Dottorando: Dr.Ssa Valentina TINAGLIA

Total Page:16

File Type:pdf, Size:1020Kb

Dottorando: Dr.Ssa Valentina TINAGLIA Università degli Studi di Milano Scuola di Dottorato in Medicina Molecolare Dipartimento di Scienze e Tecnologie Biomediche Curriculum di Genomica, Proteomica e Tecnologie Correlate Ciclo XXIV Settore Disciplinare: BIO-10 Anno Accademico 2010/2011 Dottorando: Dr.ssa Valentina TINAGLIA Matricola: R08079 INTEGRATED GENOMICS ANALYSIS OF GENE AND MICRORNA EXPRESSION PROFILES IN CLEAR CELL RENAL CARCINOMA CELL LINES Direttore della Scuola: Ch.mo Prof. Mario Clerici Tutore: Prof.ssa Cristina Battaglia Un grazie speciale a Mamma, Papà ed Enzo per la loro infinita pazienza e il loro amore. CONTENTS SOMMARIO .................................................................................................................................... V ABSTRACT .................................................................................................................................. VII 1 INTRODUCTION ...................................................................................................................... 1 1.1 Renal Cell Carcinoma ...................................................................................................... 1 1.1.1 Epidemiology ........................................................................................................... 1 1.1.2 Clinical features ....................................................................................................... 1 1.1.3 Clinical cytogenetic and molecular characteristics of renal tumors .................... 3 1.1.3.1 Familial renal cell carcinoma .............................................................................................. 5 1.1.3.1.1 VHL gene .......................................................................................................................... 6 1.1.3.1.2 Other genes implicated in ccRCC ..................................................................................... 9 1.1.4 Clinical utility of molecular profiling in cancer .................................................... 11 1.1.5 Gene expression studies ...................................................................................... 12 1.1.6 Signaling pathways in renal cell carcinoma and therapy ................................... 13 1.2 MICRORNA ..................................................................................................................... 17 1.2.1 microRNAs and mechanism of action .................................................................. 17 1.2.2 Genomic localization ............................................................................................. 18 1.2.3 miRNA biogenesis ................................................................................................. 19 1.2.4 Target prediction and new miRNAs discovered .................................................. 20 1.2.5 miRNA and cancer ................................................................................................. 22 1.2.6 Methods to detect miRNA expression .................................................................. 25 1.2.7 miRNA and RCC ..................................................................................................... 25 1.3 Integrative analysis of miRNA and mRNA expression profiles .................................. 29 1.3.1 Integrative genomics approach ............................................................................ 29 1.3.2 miRNA-mRNA integrated studies ......................................................................... 29 2 AIM OF THE STUDY .............................................................................................................. 33 3 PART I: HIGH-THROUGHPUT GENE EXPRESSION PROFILING ....................................... 35 3.1 Material and Methods..................................................................................................... 35 I 3.1.1 Cell Lines ................................................................................................................ 35 3.1.2 Total RNA and DNA extraction ............................................................................. 35 3.1.3 Assessment of VHL and HIF status ...................................................................... 35 3.1.4 High-throughput gene expression analysis ......................................................... 36 3.1.4.1 Target sample preparation for microarray gene expression analysis ......................... 36 3.1.4.2 Differential gene expression analysis ............................................................................. 38 3.1.4.3 Bioinformatics and functional enrichment analysis ...................................................... 38 3.2 Results ............................................................................................................................ 39 3.2.1 Assessment of VHL and HIF status ...................................................................... 39 3.2.2 High-throughput gene expression analysis ......................................................... 39 3.2.2.1 Differential gene profiling of Caki-1 vs HK-2 .................................................................. 39 3.2.2.2 Differential gene profiling of Caki-2 vs HK-2 .................................................................. 40 3.2.2.3 Differential gene profiling of A498 vs HK-2 ..................................................................... 41 3.3 Discussion ...................................................................................................................... 