). During preliminary geothermal exploration conducted at these wetlands in 2012, Alterra Power Corp. detected carbon dioxide with traces of methane and helium in the seepage gas (C. Hick- son, pers. comm., 2013; N. Vigour- oux, pers. comm., 2013). The isoto- pic composition (d13C between –6.2 and –6.9 per mil Pee Dee Belemnite [PDB]) of the gases suggests that they are magmatic in origin (G. Wil- liams-Jones, pers. comm., 2013). Analysis of the carbonate mud in the bogs reveals a dominance of aragon- Figure 1. Location of the Nazko Geothermal Project area, near the Nazko cone, central British ite (66%), with equal parts remaining Columbia. of calcite and dolomite, precipitated from the carbon-enriched surface cite and aragonite enriched in 13Cand18O (Pentecost, 1995; water. Although the surface water temperature is typically Ford and Pedley, 1996).
    [Show full text]
  • Geochemistry and Geochronology of Eocene Forearc Magmatism on Vancouver Island: Implications for Cenozoic to Recent Plate Configurations in the Pacific Basin
    GEOCHEMISTRY AND GEOCHRONOLOGY OF EOCENE FOREARC MAGMATISM ON VANCOUVER ISLAND: IMPLICATIONS FOR CENOZOIC TO RECENT PLATE CONFIGURATIONS IN THE PACIFIC BASIN Julianne Kathleen Madsen BSc. Hons. Earth Sciences The University of Victoria, 200 1 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE In the Department of Earth Sciences O Julianne Madsen 2004 SIMON FRASER UNIVERSITY Fall 2004 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. APPROVAL Name: Julianne Kathleen Madsen Degree: M.Sc. Earth Sciences Geochemistry and geochronology of Eocene forearc magmatsim on Vancouver Island: Title of Thesis: implications for Cenozoic to Recent plate configurations in the Pacific Basin Examining Committee: Chair: Dr. Doug Stead Professor Simon Fraser University Dr. Derek J. Thorkelson Senior Supervisor Associate Professor Simon Fraser University Dr. Daniel Marshall Associate Professor Simon Fraser University Dr. Richard Friedman Research Associate (PCIGR) University of British Columbia Dr. Stephen T. Johnston External Examiner Associate Professor Department of Earth and Ocean Sciences, University of Victoria Date Approved: December 2,2004 SIMON FRASER UNIVERSITY PARTIAL COPYRIGHT LICENCE The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users.
    [Show full text]
  • LOCATION of VOLCANOES in BRITISH COLUMBIA Source of Volcanic Eruption Hazards to the Lower Mainland of British Columbia
    LOCATION OF VOLCANOES IN BRITISH COLUMBIA Source of Volcanic Eruption Hazards to the Lower Mainland of British Columbia RELIEF MAP OF BRITISH COLUMBIA VOLCANOES IN BC (from North to South) Ruby Mountain Heart Peaks Level Mountain Edziza Spectrum Range Hoodoo Mountain Yseax River Cone Iskut-Unuk River Crow Lagoon Mulbanke Sound Satah Mountain Mt. Garibaldi Volcano located in British Columbia Mt. Garibaldi (Volcano) located in Washington Nazko Eruption History: last dated 10,000 years ago Eruption History: 1792, 1843 -65 , 1870, 1880 "The volcanic rocks are divided into five groups with diverse types of volcanoes Wells Gray "Historical Activity Historical activity at Mount Baker includes several and tectonic settings. In southern British Columbia, the Pemberton and Garibaldi Siverthrone explosions during the mid-19th century, which were witnessed from the volcanic belts and the Chilcotin Group plateau are related to the subduction of Bridge River Bellingham area, and since the late 1950s, numerous small- volume debris the Juan de Fuca and Explorer plates beneath the North American continent. The Meager avalanches. In 1975, increased fumarolic activity in the Sherman Crater area caused concern that an eruption might be imminent. Additional monitoring Anahim Volcanic Belt trends easterly across central British Columbia and is Garibaldi probably related to a mantle hot spot. The Stikine Volcanic Belt forms a broad equipment was installed and several geophysical surveys were conducted to try to zone of volcanoes in northwestern British Columbia and the southern Yukon. These Baker (Washington) detect the movement of magma. The level of Baker Lake was lowered and people volcanoes are probably related to shear along the Queen Charolette transform were restricted from the area due to concerns that an eruption- induced debris fault to the west.
    [Show full text]
  • Evidence of Geothermal Activity Near the Nazko Volcanic Cone, British Columbia, Canada, from Ground and Surface Water Chemistry
    Newsletter for the Association of Applied Geochemists NUMBER 175 JUNE 2017 Evidence of geothermal activity near the Nazko volcanic cone, British Columbia, Canada, from ground and surface water chemistry R. E. Lett1, and W. Jackaman2; 13956 Ashford Rd. Victoria, BC, Canada, V8P 3S5; 2Noble Exploration Ser- vices Ltd. 3890 Trailhead Drive, Jordan River, BC, Canada, V9Z 1L1 Introduction tion minerals in surface and ground water may be a guide to Water-rock and water-mineral interactions, aquifer ge- water temperature. ology, solution residence times, environmental factors and Here we describe evidence of geothermal activity from reaction rates are all factors that affect ground and surface a study of the water chemistry in two wetlands, informally water geochemistry. In areas where there is evidence of named the North and South Bogs, near the Nazko volcanic geothermal activity, variations of surface and ground water cone, British Columbia, Canada (Fig. 1). The bog water chemistry can also reflect accelerated rock weathering, chemical data are interpreted by their comparison to other changes in mineral solubility with increasing temperature geothermal areas, from a thermodynamic simulation with and the mixing of hot and cold ground water. For example, the PHREEQC software (Parkhurst & Appelo 2013) and 18 13 Pasvanoğlu (2013) interpreted high dissolved CO2, Si, Li, from the results of stable isotope (δD, δ O, δ C) analysis As, Hg and B concentrations in the thermal waters from of bog water. wells in Eastern Turkey to be the result of reactions be- There has been past interest in the geothermal poten- tween hot water and silica-rich volcanic rocks and by mixing tial of the area because of the presence of scattered traver- of hot and cold solutions during the ascent of water through tine deposits on the wetland surface, calcium carbonate-rich rock fractures to the surface.
    [Show full text]