Prime Spectrum of a Ring: a Survey

Total Page:16

File Type:pdf, Size:1020Kb

Prime Spectrum of a Ring: a Survey THE PRIME SPECTRUM OF A RING: A SURVEY by James S. Fernandez A Thesis Submitted to the Faculty of the College of Science in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mathematics Florida Atlantic University Boca Raton, Florida December 1991 THE PRIME SPECTRUM OF A RING: A SURVEY by James S. Fernandez This thesis was prepared under the direction of the candidate's thesis advisor, Dr. Lee Klingler, Department of Mathematics, and has been approved by the members of his supervisory committee. It was submitted to the faculty of the College of Science and was accepted in partial fulfillment of the requirements for the degree of Master of Science in Mathematics. Supervisory Committee nt of Mathematics Date ii ACKNOWLEDGEMENTS I wish to express my sincere appreciation to my thesis advisor, Dr. Lee Klingler, for his patience and insight, and for lending assistance far beyond that which one normally assumes upon accepting the role of thesis advisor. I also wish to thank Dr. J . Brewer for his direction in getting this endeavor started and Dr. F. Richman for his insight into fine tuning the nuances during the final revision. I further wish to thank B. Broer, R. Pelava, and R. Ebel for their assistance and cooperation in getting this thesis printed. iii ABSTRACT AUTHOR James S. Fernandez TITLE The Prime Spectrum of a Ring: A Survey INSTITUTION Florida Atlantic University THESIS ADVISOR Dr. Lee Klingler DEGREE Master of Science in Mathematics YEAR 1991 This thesis has as its motivation the exploration, on an informal level, of a correspondence between Algebra and Topology. Specifically, it considers the prime spectrum of a ring, that is, the set of prime ideals, endowed with the Zariski topology. Questions posed by M. Atiyah and I. MacDonald in their book, "Introduction to Commutative Algebra", serve as a guideline through most of this work. The final section, however, follows R. Heitmann's paper, "Generating Non-Noetherian Modules Efficiently". This section examines the patch topology on the prime spectrum of a ring where the patch topology has as a closed subbasis the Zariski closed and Zariski quasi-compact open sets. It is proven that the prime spectrum of a ring with the patch topology is a compact Hausdorff space, and several relationships between the patch and Zariski topologies are established. The final section concludes with a technical theorem having a number of interesting corollaries, among which are a stable range theorem and a theorem of Kronecker, both generalized to the non-Noetherian setting. iv TABLE OF CONTENTS ACKNOWLEDGEMENTS ........................................................... iii ABSTRACT ................................................................................. iv Section 1 Preliminaries: Some Properties of Prime Ideals ............................... 1 2 The Topology of the Prime Spectrum of a Ring ................. .............. 4 3 Irreducible Spaces .......................................................................... 8 4 Homomorphisms and Ring Spectra ................................................ 12 5 Localization and Ring Spectra ....................................................... 22 6 Integral Dependence ................................. .................................... 25 7 Noetherian Spaces ........................................................................ 32 8 The Patch Topology ..................................................................... 40 References . 53 v THE PRIME SPECTRUM OF A RING: A SURVEY §1 Preliminaries: Some Properties of Prime Ideals We begin our discussion by reviewing several definitions and propositions concerning the prime and radical ideals of a ring. The results proved in our discussion depend heavily on the fact that the rings involved are commutative and possess a multiplicative unity. Henceforth, all rings mentioned in the text are assumed to be commutative and possess a multiplicative unity. DEFINITION 1.1. The nilradical of a ring A is the subset consisting of all the nilpotent elements of A. For the sake of completeness we now recall, without proof, some standard properties of the prime