45 4 PART II: HIGH-THROUGHPUT MIRNA EXPRESSION PROFILING ..................................... 51 4.1 Material and Methods..................................................................................................... 51 4.1.1 High-throughput miRNA expression analysis ..................................................... 51 4.1.1.1 Target sample preparation for microarray miRNA expression analysis ..................... 51 4.1.1.2 Differential miRNA expression analysis .......................................................................... 52 4.1.1.3 Bioinformatics and functional enrichment analysis ...................................................... 53 4.1.1.4 Data validation by qPCR ................................................................................................... 53 4.2 Results ............................................................................................................................ 54 4.2.1 High-throughput miRNA expression analysis ..................................................... 54 4.2.1.1 Comparison between RCC cell lines and HK-2 .............................................................. 54 4.2.1.2 Functional enrichment analysis and validation by qPCR ............................................. 60 4.3 Discussion ...................................................................................................................... 62 5 PART III: INTEGRATED ANALYSIS OF MICRORNA AND GENE EXPRESSION DATA ..... 69 5.1 Material and Methods..................................................................................................... 69 5.1.1 miRNA-gene integrated analysis .......................................................................... 69 II 5.1.2 Selection of relevant miRNA-gene anti-correlated pairs ..................................... 69 5.1.3 qPCR validation of selected target genes ............................................................ 69 5.2 Results ............................................................................................................................ 71 5.2.1 miRNA-gene integrated analysis .......................................................................... 71 5.2.2 qPCR validation of selected target genes ............................................................ 73 5.3 Discussion ...................................................................................................................... 75 6 CONCLUSIONS AND FUTURE PROSPECTS ...................................................................... 81 7 BIBLIOGRAPHY .................................................................................................................... 83 8 GLOSSARY OF ABBREVIATIONS ....................................................................................... 97 9 APPENDIX ............................................................................................................................. 99 10 ACKNOWLEDGEMENTS ................................................................................................. 113 11 SCIENTIFIC PRODUCTS ................................................................................................. 115 III IV SOMMARIO Il carcinoma renale (RCC) è la neoplasia più frequente tra quelle che colpiscono il rene in età adulta e rappresenta il 2-3% di tutti i carcinomi umani. Il carcinoma renale a cellule chiare (ccRCC) è l‟istotipo più frequente (75-80%), invasivo e metastatico tra i sottotipi di RCC. Il gene von Hippel-Lindau (VHL), che è il principale oncosoppressore coinvolto negli stadi iniziali della tumorigenesi dell‟RCC, è soggetto ad inattivazione completa, per effetto combinato di mutazioni, delezioni e metilazione del promotore, nella maggior parte dei ccRCC sporadici e in tutte le forme ereditarie. Definire la prognosi dei casi di carcinoma renale è importante per operare scelte cliniche riguardo il trattamento dei pazienti, ma a volte la diagnosi differenziale risulta piuttosto difficile perché gli
Recommended publications
  • Physiological Genomics of Spinal Cord and Limb Regeneration in a Salamander, the Mexican Axolotl
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2009 PHYSIOLOGICAL GENOMICS OF SPINAL CORD AND LIMB REGENERATION IN A SALAMANDER, THE MEXICAN AXOLOTL James Robert Monaghan University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Monaghan, James Robert, "PHYSIOLOGICAL GENOMICS OF SPINAL CORD AND LIMB REGENERATION IN A SALAMANDER, THE MEXICAN AXOLOTL" (2009). University of Kentucky Doctoral Dissertations. 703. https://uknowledge.uky.edu/gradschool_diss/703 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION James Robert Monaghan The Graduate School University of Kentucky 2009 PHYSIOLOGICAL GENOMICS OF SPINAL CORD AND LIMB REGENERATION IN A SALAMANDER, THE MEXICAN AXOLOTL ________________________________ ABSTRACT OF DISSERTATION ________________________________ A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Arts and Sciences at the University of Kentucky By James Robert Monaghan Lexington, KY Director: Dr. S. Randal Voss, Associate Professor of Biology Lexington, KY 2009 Copyright © James Robert Monaghan 2009 ABSTRACT OF DISSERTATION PHYSIOLOGICAL GENOMICS OF SPINAL CORD AND LIMB REGENERATION IN A SALAMANDER, THE MEXICAN AXOLOTL Salamanders have a remarkable ability to regenerate complex body parts including the limb, tail, and central nervous system. Although salamander regeneration has been studied for several hundred years, molecular-level studies have been limited to a relatively few important transcription factors and signaling molecules that are highly conserved among animals.
