4. Lecture 4 Visualizing Rings We Describe Several Ways of Visualizing Rings

Total Page:16

File Type:pdf, Size:1020Kb

4. Lecture 4 Visualizing Rings We Describe Several Ways of Visualizing Rings MATH 250B: COMMUTATIVE ALGEBRA 11 4. Lecture 4 Visualizing rings We describe several ways of visualizing rings. The simplest is just to draw a point for each element of the ring.p For example for Z[i] we get a square lattice, and for the Eisenstein integers Z[(1 + −3)=2] we get a hexagonal lattice. As an application we will show that Z[i] has unique factorization. Recall that a ring is called Euclidean if it has division with remainder: given a, b 6= 0 we can find q, r with a = qb + r and jrj < jbj, where jxj lies in some well ordered set (such as the non-negative integers). Any Euclidean ring has unique factorization (and is even a principal ideal domain): copy the proof for Z. The key point is to show that if P is irreducible (not a non-trivial product) then it is prime (pjab implies pja or pjb. This is in Euclid book 7, though Euclid could not states that Z is a UFD as multiplication was done geometrically so it was hard to multiply more than 3 numbers. So we want to show Z[i] is Euclidean. We let jXj be the usual absolute value of a complex number. We have to show that given a=b we can find q with ja=b−qj < j1j. It is enough to show that the complex plane is covered by open unit radius disks with centers the Gaussian integers,p which is geometricallyp obvious. The same argument works for Z[ −2] but fails for Z[ −3], where the argument just fails: the plane is covered by closed unit disks but not by open ones.p In factp this ring does NOT have unique factorization: for example,p 2×2 = (1+ −3)(1− −3). It has some non-principal ideals, such as (2; 1 + −3. Note that the non-principal ideals are a different shape from the principal ideals. It is contained in its integral closure the Eisenstein integers, which do have unique factorization. Euclidean rings are rather rare even among unique factorization domains. For example, if R is a UFD then so is R[x], but k[x; y] is not a Euclidean ring. It is not even a PID, as (x; y) is not principal. (Remark. A Euclidean ring R has the property that for a non-unit a of minimal norm, every non-zero element of R=(pa) is represented by a unit, so in particular R=(a) is a field. In particular Z[(1 + −19=2)] is not Euclidean, even though it is an imaginary quadratic number field with unique factorization.) Moreover not many rings can be embedded inside Cn (though this does apply to all algebraic number fields, where is is a very important tool.) The second method of representing rings geometrically is to draw a point for each basis element. Here we assume that the ring is a free module over some nice ring such as a field. For example k[x; y] can be represented by a 2-dimensional quadrant of a 2-dimensional lattice. This is widely used in combinatorics. As examples, we can easily see lots of ideals of finite codimension, and can see that the ring k[x; xy; xy2; ::::] is not Noetherian. (In particular subrings of Noetherian rings need not be Noetherian.) Example 4.1. What is the dimension of the vector space k[x; y]=(x3; x2y2; y5)? Drawing a picture makes it obvious that the dimension is 12. (Can do this using points; some people prefer boxes.) Example 4.2. We can also see from this that there are large numbers of finite dimensional algebras over a field generated by 2 nilpotent elements. This is related to the problem of classifying pairs of commuting (nilpotent) matrices, which is in some sense a "wild" problem. 12 RICHARD BORCHERDS Example 4.3. We see that k[x2; xy; y2] is a free module of rank 2 over k[x2; y2] with a basis 1; xy, so is isomorphic to k[u; v; w]=(v2 − uw). Geometric meaning: if we quotient a plane by (x; y) ! (−x; −y) we get a cone. The main disadvantage is that this representation only works well for rather special classes of rings and ideals, such as polynomial rings and monomial ideals. The third method of representing rings geometrically is to represent them by their spectrum, the set of prime ideals with the Zariski topology. This works for all rings and is by far the most important representation, though seems somewhat mysterious at first. As motivation, we will explain the connection between the spectrum of a ring and the electromagnetic spectrum. The spectrum of light given off by stars or elements has certain lines in it, and Hilbert thought that these might