and radical ideals of a ring A. PROPOSITION 1.2. Let A be a ring. 1) Any intersection of ideals of A, is an ideal of A; 2) The nilradical N of A is the intersection of all prime ideals contained in A. In particular, N is an ideal; 3) Let I be an ideal of A. The radical of I, denoted r(I), is defined to be the set {a E A I an E I for some n E IN}. The radical of I equals the intersection of all prime ideals in A which contain I. In particular, r(I) is an ideal of A. 1 4) Let P , ... , P n be prime ideals of A and let I be an ideal contained in 1 their union. Then I c Pi for some i. 5) Let I , ... , In be ideals of A and let P be a prime ideal containing their 1 intersection. Then Ii c P for some i. PROPOSITION 1.3. Let A be a ring, A 1 0. Let !fJ denote the set of all prime ideals of A. Then !fJ contains minimal elements with respect to inclusion. Proof Note that !fJ 1 ¢ since 0 is contained in some maximal, hence prime, ideal of A. Let C = { Pi I i E I} be a chain in !fJ where I is some indexing set. By invoking Zorn's lemma it suffices to show that i~ri E C. Since i~ri is the intersection of ideals of A, it is an ideal. We need only show i~ri is a prime ideal. Let a,b E A and suppose ab E i~ri" Without loss of generality, if b E Pi for all iEI then we're done, so suppose there exists kEI with b i Pk. Let j E I be such that P. c Pk. Then we have ab E P. and b; P . so that a E P. since P. J J J J J is a prime ideal. In particular, a E Pk. Hence for any Pi E I we have either Pi c Pk, in which case a E Pi by the above argument, or Pk c Pi in which case a E Pk n n c Pi. Thus a E iEli so that iEipi E C. Therefore, !fJ has a minimal element. C PROPOSITION 1.4. Let A be a ring, A 1 ¢, and let N be its nilradical. The following are equivalent: 1) A has exactly one prime ideal; 2) Every element of A is either a unit or a nilpotent element; 3) ~ is a field. 2 Proof We show {1) ~ {2) ~ {3) ~ {1). {1) ~ {2) : Suppose P is the sole prime ideal of A. Then P = N (prop. 1.3) and since a maximal ideal is also prime we know that P is the only maximal ideal of A. Hence, given x E A we have either x E P = N so that x is nilpotent; or x ;. P implying x is not contained in any maximal ideal of A so that x is a unit. {2) ~ {3): Assume {2) holds. Let I :/: (0) be an ideal of ~· Then there exists x;. N such that x+N E I. Since x ;. N, there exists y E A such that xy = 1. Thus (x+N)(y+N) = xy+N = 1+N E I. Hence I = {1) so that the only ideals of ~ are {0) and {1) . Thus ~ is a field. (3) ~ {1): Suppose ~ is a field. Then N is maximal ideal of A. Let P be any prime ideal of A. Then N c P. But N is maximal so N = P. Therefore, N is the only prime ideal of A. C DEFINITION 1.5. A ring having only one maximal ideal is called a local ring. PROPOSITION 1.6. Let A be a local ring with maximal ideal M. Then 1) Every element of A-M is a unit; 2) The only idempotents of A are 0 and 1. Proof 1) Since every non-unit of A is contained in some maximal ideal, (1) follows immediately. 2) Let a E A be an idempotent so that a(a-1) = 0 E M. Since M is a prime ideal, a E M or a-1 E M. If a E M then, since 1 ;. M, a-1 ;. M. Hence, a-1 is a unit so that a= 0. Similarly, a-1 E M ~ a-1 = 0. Therefore, a E {0,1 }. C 3 §2 The Tooology of the Prime Spectrum of a Ring Let A be a ring and let X denote the set of all prime ideals of A. Our goal is to endow X with a topology. To this end, for each subset E c A, let V(E) = { p E X I E ( p }. Suppose I is the ideal generated by E c A. Then since E c I c r(I), where r(I) denotes the radical of I, we clearly have V(r(I)) c V(I) c V(E). However, I is the smaUest ideal containing E so that P E V(E) ~ P E V(I). Hence, V(E) = V(I) . Also, r(I) equals the intersection of all prime ideals containing I so that V(r(I)) = V(I). Therefore, for any subset E c A we have V(E) = V(I) = V(r(I)). Consider the cases when E = (0) or E = (1). Since 0 E P, for all P EX, we certainly have V(O) = X. Now, if P E X, then 1 ;. P so that V(1) = ¢. Let (Ei)iE/ be any family of subsets of A (I some indexing set). Let P E V(i~/Ei) . Then i~.zEi c P so that Ei c P, for each i E I. Thus P E V(Ei), each i E I and hence P E i~/V(Ei). Therefore, V(i~.zEi) c i~/V(Ei). Inspection shows this argument can be reversed to give i~/V(Ei) c V(i~/Ei).