    [Show full text]
  • Identification of Genetic Factors Underpinning Phenotypic Heterogeneity in Huntington’S Disease and Other Neurodegenerative Disorders
    Identification of genetic factors underpinning phenotypic heterogeneity in Huntington’s disease and other neurodegenerative disorders. By Dr Davina J Hensman Moss A thesis submitted to University College London for the degree of Doctor of Philosophy Department of Neurodegenerative Disease Institute of Neurology University College London (UCL) 2020 1 I, Davina Hensman Moss confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Collaborative work is also indicated in this thesis. Signature: Date: 2 Abstract Neurodegenerative diseases including Huntington’s disease (HD), the spinocerebellar ataxias and C9orf72 associated Amyotrophic Lateral Sclerosis / Frontotemporal dementia (ALS/FTD) do not present and progress in the same way in all patients. Instead there is phenotypic variability in age at onset, progression and symptoms. Understanding this variability is not only clinically valuable, but identification of the genetic factors underpinning this variability has the potential to highlight genes and pathways which may be amenable to therapeutic manipulation, hence help find drugs for these devastating and currently incurable diseases. Identification of genetic modifiers of neurodegenerative diseases is the overarching aim of this thesis. To identify genetic variants which modify disease progression it is first necessary to have a detailed characterization of the disease and its trajectory over time. In this thesis clinical data from the TRACK-HD studies, for which I collected data as a clinical fellow, was used to study disease progression over time in HD, and give subjects a progression score for subsequent analysis. In this thesis I show blood transcriptomic signatures of HD status and stage which parallel HD brain and overlap with Alzheimer’s disease brain.
    [Show full text]
  • PARKINSON DISEASE LOCI in the MID-WESTERN AMISH by Mary
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Vanderbilt Electronic Thesis and Dissertation Archive PARKINSON DISEASE LOCI IN THE MID-WESTERN AMISH By Mary Feller Davis Thesis Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Interdisciplinary Studies: Applied Statistics May, 2013 Nashville, Tennessee Approved: Professor Jonathan L. Haines Professor Marylyn D. Ritchie Professor Scott M. Williams ACKNOWLEDGEMENTS I would like to thank Anna Cummings, Laura D’Aoust, Lan Jian, Digna Velez Edwards, Renee Laux, Lori Reinhart-Mercer, Denise Fuzzell, William Scott, Margaret Pericak-Vance, Stephen Lee, and especially Jonathan Haines for their contributions to this project, as well as the participants of this study who have so graciously allowed us to visit with them and have participated in studies with us for over 10 years. I would like to acknowledge additional work for this study that was performed using the Vanderbilt Center for Human Genetics Research Core facilities: the Genetic Studies Ascertainment Core, the DNA Resources Core, and the Computation Genomics Core. This study was supported by the National Institutes of Health grants AG019085 (to Jonathan Haines and Margaret Pericak-Vance) and AG019726 (to William Scott), and a grant from the Michael J. Fox Foundation (to Jonathan Haines). Some of the samples used in this study were collected while William Scott and Margaret Pericak-Vance were faculty members at Duke University. I would like to thank L. L. McFarland, C. Knebusch, and the late C.