be given by the eigenvalues of some self adjoint operator (this later turned out to be correct). So the eigenvalues of an operator are called its spectrum. If A is a self adjoint operator on a finite dimensional complex vector space, we can look at the commutative ring C[A], a finite dimensional vector space over C. Then the eigenvalues of A are exactly the homomorphisms from this ring to C, which can be identified with the maximal ideals of R[A]. So the set of maximal ideals of a ring is called its maximal spectrum. The ring R[A] can be identified with the ring of (continuous) complex functions on the spectrum (a finite discrete space). Now suppose that X is any compact Hausdorff space and R is the ring of contin- uous complex functions on X. (This is a commutative C* algebra.) We can recover the space X from R as follows. The points of X correspond to the maximal ideals of X (the maximal ideal of a point is the ideal of functions vanishing there). The topology can be recovered as follows: take any ideal I of R, and let Z(I) be the set of maximal ideals containing I. These give the closed sets of X. (Different ideals can give the same closed set.) We can now do the same for any commutative ring R. We define its maximal spectrum to be the set of maximal ideals, with the Zariski topology (the closed sets are the sets Z(I)). There is a problem. A continuous map of spaces from X to Y gives a homomor- phism of their rings of continuous functions (in the opposite direction. We would like this to be some sort of anti-equivalence of categories, so homomorphisms of rings should give continuous functions between their maximal spectrums. However it does not in general (though it does for the case of C∗ algebras). The problem is that the inverse of a maximal ideal need not be maximal: look at Z ! Q for example. Let us analyze the reason for this problem. An ideal is maximal if and only if the quotient is a field. The fact that the inverse image of a maximal ideal need not be maximal corresponds to the fact that a subring of a field need not be a field: in general it is just an integral domain. Now we see how to fix this: instead of using maximal ideals, use the ideals such that R=I is an integral domain. These are called prime ideals: equivalently they have the property that if xy 2 I then x 2 I or y 2 I, corresponding to the fact that an integral domain is a ring such that if xy = 0 then x = 0 or y = 0. The name "prime ideal" is a little unfortunate because they do not quite correspond to primes. If p is a prime element of a ring (meaning that if pjxy then pjx or pjy and p is not 0 or a unit) then (p) is indeed MATH 250B: COMMUTATIVE ALGEBRA 13 a prime ideal. However 0 is a prime ideal in any integral domain even though 0 is not usually considered to be a prime. (By convention, integral domains and fields have more than 1 element, so R is not a prime or maximal ideal)..
Recommended publications
  • Commutative Algebra
    Commutative Algebra Andrew Kobin Spring 2016 / 2019 Contents Contents Contents 1 Preliminaries 1 1.1 Radicals . .1 1.2 Nakayama's Lemma and Consequences . .4 1.3 Localization . .5 1.4 Transcendence Degree . 10 2 Integral Dependence 14 2.1 Integral Extensions of Rings . 14 2.2 Integrality and Field Extensions . 18 2.3 Integrality, Ideals and Localization . 21 2.4 Normalization . 28 2.5 Valuation Rings . 32 2.6 Dimension and Transcendence Degree . 33 3 Noetherian and Artinian Rings 37 3.1 Ascending and Descending Chains . 37 3.2 Composition Series . 40 3.3 Noetherian Rings . 42 3.4 Primary Decomposition . 46 3.5 Artinian Rings . 53 3.6 Associated Primes . 56 4 Discrete Valuations and Dedekind Domains 60 4.1 Discrete Valuation Rings . 60 4.2 Dedekind Domains . 64 4.3 Fractional and Invertible Ideals . 65 4.4 The Class Group . 70 4.5 Dedekind Domains in Extensions . 72 5 Completion and Filtration 76 5.1 Topological Abelian Groups and Completion . 76 5.2 Inverse Limits . 78 5.3 Topological Rings and Module Filtrations . 82 5.4 Graded Rings and Modules . 84 6 Dimension Theory 89 6.1 Hilbert Functions . 89 6.2 Local Noetherian Rings . 94 6.3 Complete Local Rings . 98 7 Singularities 106 7.1 Derived Functors . 106 7.2 Regular Sequences and the Koszul Complex . 109 7.3 Projective Dimension . 114 i Contents Contents 7.4 Depth and Cohen-Macauley Rings . 118 7.5 Gorenstein Rings . 127 8 Algebraic Geometry 133 8.1 Affine Algebraic Varieties . 133 8.2 Morphisms of Affine Varieties . 142 8.3 Sheaves of Functions .