Recommended publications
  • Commutative Algebra
    Commutative Algebra Andrew Kobin Spring 2016 / 2019 Contents Contents Contents 1 Preliminaries 1 1.1 Radicals . .1 1.2 Nakayama's Lemma and Consequences . .4 1.3 Localization . .5 1.4 Transcendence Degree . 10 2 Integral Dependence 14 2.1 Integral Extensions of Rings . 14 2.2 Integrality and Field Extensions . 18 2.3 Integrality, Ideals and Localization . 21 2.4 Normalization . 28 2.5 Valuation Rings . 32 2.6 Dimension and Transcendence Degree . 33 3 Noetherian and Artinian Rings 37 3.1 Ascending and Descending Chains . 37 3.2 Composition Series . 40 3.3 Noetherian Rings . 42 3.4 Primary Decomposition . 46 3.5 Artinian Rings . 53 3.6 Associated Primes . 56 4 Discrete Valuations and Dedekind Domains 60 4.1 Discrete Valuation Rings . 60 4.2 Dedekind Domains . 64 4.3 Fractional and Invertible Ideals . 65 4.4 The Class Group . 70 4.5 Dedekind Domains in Extensions . 72 5 Completion and Filtration 76 5.1 Topological Abelian Groups and Completion . 76 5.2 Inverse Limits . 78 5.3 Topological Rings and Module Filtrations . 82 5.4 Graded Rings and Modules . 84 6 Dimension Theory 89 6.1 Hilbert Functions . 89 6.2 Local Noetherian Rings . 94 6.3 Complete Local Rings . 98 7 Singularities 106 7.1 Derived Functors . 106 7.2 Regular Sequences and the Koszul Complex . 109 7.3 Projective Dimension . 114 i Contents Contents 7.4 Depth and Cohen-Macauley Rings . 118 7.5 Gorenstein Rings . 127 8 Algebraic Geometry 133 8.1 Affine Algebraic Varieties . 133 8.2 Morphisms of Affine Varieties . 142 8.3 Sheaves of Functions .
    [Show full text]
  • MATH 145 NOTES 1. Meta Stuff and an Overview of Algebraic Geometry
    MATH 145 NOTES ARUN DEBRAY AUGUST 21, 2015 These notes were taken in Stanford’s Math 145 class in Winter 2015, taught by Ravi Vakil. I TEXed these notes up using vim, and as such there may be typos; please send questions, comments, complaints, and corrections to [email protected]. CONTENTS 1. Meta Stuff and an Overview of Algebraic Geometry: 1/5/151 2. Projective Space and Fractional Linear Transformations: 1/7/153 3. Diophantine Equations and Classifying Conics: 1/9/155 4. Quadratics and Cubics: 1/12/15 6 5. Cubics: 1/14/15 8 6. The Elliptic Curve Group and the Zariski Topology: 1/16/159 7. Affine Varieties and Noetherian Rings: 1/21/15 11 8. Localization and Varieties: 1/23/15 13 9. Hilbert’s Nullstellensatz: 1/26/15 14 10. Affine Varieties: 1/28/15 15 11. Affine Schemes: 1/30/15 17 12. Regular Functions and Regular Maps: 2/2/15 18 13. Rational Functions: 2/4/15 20 14. Rational Maps: 2/6/15 21 15. Varieties and Sheaves: 2/9/15 23 16. From Rational Functions to Rational Maps: 2/11/15 24 17. Varieties and Pre-Varieties: 2/13/15 25 18. Presheaves, Sheaves, and Affine Schemes: 2/18/15 26 19. Morphisms of Varieties and Projective Varieties: 2/20/15 28 20. Products and Projective Varieties: 2/23/15 29 21. Varieties in Action: 2/25/15 31 22. Dimension: 2/27/15 32 23. Smoothness and Dimension: 3/2/15 33 24. The Tangent and Cotangent Spaces: 3/6/15 35 25.