    [Show full text]
  • Glycoproteomic Characterization of Bladder Cancer Chemoresistant Cells
    Glycoproteomic Characterization of Bladder Cancer Chemoresistant Cells Diogo André Teixeira Neves Mestrado em Bioquímica Departamento de Química e Bioquímica 2015 Orientador José Alexandre Ferreira, Professor Doutor, IPO-Porto Coorientador André Silva, Doutor, Investigador Auxiliar, Faculdade de Ciências, Universidade do Porto Todas as correções determinadas pelo júri, e só essas, foram efetuadas. O Presidente do Júri, Porto, ______/______/_________ “Success consists of going from failure to failure without loss of enthusiasm.” Winston Churchill Dava tudo para te ter aqui, meu querido avô! 1937-2014 FCUP i Glycoproteomic Characterization of Bladder Cancer Chemoresistant Cells Agradecimentos Foi, sem dúvida, um ano de grande aprendizagem. Não só da aprendizagem do método (sabe sempre a pouco), mas sobretudo da aprendizagem que nos faz crescer enquanto seres íntegros e completos. Um ano que se tornou curto face a tudo aquilo que ainda queria aprender com os melhores. Ao Professor Doutor José Alexandre Ferreira pela orientação, por toda a disponibilidade e paciência. Muita paciência. Sinto que muitas das vezes o tempo faz com que tenhamos que nos desdobrar em vários campos. No campo possível partilhado por nós, pude perceber que estive perante um grande senhor da Ciência. Fez-me perceber também que o pensamento simples faz mover montanhas e que o complexo não se alcança sem uma boa dose de simplicidade. Vejo-o como um exemplo a seguir, como uma figura de proa no panorama científico. Muito obrigado! Ao Professor Doutor Luís Lima por toda a ajuda, conhecimento técnico, pela forma didáctica e simples como aborda as situações. Fez-me perceber a simplicidade dos processos, como podemos ser metodológicos e organizados.
    [Show full text]
  • Lobular and Ductal Carcinomas of the Breast Have Distinct Genomic and Expression Profiles
    Oncogene (2008) 27, 5359–5372 & 2008 Macmillan Publishers Limited All rights reserved 0950-9232/08 $32.00 www.nature.com/onc ONCOGENOMICS Lobular and ductal carcinomas of the breast have distinct genomic and expression profiles F Bertucci1,11, B Orsetti2,11,VNe` gre2, P Finetti1, C Rouge´ 2, J-C Ahomadegbe3, F Bibeau2,4, M-C Mathieu5, I Treilleux6, J Jacquemier1, L Ursule2, A Martinec7, Q Wang8,JBe´ nard5,9, A Puisieux8,10, D Birnbaum1 and C Theillet2 1INSERM UMR891, Centre de Recherche en Cance´rologie de Marseille, Institut Paoli-Calmettes, Marseille, France; 2INSERM U896, Institut de Recherche en Cance´rologie de Montpellier, CRLC Val d’Aurelle-Paul Lamarque, Montpellier, France; 3Universite´ Paris XI, UPRES 3535, Institut Gustave Roussy, Villejuif, France; 4CRLC Val d’Aurelle-Paul Larmarque, Laboratoire d’Anatomopathologie, Montpellier, France; 5Institut Gustave Roussy, De´partement de Biopathologie, Villejuif, France; 6Centre Le´on Be´rard, laboratoire d’Anatomopathologie, Lyon, France; 7Ipsogen S.A., Marseille-Luminy, France; 8Centre Le´on Be´rard, laboratoire d’Oncologie Mole´culaire, Lyon, France; 9CNRS UMR 8126, Institut Gustave Roussy, Villejuif, France and 10INSERM U590, Centre Le´on Be´rard, Lyon, France Invasive ductal carcinomas (IDCs) and invasive lobular Introduction carcinomas (ILCs) are the two major pathological types of breast cancer. Epidemiological and histoclinical data Breast cancer is a complex and heterogeneous disease, suggest biological differences, but little is known about the which, despite important efforts, remains difficult to molecular alterations involved in ILCs. We undertook a describe comprehensively and, therefore, to treat appro- comparative large-scale study by both array-compared priately. Up to 20 pathological types have been defined, genomic hybridization and cDNA microarray of a set of but two of them, invasive ductal carcinomas (IDCs) and 50 breast tumors (21 classic ILCs and 29 IDCs) selected invasive lobular carcinomas (ILCs), account for about on homogeneous histoclinical criteria.