    [Show full text]
  • (AS) 2 Lecture 2. Sheaves: a Potpourri of Algebra, Analysis and Topology (UW) 11 Lecture 3
    Contents Lecture 1. Basic notions (AS) 2 Lecture 2. Sheaves: a potpourri of algebra, analysis and topology (UW) 11 Lecture 3. Resolutions and derived functors (GL) 25 Lecture 4. Direct Limits (UW) 32 Lecture 5. Dimension theory, Gr¨obner bases (AL) 49 Lecture6. Complexesfromasequenceofringelements(GL) 57 Lecture7. Localcohomology-thebasics(SI) 63 Lecture 8. Hilbert Syzygy Theorem and Auslander-Buchsbaum Theorem (GL) 71 Lecture 9. Depth and cohomological dimension (SI) 77 Lecture 10. Cohen-Macaulay rings (AS) 84 Lecture 11. Gorenstein Rings (CM) 93 Lecture12. Connectionswithsheafcohomology(GL) 103 Lecture 13. Graded modules and sheaves on the projective space(AL) 114 Lecture 14. The Hartshorne-Lichtenbaum Vanishing Theorem (CM) 119 Lecture15. Connectednessofalgebraicvarieties(SI) 122 Lecture 16. Polyhedral applications (EM) 125 Lecture 17. Computational D-module theory (AL) 134 Lecture 18. Local duality revisited, and global duality (SI) 139 Lecture 19. De Rhamcohomologyand localcohomology(UW) 148 Lecture20. Localcohomologyoversemigrouprings(EM) 164 Lecture 21. The Frobenius endomorphism (CM) 175 Lecture 22. Some curious examples (AS) 183 Lecture 23. Computing localizations and local cohomology using D-modules (AL) 191 Lecture 24. Holonomic ranks in families of hypergeometric systems 197 Appendix A. Injective Modules and Matlis Duality 205 Index 215 References 221 1 2 Lecture 1. Basic notions (AS) Definition 1.1. Let R = K[x1,...,xn] be a polynomial ring in n variables over a field K, and consider polynomials f ,...,f R. Their zero set 1 m ∈ V = (α ,...,α ) Kn f (α ,...,α )=0,...,f (α ,...,α )=0 { 1 n ∈ | 1 1 n m 1 n } is an algebraic set in Kn. These are our basic objects of study, and include many familiar examples such as those listed below.