    [Show full text]
  • The Harvard College Mathematics Review
    The Harvard College Mathematics Review Volume 3 Spring 2011 In this issue: CHRISTOPHER POLICASTRO Artin's Conjecture ZHAO CHEN, KEVIN DONAGHUE & ALEXANDER ISAKOV A Novel Dual-Layered Approach to Geographic Profiling in Serial Crimes MICHAEL J. HOPKINS The Three-Legged Theorem MLR A Student Publication of Harvard College Website. Further information about The HCMR can be Sponsorship. Sponsoring The HCMR supports the un found online at the journal's website, dergraduate mathematics community and provides valuable high-level education to undergraduates in the field. Sponsors will be listed in the print edition of The HCMR and on a spe http://www.thehcmr.org/ fl) cial page on the The HCMR's website, (1). Sponsorship is available at the following levels: Instructions for Authors. All submissions should in clude the name(s) of the author(s), institutional affiliations (if Sponsor $0 - $99 any), and both postal and e-mail addresses at which the cor Fellow $100-$249 responding author may be reached. General questions should Friend $250 - $499 be addressed to Editor-in-Chief Rediet Abebe at hcmr@ hcs . Contributor $500-$1,999 harvard.edu. Donor $2,000 - $4,999 Patron $5,000 - $9,999 Articles. The Harvard College Mathematics Review invites Benefactor $10,000 + the submission of quality expository articles from undergrad uate students. Articles may highlight any topic in undergrad Contributors ■ Jane Street Capital • The Harvard Uni uate mathematics or in related fields, including computer sci versity Mathematics Department ence, physics, applied mathematics, statistics, and mathemat Cover Image. The image on the cover depicts several ical economics. functions, whose common zero locus describes an algebraic Authors may submit articles electronically, in .pdf, .ps, or .dvi format, to [email protected], or in hard variety (which is in this case an elliptic curve).
    [Show full text]
  • (AS) 2 Lecture 2. Sheaves: a Potpourri of Algebra, Analysis and Topology (UW) 11 Lecture 3
    Contents Lecture 1. Basic notions (AS) 2 Lecture 2. Sheaves: a potpourri of algebra, analysis and topology (UW) 11 Lecture 3. Resolutions and derived functors (GL) 25 Lecture 4. Direct Limits (UW) 32 Lecture 5. Dimension theory, Gr¨obner bases (AL) 49 Lecture6. Complexesfromasequenceofringelements(GL) 57 Lecture7. Localcohomology-thebasics(SI) 63 Lecture 8. Hilbert Syzygy Theorem and Auslander-Buchsbaum Theorem (GL) 71 Lecture 9. Depth and cohomological dimension (SI) 77 Lecture 10. Cohen-Macaulay rings (AS) 84 Lecture 11. Gorenstein Rings (CM) 93 Lecture12. Connectionswithsheafcohomology(GL) 103 Lecture 13. Graded modules and sheaves on the projective space(AL) 114 Lecture 14. The Hartshorne-Lichtenbaum Vanishing Theorem (CM) 119 Lecture15. Connectednessofalgebraicvarieties(SI) 122 Lecture 16. Polyhedral applications (EM) 125 Lecture 17. Computational D-module theory (AL) 134 Lecture 18. Local duality revisited, and global duality (SI) 139 Lecture 19. De Rhamcohomologyand localcohomology(UW) 148 Lecture20. Localcohomologyoversemigrouprings(EM) 164 Lecture 21. The Frobenius endomorphism (CM) 175 Lecture 22. Some curious examples (AS) 183 Lecture 23. Computing localizations and local cohomology using D-modules (AL) 191 Lecture 24. Holonomic ranks in families of hypergeometric systems 197 Appendix A. Injective Modules and Matlis Duality 205 Index 215 References 221 1 2 Lecture 1. Basic notions (AS) Definition 1.1. Let R = K[x1,...,xn] be a polynomial ring in n variables over a field K, and consider polynomials f ,...,f R. Their zero set 1 m ∈ V = (α ,...,α ) Kn f (α ,...,α )=0,...,f (α ,...,α )=0 { 1 n ∈ | 1 1 n m 1 n } is an algebraic set in Kn. These are our basic objects of study, and include many familiar examples such as those listed below.