    [Show full text]
  • Huntington's Disease Onset Is Determined by Length Of
    bioRxiv preprint doi: https://doi.org/10.1101/529768; this version posted January 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Huntington’s disease onset is determined by length of uninterrupted CAG, not encoded polyglutamine, and is modified by DNA maintenance mechanisms Author: Genetic Modifiers of Huntington’s Disease (GeM-HD) Consortium* Group 1: Jong-Min Lee1,2*, Kevin Correia1, Jacob Loupe1,2, Kyung-Hee Kim1,2, Douglas Barker1, Eun Pyo Hong1,2, Michael J. Chao1,2, Jeffrey D. Long3, Diane Lucente1,2, Jean Paul G. Vonsattel4, Ricardo Mouro Pinto1,2, Kawther Abu Elneel1, Eliana Marisa Ramos1, Jayalakshmi Srinidhi Mysore1, Tammy Gillis1, Vanessa C. Wheeler1,2*, Marcy E. MacDonald1,2,6* and James F. Gusella1,4,5,6* 1 Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston MA 02114, USA 2 Department of Neurology, Harvard Medical School, Boston MA 02115, USA 3 Department of Biostatistics, College of Public Health, and Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City 52242, USA 4.Department of Pathology and Cell Biology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA. 5 Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston MA 02115, USA 6 Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge MA 02142, USA Group 2: Thomas Massey7+, Branduff McAllister7+, Christopher Medway7, Timothy C. Stone7, Lynsey Hall7, Lesley Jones7*&, Peter Holmans7*& 7 Medical Research Council (MRC) Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurology, School of Medicine, Cardiff University, Cardiff, United Kingdom Group 3: Seung Kwak8*, Anka G.
    [Show full text]
  • On Identifying Signatures of Positive Selection in Human Populations: a Dissertation
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2013-06-25 On Identifying Signatures of Positive Selection in Human Populations: A Dissertation Jessica L. Crisci University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Bioinformatics Commons, Computational Biology Commons, Genetics Commons, Genomics Commons, and the Population Biology Commons Repository Citation Crisci JL. (2013). On Identifying Signatures of Positive Selection in Human Populations: A Dissertation. GSBS Dissertations and Theses. https://doi.org/10.13028/M2Q88F. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/664 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. ON IDENTIFYING SIGNATURES OF POSITIVE SELECTION IN HUMAN POPULATIONS A Dissertation Presented By JESSICA L. CRISCI Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY JUNE 25, 2013 POPULATION GENETICS ON IDENTIFYING SIGNATURES OF POSITIVE SELECTION IN HUMAN POPULATIONS A Dissertation Presented By JESSICA L. CRISCI The signatures of the Dissertation Defense Committee signify
    [Show full text]
  • Sensory Neuropathy Affects Cardiac Mirna Expression Network Targeting
    Sensory neuropathy affects cardiac miRNA expression network targeting IGF-1, SLC2a-12, EIF-4e, and ULK-2 mRNAs Table S1. Full data set for the microRNA (miRNA)–target gene network analysis. Gene Target Associated miRNAs Abbreviatio Entrez ID Full Name of Targets Access. Number 1 2 3 4 n LOC100125362 100125362 hypothetical protein LOC100125362 NM_001103354 rno-miR-344b-1-3p Kdm6a 100310845 lysine demethylase 6A XM_002727527 rno-miR-466b-1 Tmem167a 100359823 transmembrane protein 167A XM_002728992 rno-let-7a rno-miR-98 Tyk2 100361294 tyrosine kinase 2 NM_001257347 rno-let-7a rno-miR-98 Kmt2d 100362634 lysine methyltransferase 2D XM_006257392 rno-let-7a rno-miR-98 Cdkl5 100362725 cyclin-dependent kinase-like 5 XM_006256909 rno-miR-1 rno-miR-206 Ddx55 100362764 DEAD-box helicase 55 NM_001271326 rno-miR-466b-1 LOC100362819 100362819 autism susceptibility candidate 2-like XM_003752582 rno-miR-466b-1 LOC100910224 100910224 olfactory receptor 8D1-like XM_003750491 rno-miR-344b-1-3p LOC100910506 100910506 peripheral plasma membrane protein CASK-like XM_006256651 rno-miR-466b-1 LOC100910807 100910807 transcriptional regulator Kaiso-like XM_003752135 rno-miR-181a-2 LOC100910990 100910990 copine-1-like XM_006235453 rno-miR-466b-1 Med7 100911235 mediator complex subunit 7 NM_001286183 rno-miR-34b LOC100911428 100911428 cyclic AMP-dependent transcription factor ATF-3-like XM_006250492 rno-miR-1 rno-miR-206 LOC100911548 100911548 SPRY domain-containing SOCS box protein 2-like XM_006244626 rno-miR-1 LOC100912483 100912483 uncharacterized LOC100912483