    [Show full text]
  • Arxiv:1708.03199V5 [Math.AC] 28 Jan 2020 1] N a N Te Otiilcaatrztoso Noetherian of Characterizations Spectrum
    ZARISKI COMPACTNESS OF MINIMAL SPECTRUM AND FLAT COMPACTNESS OF MAXIMAL SPECTRUM ABOLFAZL TARIZADEH Abstract. In this article, Zariski compactness of the minimal spectrum and flat compactness of the maximal spectrum are char- acterized. 1. Introduction The minimal spectrum of a commutative ring, specially its compact- ness, has been the main topic of many articles in the literature over the years and it is still of current interest, see e.g. [1], [2], [4], [5], [6], [7], [9], [10], [13], [15]. Amongst them, the well-known result of Quentel [13, Proposition 1] can be considered as one of the most important results in this context. But his proof, as presented there, is sketchy. In fact, it is merely a plan of the proof, not the proof itself. In the present article, i.e. Theorem 4.9 and Corollary 4.11, a new and purely algebraic proof is given for this non-trivial result. Dually, a new result is also given for the compactness of the maximal spectrum with respect to the flat topology, see Theorem 4.5. In Theorem 3.1, the patch closures are computed in a certain way. This result plays a major role in proving Theorem 4.9. The noetheri- aness of the prime spectrum with respect to the Zariski topology is also arXiv:1708.03199v5 [math.AC] 28 Jan 2020 characterized, see Theorem 5.1. It is worth mentioning that in [11] and [14], one can find other nontrivial characterizations of noetherianness of the prime spectrum. 2. Preliminaries Here, we briefly recall some material which is needed in the sequel.
    [Show full text]
  • Algebraic Geometry UT Austin, Spring 2016 M390C NOTES: ALGEBRAIC GEOMETRY
    Algebraic Geometry UT Austin, Spring 2016 M390C NOTES: ALGEBRAIC GEOMETRY ARUN DEBRAY MAY 5, 2016 These notes were taken in UT Austin’s Math 390c (Algebraic Geometry) class in Spring 2016, taught by David Ben-Zvi. I live-TEXed them using vim, and as such there may be typos; please send questions, comments, complaints, and corrections to [email protected]. Thanks to Shamil Asgarli, Adrian Clough, Feng Ling, Tom Oldfield, and Souparna Purohit for fixing a few mistakes. Contents 1. The Course Awakens: 1/19/163 2. Attack of the Cones: 1/21/166 3. The Yoneda Chronicles: 1/26/16 10 4. The Yoneda Chronicles, II: 1/28/16 13 5. The Spectrum of a Ring: 2/2/16 16 6. Functoriality of Spec: 2/4/16 20 7. The Zariski Topology: 2/9/16 23 8. Connectedness, Irreducibility, and the Noetherian Condition: 2/11/16 26 9. Revenge of the Sheaf: 2/16/16 29 10. Revenge of the Sheaf, II: 2/18/16 32 11. Locally Ringed Spaces: 2/23/16 34 12. Affine Schemes are Opposite to Rings: 2/25/16 38 13. Examples of Schemes: 3/1/16 40 14. More Examples of Schemes: 3/3/16 44 15. Representation Theory of the Multiplicative Group: 3/8/16 47 16. Projective Schemes and Proj: 3/10/16 50 17. Vector Bundles and Locally Free Sheaves: 3/22/16 52 18. Localization and Quasicoherent Sheaves: 3/24/16 56 19. The Hilbert Scheme of Points: 3/29/16 59 20. Differentials: 3/31/16 62 21.
    [Show full text]
  • 1. Spectrum of a Ring All the Rings Are Assumed to Be Commutative. Let A
    1. Spectrum of a Ring All the rings are assumed to be commutative. Let A be a ring. The spectrum of A denoted by Spec A is the set of prime ideals of A: For any subset T of A; we denote V (T ) the set of all prime ideals containing T: For f 2 A; we denote D(f) the complement of V (f): Proposition 1.1. The spectrum of A is empty if and only if A is the zero ring. Proof. If A is the zero ring, there is no proper prime ideal of A: Hence Spec A is empty. If A is a nonzero ring, A has a maximal ideal (by Zorn's lemma) (or every ideal is contained in a maximal ideal we can choose the zero ideal). Then Spec A is nonempty. Hence we assume that A is a ring with identity 1 and hence A is not a zero ring. Proposition 1.2. Let A be a ring. Suppose that T;S are subsets of A and I;J are ideals of A; f 2 A: (1) If T ⊂ S; then V (T ) ⊃ V (S): (2) LetphT i be the ideal generated by T: Wep have V (T ) = V (hT i): (3) If I is the radical of I; then V (I) = V ( I): (4) V (I) = ; if and only if I isp the unitp ideal. (5) V (I) = V (J) if and only if I = J: (6) D(f) = ; if and only if f is nilpotent. (7) If D(f) = Spec A; then f is a unit.