    [Show full text]
  • Arxiv:1708.03199V5 [Math.AC] 28 Jan 2020 1] N a N Te Otiilcaatrztoso Noetherian of Characterizations Spectrum
    ZARISKI COMPACTNESS OF MINIMAL SPECTRUM AND FLAT COMPACTNESS OF MAXIMAL SPECTRUM ABOLFAZL TARIZADEH Abstract. In this article, Zariski compactness of the minimal spectrum and flat compactness of the maximal spectrum are char- acterized. 1. Introduction The minimal spectrum of a commutative ring, specially its compact- ness, has been the main topic of many articles in the literature over the years and it is still of current interest, see e.g. [1], [2], [4], [5], [6], [7], [9], [10], [13], [15]. Amongst them, the well-known result of Quentel [13, Proposition 1] can be considered as one of the most important results in this context. But his proof, as presented there, is sketchy. In fact, it is merely a plan of the proof, not the proof itself. In the present article, i.e. Theorem 4.9 and Corollary 4.11, a new and purely algebraic proof is given for this non-trivial result. Dually, a new result is also given for the compactness of the maximal spectrum with respect to the flat topology, see Theorem 4.5. In Theorem 3.1, the patch closures are computed in a certain way. This result plays a major role in proving Theorem 4.9. The noetheri- aness of the prime spectrum with respect to the Zariski topology is also arXiv:1708.03199v5 [math.AC] 28 Jan 2020 characterized, see Theorem 5.1. It is worth mentioning that in [11] and [14], one can find other nontrivial characterizations of noetherianness of the prime spectrum. 2. Preliminaries Here, we briefly recall some material which is needed in the sequel.
    [Show full text]
  • Arxiv:1507.04134V1 [Math.RA]
    NILPOTENT, ALGEBRAIC AND QUASI-REGULAR ELEMENTS IN RINGS AND ALGEBRAS NIK STOPAR Abstract. We prove that an integral Jacobson radical ring is always nil, which extends a well known result from algebras over fields to rings. As a consequence we show that if every element x of a ring R is a zero of some polynomial px with integer coefficients, such that px(1) = 1, then R is a nil ring. With these results we are able to give new characterizations of the upper nilradical of a ring and a new class of rings that satisfy the K¨othe conjecture, namely the integral rings. Key Words: π-algebraic element, nil ring, integral ring, quasi-regular element, Jacobson radical, upper nilradical 2010 Mathematics Subject Classification: 16N40, 16N20, 16U99 1. Introduction Let R be an associative ring or algebra. Every nilpotent element of R is quasi-regular and algebraic. In addition the quasi-inverse of a nilpotent element is a polynomial in this element. In the first part of this paper we will be interested in the connections between these three notions; nilpo- tency, algebraicity, and quasi-regularity. In particular we will investigate how close are algebraic elements to being nilpotent and how close are quasi- regular elements to being nilpotent. We are motivated by the following two questions: Q1. Algebraic rings and algebras are usually thought of as nice and well arXiv:1507.04134v1 [math.RA] 15 Jul 2015 behaved. For example an algebraic algebra over a field, which has no zero divisors, is a division algebra. On the other hand nil rings and algebras, which are of course algebraic, are bad and hard to deal with.