    [Show full text]
  • A Novel Nuclear Role for the Mitochondrial Hydroxylase Clk-1
    A novel nuclear role for the mitochondrial hydroxylase Clk-1 A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of Life Sciences 2011 Richard Mark Monaghan 1 (ii) – Table of Contents Section Title Page (i) Title page 1 (ii) Table of contents 2 (iii) List of tables and figures 6 (iv) Abstract 10 (v) Declaration and copyright statement 11 (vi) Acknowledgements 12 (vii) Abbreviations 13 1. Introduction 24 1.1 Energy at the heart of the cell 25 1.1.1 Biological Signals 25 1.1.2 The significance of energy 26 1.1.3 Reactive oxygen species – not always on the attack 27 1.1.4 Mitochondria – archaic timers of life 28 1.2 Cellular respiration 29 1.2.1 Sites of cellular energy production 29 1.2.2 Glycolysis and cancer cell metabolism 30 1.2.3 Mitochondria – centres of metabolic discourse 31 1.2.4 Mitochondrial-nuclear retrograde signalling 32 1.3 An energy centred signalling network 34 1.3.1 Insulin-like growth factor and organism energy homeostasis 34 1.3.2 Forkhead box transcription factors, O subgroup 37 1.3.3 Sirtuins 38 1.3.4 AMP-dependent protein kinase 39 1.3.5 Oxygen sensing – hypoxia inducible factors 40 1.3.6 SAPK-interacting protein 1 42 1.4 Development, metabolic rates and epigenetics 44 2 1.4.1 Regulation of gene expression during development 44 1.4.2 DNA methylation – another level of sequence information 45 1.4.3 Histones and their modifications 46 1.4.4 Metabolism and epigenetics 47 1.5 Ubiquinone and Clk-1 49 1.5.1 Conservation of a lipid hydroxylase 49 1.5.2 Monooxygenases and dioxygenases 52 1.5.3 Altered developmental rates in clk-1 mutants 52 1.5.4 Metabolic changes in long lived Clk-1+/- mice 55 1.5.5 Other Clk-1 research 56 1.5.6 Conclusion 56 1.6 Project Aims 57 2.
    [Show full text]
  • Innate Immune Activity Is Detected Prior to Seroconversion in Children
    Diabetes Page 2 of 111 Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility Henna Kallionpää,1,2,19,* Laura L. Elo,1,3,* Essi Laajala,1,4,5,19,*, Juha Mykkänen,1,6,18,19 Isis Ricaño- Ponce,7 Matti Vaarma,8 Teemu D. Laajala,1 Heikki Hyöty,9,10 Jorma Ilonen,11,12 Riitta Veijola,13 Tuula Simell,6,19 Cisca Wijmenga,7 Mikael Knip,14−16,19 Harri Lähdesmäki,1,4,19 Olli Simell,6,18,19 and Riitta Lahesmaa1,19 1Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20521 Turku, Finland. 2Turku Doctoral Programme of Biomedical Sciences, FI-20520 Turku, Finland. 3Biomathematics Research Group, Department of Mathematics, University of Turku, FI-20014 Turku, Finland. 4Department of Information and Computer Science, Aalto University School of Science, FI-00076 Aalto, Finland. 5The National Graduate School in Informational and Structural Biology, FI-20520 Turku, Finland 6Department of Pediatrics, University of Turku, FI-20014 Turku, Finland. 7University of Groningen, University Medical Centre, Department of Genetics, Groningen 9700 RB, The Netherlands 8Deparment of Signal Processing, Tampere University of Technology, FI-33101 Tampere, Finland. 9Department of Virology, University of Tampere, FI-33014 Tampere, Finland. 10Fimlab Laboratories, Pirkanmaa Hospital District, FI-33520 Tampere, Finland. 11Immunogenetics Laboratory, University of Turku, FI-20014 Turku, Finland. 12Department of Clinical Microbiology, University of Eastern Finland, FI-70211 Kuopio, Finland. 13Department of Pediatrics, University of Oulu and Oulu University Hospital, FI-90014 Oulu, Finland. 14Children’s Hospital, University of Helsinki and Helsinki University Central Hospital, FI-00014 Helsinki, Finland.