    [Show full text]
  • On the K-Theory Spectrum of a Ring of Algebraic Integers
    ON THE K-THEORY SPECTRUM OF A RING OF ALGEBRAIC INTEGERS W. G. Dwyer and S. A. Mitchell University of Notre Dame University of Washington 1. Introduction § Suppose that F is a number field (i.e. a finite algebraic extension of the field Q of rational numbers) and that F is the ring of algebraic integers in F . One of the most fascinating and apparentlyO difficult problems in algebraic K-theory is to compute the groups Ki F . These groups were shown to be finitely generated by Quillen [36] and their ranksO were calculated by Borel [7]. Lichtenbaum and Quillen have formulated a very explicit conjecture about what the groups should be [37]. Nevertheless, there is not a single number field F for which Ki F is known for any i 5. For most fields F , these groups are unknown for i 3. O ≥ ≥ The groups Ki F are the homotopy groups of a spectrum K F (“spectrum” in the sense of algebraicO topology [1]). In this paper, rather than concentratingO on the individual groups Ki F , we study the entire spectrum K F from the viewpoint of stable homotopy theory.O For technical reasons, it is actuallyO more convenient to single out a rational prime number ℓ and study instead the spectrum KRF , where R = [1/ℓ] is the ring of algebraic ℓ-integers in F . “At ℓ”, that is, after F OF localizing or completing at ℓ, the spectra K F and KRF are almost the same (cf. [34] and [35, p. 113]). O The main results. We will begin by describing the two basic results in this paper.
    [Show full text]
  • SPECTRAL ALGEBRAIC GEOMETRY 1. Introduction This Chapter
    SPECTRAL ALGEBRAIC GEOMETRY CHARLES REZK 1. Introduction This chapter is a very modest introduction to some of the ideas of spectral algebraic geometry, following the approach due to Lurie. The goal is to introduce a few of the basic ideas and definitions, with the goal of understanding Lurie's characterization of highly structured elliptic cohomology theories. 1.1. A motivating example: elliptic cohomology theories. Generalized cohomology theories are functors which take values in some abelian category. Traditionally, we consider ones which take values in abelian groups, but we can work more generally. For instance, take cohomology theories which take values in sheaves of graded abelian groups (or rings) on some given topological space, or in sheaves of graded OS-modules (or rings) on S, where S is a scheme, or possibly a more general kind of geometric object, such as a Deligne-Mumford stack, and OS is its structure sheaf. Given a scheme (or Deligne-Mumford stack) S, it is easy to construct an example of a cohomology theory taking values in graded OS-algebras; for instance, using ordinary cohomology, we can form ∗ ∗ F (X) := U 7! H (X; OS(U)) ; which is a presheaf of graded OS-algebras on S, which in turn can be sheafified into a sheaf of graded OS-modules on S. A more interesting example is given by elliptic cohomology theories. These consist of (1) an elliptic curve π : C ! S (which is in particular an algebraic group with an identity section e: S ! C), (2) a multiplicative generalized cohomology theory F ∗ taking values in sheaves graded commu- odd tative OS-algebras, which is even and weakly 2-periodic in the sense that F (point) ≈ 0 0 2 while F (point) ≈ OS and F (point) is an invertible OS-module, together with (3) a choice of isomorphism 0 1 ∼ ^ α: Spf F (CP ) −! Ce of formal groups, where the right-hand side denotes the formal completion of the elliptic curve π : C ! S at the identity section.