    [Show full text]
  • Algebraic Geometry UT Austin, Spring 2016 M390C NOTES: ALGEBRAIC GEOMETRY
    Algebraic Geometry UT Austin, Spring 2016 M390C NOTES: ALGEBRAIC GEOMETRY ARUN DEBRAY MAY 5, 2016 These notes were taken in UT Austin’s Math 390c (Algebraic Geometry) class in Spring 2016, taught by David Ben-Zvi. I live-TEXed them using vim, and as such there may be typos; please send questions, comments, complaints, and corrections to [email protected]. Thanks to Shamil Asgarli, Adrian Clough, Feng Ling, Tom Oldfield, and Souparna Purohit for fixing a few mistakes. Contents 1. The Course Awakens: 1/19/163 2. Attack of the Cones: 1/21/166 3. The Yoneda Chronicles: 1/26/16 10 4. The Yoneda Chronicles, II: 1/28/16 13 5. The Spectrum of a Ring: 2/2/16 16 6. Functoriality of Spec: 2/4/16 20 7. The Zariski Topology: 2/9/16 23 8. Connectedness, Irreducibility, and the Noetherian Condition: 2/11/16 26 9. Revenge of the Sheaf: 2/16/16 29 10. Revenge of the Sheaf, II: 2/18/16 32 11. Locally Ringed Spaces: 2/23/16 34 12. Affine Schemes are Opposite to Rings: 2/25/16 38 13. Examples of Schemes: 3/1/16 40 14. More Examples of Schemes: 3/3/16 44 15. Representation Theory of the Multiplicative Group: 3/8/16 47 16. Projective Schemes and Proj: 3/10/16 50 17. Vector Bundles and Locally Free Sheaves: 3/22/16 52 18. Localization and Quasicoherent Sheaves: 3/24/16 56 19. The Hilbert Scheme of Points: 3/29/16 59 20. Differentials: 3/31/16 62 21.
    [Show full text]
  • Solutions to Assignment 5
    Solutions to Assignment 5 Throughout, A is a commutative ring with 0 6= 1. 1. We say that a ∈ A is a zerodivisor if there exists b 6= 0 in A such that ab = 0. (This differs from Lang’s definition only to the extent that 0 will be called a zerodivisor.) Let F be the set of all ideals of A in which every element is a zerodivisor. (a) Prove that F has maximal elements. (b) Prove that every maximal element of F is a prime ideal. (c) Conclude that the set of zerodivisors is a union of prime ideals. Solution: (a) Since (0) ∈ F, the set F is nonempty. Given a chain {aα} of elements of F, it S is easily seen that α aα is an ideal as well. Since each element of this ideal is a zerodivisor, it S follows that α aα ∈ F. By Zorn’s Lemma, the set F has maximal elements. (b) Let p ∈ F be a maximal element. If x∈ / p and y∈ / p, then the ideals p + (x) and p + (y) are strictly bigger than p, and hence there exist nonzerodivisors a ∈ p + (x) and b ∈ p + (y). But then ab ∈ p + (xy) is a nonzerodivisor, and so xy∈ / p. Consequently p is a prime ideal. (c) If x ∈ A is a zerodivisor, then every element of the ideal (x) is a zerodivisor. Hence (x) ∈ F, and so (x) ⊆ p for some prime ideal p ∈ F. It follows that [ {x | x ∈ A is a zerodivisor} = p. p∈F 2. Let a be a nilpotent element of A.
    [Show full text]
  • [Nilradical of a Ring] Let N ⊂ a Consist of All Nilpotent Elements. Prove That N
    ALGEBRA 1: PROBLEM SET 10 A = a commutative ring in all the problems below. Problem 1. [Nilradical of a ring] Let n ⊂ A consist of all nilpotent elements. Prove that \ n = p p⊂A prime ideal Problem 2. Let a ⊂ A be the set of all zero{divisors of A. Is a an ideal of A? Problem 3. Let n 2 A be a nilpotent element and u 2 A be a unit (that is, u has a multiplicative inverse). Prove that u + n is again a unit. Problem 4. Let S ⊂ A be a set such that 0 62 S and r; s 2 S implies rs 2 S (multiplicatively closed set). Let p be an ideal which is maximal among the ideals not intersecting S. That is, maximal with respect to inclusion, from the following set: IS = fa ⊂ A an ideal such that a \ S = ;g Prove that p is prime. Problem 5. If for every x 2 A there exists an n ≥ 2 such that xn = x, then prove that every prime ideal in A is maximal. Problem 6. Let B be another commutative ring and let f : A ! B be a ring homomorphism. Let p ⊂ A be a prime ideal and define b ⊂ B to be the ideal generated by f(p). Prove or disprove: b is a prime ideal. Problem 7. Let K be a field and R = K[[x]] be the ring of formal power series in a variable x with coefficients from K. Prove that R is a local ring, with unique maximal ideal m = (x).