    [Show full text]
  • Autosomal Recessive Variants in Intellectual Disability and Autism Spectrum Disorder
    Autosomal Recessive Variants in Intellectual Disability and Autism Spectrum Disorder by Ricardo Simeon Harripaul A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy of Medical Science Institute of Medical Sciences University of Toronto © Copyright by Ricardo Simeon Harripaul 2021 Autosomal Recessive Variants in Intellectual Disability and Autism Spectrum Disorder Ricardo Simeon Harripaul Doctor of Philosophy of Medical Science Institute of Medical Sciences University of Toronto 2021 Abstract The development of the nervous system is a tightly timed and controlled process where aberrant development may lead to neurodevelopmental disorders. Two of the most common forms of neurodevelopmental disorders are Intellectual Disability (ID) and Autism Spectrum Disorder (ASD). These two disorders are intertwined, but much about the etiological relationship between them remains a mystery. Little attention has been given to the role recessive variants play in ID and ASD, perhaps related to the ability of recessive variants to remain hidden in the population. This thesis aims to help determine the role of recessive variants in ID and ASD and identify novel genes associated with these neurodevelopmental disorders. Technological advancements such as Next Generation Sequencing (NGS) and large population-scale sequencing reference sets have ushered in a new era of high throughput gene identification. In total, 307 families were whole-exome sequenced (192 consanguineous multiplex ID families and 115 consanguineous trio ASD families), representing 537 samples in total. This work identified 26 novel genes for ID such as ABI2, MAPK8, MBOAT7, MPDZ, PIDD1, SLAIN1, TBC1D23, TRAPPC6B, UBA7, and USP44 in large multiplex families with an overall diagnostic yield of 51 %.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials Figure S1. Principal component analysis of microarray data and heat maps of the different comparisons between treatments. a) The Principal component analysis shows a tight grouping between treatments: allopregnanolone (3α-THP, blue dots), finasteride (F, red dots), progesterone (P4, purple dots), Vehicle (V, DMSO 0.1 %, green dots). Each axis represents the principal components of the microarray data (PCA1, PCA2, and PCA3), and the variance along each component is indicated; (b–g) Heat maps display the clusters of differentially expressed genes (Fc <-1.5 or >1.5; o p <0.05) between treatments comparisons: b) 3α-THP vs V; c) P4 vs V; d) F vs V; e)3α-THP vs F; f) 3α- THP vs P4; g) P4 vs F. The magnitude of expression of each gene was log2 transformed and represented as indicated in the color scale. Each row represents a gene, and each column represents each sample. In this section, we show the tables of the differential expressed genes when compared 3α-THP, P4, and F with respect to V, or as a result of the comparisons between treatments. We show results only of annotated genes. Table S1. Differential gene expression profile of U87 cells treated with 3α-THP vs V. 3α-THP vs V Gene Symbol Fc P-val Gene Symbol Fc P-val Gene Symbol Fc P-val OR5M6P 2.26 5.28E-06 ROCK2 1.94 0.0102 PHF3 2.19 0.0218 RALGAPA1 1.52 0.0004 THOC2 1.52 0.0104 ATRX 2.34 0.0222 DLEU2 1.61 0.0004 BST2 -1.63 0.0105 ZNF292 1.82 0.0223 ARID4B 1.62 0.0006 BDP1 1.72 0.0105 NOL8 1.51 0.0227 ZNF107 1.6 0.0008 BDP1 1.71 0.011 MAP9 2.09 0.0235 CLEC2D 1.54
    [Show full text]