    [Show full text]
  • Short Steps in Noncommutative Geometry
    SHORT STEPS IN NONCOMMUTATIVE GEOMETRY AHMAD ZAINY AL-YASRY Abstract. Noncommutative geometry (NCG) is a branch of mathematics concerned with a geo- metric approach to noncommutative algebras, and with the construction of spaces that are locally presented by noncommutative algebras of functions (possibly in some generalized sense). A noncom- mutative algebra is an associative algebra in which the multiplication is not commutative, that is, for which xy does not always equal yx; or more generally an algebraic structure in which one of the principal binary operations is not commutative; one also allows additional structures, e.g. topology or norm, to be possibly carried by the noncommutative algebra of functions. These notes just to start understand what we need to study Noncommutative Geometry. Contents 1. Noncommutative geometry 4 1.1. Motivation 4 1.2. Noncommutative C∗-algebras, von Neumann algebras 4 1.3. Noncommutative differentiable manifolds 5 1.4. Noncommutative affine and projective schemes 5 1.5. Invariants for noncommutative spaces 5 2. Algebraic geometry 5 2.1. Zeros of simultaneous polynomials 6 2.2. Affine varieties 7 2.3. Regular functions 7 2.4. Morphism of affine varieties 8 2.5. Rational function and birational equivalence 8 2.6. Projective variety 9 2.7. Real algebraic geometry 10 2.8. Abstract modern viewpoint 10 2.9. Analytic Geometry 11 3. Vector field 11 3.1. Definition 11 3.2. Example 12 3.3. Gradient field 13 3.4. Central field 13 arXiv:1901.03640v1 [math.OA] 9 Jan 2019 3.5. Operations on vector fields 13 3.6. Flow curves 14 3.7.
    [Show full text]
  • Arxiv:1503.04299V3 [Math.AC] 18 Jan 2016 Lsdsbe Fteflttplg Ntepiesetu Spec( Spectrum E Prime the Speaking, Roughly on Topology
    ON THE FLAT TOPOLOGY (I) ABOLFAZL TARIZADEH Abstract. In this article we establish a new and not necessarily Hausdorff topology on the prime spectrum which we call it the flat topology. Then we prove the basic properties of the flat topology specially, various interesting characterizations in terms of the flat topology are given. 1. Introduction The prime spectrum of a commutative ring with identity element is a set whose elements are the prime ideals of this ring; this set equipped with the Zariski topology and also equipped with a certain sheaf of rings (so-called the structure sheaf) is a basic object for studies in Grothendieck algebraic geometry. Nowadays what we call the Zariski topology is essentially due to Grothendieck; Zariski initially introduced a topology on an arbitrary algebraic variety, by taking its algebraic subsets as closed sets; Grothendieck by establishing a correspondence between the points of an affine variety and the maximal ideals of its coordinate ring (by taking varieties over an algebraically closed filed and then using Hilbert’s Nullstellensatz; e.g., consider [8]), transferred Zariski’s topology to the set of prime ideals of an arbitrary commu- tative ring; however the same type of topology had been introduced on the spectra of the boolean algebras much earlier by Marshall Stone [16]. The prime spectrum have been studied extensively from various aspects and points of view (cf. [5], [6], [7], [9], [12], [14], [15]). In arXiv:1503.04299v3 [math.AC] 18 Jan 2016 this article we introduce a new and not necessarily Hausdorff topology on the prime spectrum which we shall call it the flat topology.