    [Show full text]
  • 1. Spectrum of a Ring All the Rings Are Assumed to Be Commutative. Let A
    1. Spectrum of a Ring All the rings are assumed to be commutative. Let A be a ring. The spectrum of A denoted by Spec A is the set of prime ideals of A: For any subset T of A; we denote V (T ) the set of all prime ideals containing T: For f 2 A; we denote D(f) the complement of V (f): Proposition 1.1. The spectrum of A is empty if and only if A is the zero ring. Proof. If A is the zero ring, there is no proper prime ideal of A: Hence Spec A is empty. If A is a nonzero ring, A has a maximal ideal (by Zorn's lemma) (or every ideal is contained in a maximal ideal we can choose the zero ideal). Then Spec A is nonempty. Hence we assume that A is a ring with identity 1 and hence A is not a zero ring. Proposition 1.2. Let A be a ring. Suppose that T;S are subsets of A and I;J are ideals of A; f 2 A: (1) If T ⊂ S; then V (T ) ⊃ V (S): (2) LetphT i be the ideal generated by T: Wep have V (T ) = V (hT i): (3) If I is the radical of I; then V (I) = V ( I): (4) V (I) = ; if and only if I isp the unitp ideal. (5) V (I) = V (J) if and only if I = J: (6) D(f) = ; if and only if f is nilpotent. (7) If D(f) = Spec A; then f is a unit.
    [Show full text]
  • Gps Abh1.Pdf
    1 Lecture L6: Pause and Refresh By reading the following summaries of the first five lectures, the rest of the book may become intelligible without studying the details of those lectures. In the first lecture we have introduced the basic structures of algebra such as groups, rings, fields, vector spaces, ideals, modules, polynomials, rational functions, euclidean domains, principal ideal domains, and unique factorization domains. In the second lecture, after introducing power series, meromorphic series, and valuations, we show the equivalence of well-ordering and Zorn's Lemma and use them to establish the existence of vector space basis, transcendence basis, algebraic closure, and maximal ideals. The third lecture deals with the power series theorems of Newton, Hensel, and Weierstrass. The fourth and fifth lectures deal with ideals, modules, varieties, and models which are the avatars of varieties full of local rings. x1: SUMMARY OF LECTURE L1 ON QUADRATIC EQUATIONS For sets (= collections of objects) S and T , a map φ : S ! T is an assignment which to every x 2 S, i.e., to every element (= object) x of S, assigns φ(x) 2 T ; this may be written x 7! φ(x); the element φ(x) is called the image of x under φ; we put dom(φ) = S and ran(φ) = T and call these the domain and range of φ respectively. The composition of maps φ : S ! T and : T ! U is the map φ : S ! U given by ( φ)(x) = (φ(x)). The map φ is injective, or is an injection, if φ(x) = φ(y) ) x = y.A subset of S is a set R whose objects are amongst the objects of S; we write R ⊂ S; we may also write S ⊃ R and call S an overset of R.
    [Show full text]
  • Igor R. Shafarevich Schemes and Complex Manifolds Third Edition
    Igor R. Shafarevich Basic Algebraic Geometry 2 Schemes and Complex Manifolds Third Edition Basic Algebraic Geometry 2 Igor R. Shafarevich Basic Algebraic Geometry 2 Schemes and Complex Manifolds Third Edition Igor R. Shafarevich Translator Algebra Section Miles Reid Steklov Mathematical Institute Mathematics Institute of the Russian Academy of Sciences University of Warwick Moscow, Russia Coventry, UK ISBN 978-3-642-38009-9 ISBN 978-3-642-38010-5 (eBook) DOI 10.1007/978-3-642-38010-5 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2013945857 Mathematics Subject Classification (2010): 14-01 Translation of the 3rd Russian edition entitled “Osnovy algebraicheskoj geometrii”. MCCME, Moscow 2007, originally published in Russian in one volume © Springer-Verlag Berlin Heidelberg 1977, 1994, 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]