    [Show full text]
  • 11. Schemes to Define Schemes, Just As with Algebraic Varieties, the Idea
    11. Schemes To define schemes, just as with algebraic varieties, the idea is to first define what an affine scheme is, and then realise an arbitrary scheme, as something which is locally an affine scheme. The definition of an affine scheme is motivated by the correspondence between affine varieties and finitely generated algebras over a field, without nilpotents. The idea is that we should be able to associate to any ring R, a topological space X, and a set of continuous functions on X, which is equal to R. In practice this is too much to expect and we need to work with a slightly more general object than a continuous function. Now if X is an affine variety, the points of X are in correspondence with the maximal ideals of the coordinate ring A = A(X). Unfortu- nately if we have two arbitrary rings R and S, then the inverse image of a maximal ideal won't be maximal. However it is easy to see that the inverse image of a prime ideal is a prime ideal. Definition 11.1. Let R be a ring. X = Spec R denotes the set of prime ideals of R. X is called the spectrum of R. Note that given an element of R, we may think of it as a function on X, by considering it value in the quotient. Example 11.2. It is interesting to see what these functions look like in specific cases. Suppose that we take X = Spec k[x; y]. Now any element f = f(x; y) 2 k[x; y] defines a function on X.
    [Show full text]
  • Theoretical Computer Science the Zariski Spectrum As a Formal Geometry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 405 (2008) 101–115 Contents lists available at ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs The Zariski spectrum as a formal geometry$ Peter Schuster Mathematisches Institut, Universität München, Theresienstraße 39, 80333 München, Germany article info a b s t r a c t Keywords: We choose formal topology to deal in a basic manner with the Zariski spectra of Zariski spectrum commutative rings and their structure sheaves. By casting prime and maximal ideals in Structure sheaf a secondary role, we thus wish to prepare a constructive and predicative framework for Local ring Universal property abstract algebraic geometry. Formal topology In contrast to the classical approach, neither points nor stalks need occur, let alone any Point-free instance of the axiom of choice. As compared with the topos-theoretic treatments that may Constructive be rendered predicative as well, the road we follow is built from more elementary material. Predicative The formal counterpart of the structure sheaf which we present first is our guiding example for a notion of a sheaf on a formal topology. We next define the category of formal geometries, a natural abstraction from that of locally ringed spaces. This allows us to eventually phrase and prove, still within the language of opens and sections, the universal property of the Zariski spectrum. Our version appears to be the only one that is explicitly point-free. © 2008 Elsevier B.V. All rights reserved.
    [Show full text]
  • Spec(R) Y Axiomas De Separación Entre T0 Y T1
    Divulgaciones Matem¶aticasVol. 13 No. 2(2005), pp. 90{98 Spec(R) y Axiomas de Separaci¶on entre T0 y T1 Spec(R) y Axiomas de Separaci¶onentre T0 y T1 Jes¶usAntonio Avila¶ G. ([email protected]) Departamento de de Matem¶aticasy Estad¶³stica Universidad del Tolima Ibagu¶e,Colombia Abstract In this paper we characterize the rings whose prime spectrum satisfy some of the separation axioms between T0 and T1. Additionally, the notion of D-ring , m-ring , U-ring and Y-ring are introduced. Finally, some remarks are made on the de¯ned rings. Key words and phrases: ring, prime ideal, prime spectrum, low separation axioms. Resumen En este art¶³culose caracterizan los anillos cuyo espectro primo satisface algunos axiomas de separaci¶onentre T0 y T1: Para esto se introducen las nociones de D-anillo , m-anillo , U-anillo y Y-anillo. Finalmente, se hacen algunos comentarios sobre los anillos de¯nidos. Palabras y frases clave: anillo, ideal primo, espectro primo, axiomas bajos de separaci¶on. 1 Introduction The theory of the prime spectrum of a ring has been developed from 1930. The precursor ideas are in the one to one correspondence between Boolean lattices and Boolean rings (Stone's Theorem). The modern theory was devel- oped by Jacobson and Zariski mainly. Since the spectrum can be seem as a functor from the category of commutative rings with identity to the topolog- ical spaces, a \dictionary" of properties between the objects and morphisms Received 2004/05/11. Revised 2005/09/21. Accepted 2005/10/01. MSC (2000): Primary 54A05.
    [Show full text]