Measurement of Long Lived Radioactive Impurities Retained in the Disposable Cassettes on the Tracerlab MX System During the Production of [18F]FDG
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Radiochemistry of Tungsten
National Academy of Sciences !National Research Council NUCLEAR SCIENCE SERIES The Radiochemistry of Tungsten — ...—- L. F. C URTISS,Chairman ROBLEY D. EVANS, Vice Chairman NationalBureau ofStandards MassachusettsInstituteofTechnology J.A. DeJUREN, Secretary WestinghouseElectricCorporation C. J.BORKOWSKI J.W. IRVINE,JR. Oak RidgeNationalLaboratory MassachusettsI&tituteofTechnology ROBERT G. COCHRAN E. D. KLEMA Texas Agriculturaland Mechanical NorthwesternUniversity College W. WAYNE MEINKE SAMUEL EPSTEIN UniversityofMichigan CaliforniaInstituteofTechnology J.J.NICKSON Memorial Hospital,New York U. FANO NationalBureau ofStandards ROBERT L. PLATZMAN Laboratoirede Chimie Physique HERBERT GOLDSTEIN NuclearDevelopmentCorporationof D. M. VAN PATTER America BartolResearch Foundation LIAISON MEMBERS PAUL C. AEBERSOLD CHARLES K. REED Atomic Energy Commission U. S.Air Force J.HOWARD McMILLEN WILLIAM E. WRIGHT NationalScienceFoundation OfficeofNavalResearch SUBCOMMITTEE ON RADIOCHEMISTRY W. WAYNE MEINKE, Chai~man HAROLD KIRBY UniversityofMichigan Mound Laboratory GREGORY R. CHOPPIN GEORGE LEDDICOTTE FloridaStateUniversity Oak RidgeNationalLaboratory GEORGE A. COWAN JULIAN NIELSEN Los Alamos ScientificLaboratory HanfordLaboratories ARTHUR W. FAIRHALL ELLIS P. STEINBERG UniversityofWashington Argonne NationalLaboratory JEROME HUDIS PETER C. STEVENSON BrookhavenNationalLaboratory UniversityofCalifornia(Livermore) EARL HYDE LEO YAFFE UniversityofC slifornia(Berkeley) McGillUniversity CONSULTANTS NATHAN BALLOU JAMES DeVOE NavalRadiologicalDefenseLaboratory -
Chemistry 2100 In-Class Test 1(A)
NAME:____________________________ Student Number:______________________ Fall 2019 Chemistry 1000 Midterm #1B ____/ 65 marks INSTRUCTIONS: 1) Please read over the test carefully before beginning. You should have 5 pages of questions and a formula/periodic table sheet. 2) If your work is not legible, it will be given a mark of zero. 3) Marks will be deducted for incorrect information added to an otherwise correct answer. 4) Marks will be deducted for improper use of significant figures and for missing or incorrect units. 5) Show your work for all calculations. Answers without supporting calculations will not be given full credit. 6) You may use a calculator. 7) You have 90 minutes to complete this test. Confidentiality Agreement: I agree not to discuss (or in any other way divulge) the contents of this test until after 8:00pm Mountain Time on Thursday, October 10th, 2019. I understand that breaking this agreement would constitute academic misconduct, a serious offense with serious consequences. The minimum punishment would be a mark of 0/65 on this exam and removal of the “overwrite midterm mark with final exam mark” option for my grade in this course; the maximum punishment would include expulsion from this university. Signature: ___________________________ Date: _____________________________ Course: CHEM 1000 (General Chemistry I) Semester: Fall 2019 The University of Lethbridge Question Breakdown Spelling matters! Q1 / 4 Fluorine = F Fluorene = C13H10 Q2 / 4 Q3 / 6 Q4 / 4 Q5 / 6 Flourine = Q6 / 3 Q7 / 2 Q8 / 10 Q9 / 10 Q10 / 3 Q11 / 8 Q12 / 5 Total / 65 NAME:____________________________ Student Number:______________________ 1. Complete the following table. -
Creation and Nuclear Reaction Studies Sorption Behaviour of Short
PL9601122 PL9601121 High-Spin Nuclear Target of 178m2Hf: Creation and Nuclear Reaction Studies Yu. Ts. Oganesian1, S.A. Karamian1, Yu. P. Gangrsky1, B. Gorski1, B.N. Markov1, Z. Szeglowski2, Ch. Briangon3, O. Constantinescu3, M. Hussonnois3, J. Pinard3, R. Kulessa4, H.J. Wollersheim4, G. Graw5, J. de Boer5, G. Huber6 and H.V. Muradian7 XFLNR, JINR Dubna, Russia; 2H. Niewodniczanski Institute Nuclear Physics, Krakow, Poland; 3CSNSM, IPN, Orsay, France; 4GSI, Darmstadt, Germany; 6Miinchen University, Germany; 6Mainz University, Germany; 7Kurchatov Institute, Moscow, Russia. Investigations of the hafnium-178 isomers are a new scientific direction promising the devel- opment of a fundamental knowledge both in the field of the nuclear structure and of nuclear reactions. The completed experiments give grounds for hope of obtaining data on the electro- magnetic moments, on the mean radius and the deformation of the 178Hf nucleus in the state 16+, on the wave function structure of this state, as well as to study the influence of the target high spin on the differential cross sections of nuclear reactions, to find and investigate neutron resonances with a high spin, to obtain direct information on the density of the levels in the earlier inaccessible region of the spin and of the excitation energy, to measure directly the parameters of a giant dipole resonance based on the high spin state and to clarify in detail the role of the structure hindrances in nuclear reactions. Sorption Behaviour of Short-Lived W and Hf Isotopes on Ion Exchangers from HC1/HF Solutions in Fast On-Line Experiments D. Schumann1, R. Dressier1, S. Fischer1, St. -
Chapter 2 Atoms, Molecules and Ions
Chapter 2 Atoms, Molecules and Ions PRACTICING SKILLS Atoms:Their Composition and Structure 1. Fundamental Particles Protons Electrons Neutrons Electrical Charges +1 -1 0 Present in nucleus Yes No Yes Least Massive 1.007 u 0.00055 u 1.007 u 3. Isotopic symbol for: 27 (a) Mg (at. no. 12) with 15 neutrons : 27 12 Mg 48 (b) Ti (at. no. 22) with 26 neutrons : 48 22 Ti 62 (c) Zn (at. no. 30) with 32 neutrons : 62 30 Zn The mass number represents the SUM of the protons + neutrons in the nucleus of an atom. The atomic number represents the # of protons, so (atomic no. + # neutrons)=mass number 5. substance protons neutrons electrons (a) magnesium-24 12 12 12 (b) tin-119 50 69 50 (c) thorium-232 90 142 90 (d) carbon-13 6 7 6 (e) copper-63 29 34 29 (f) bismuth-205 83 122 83 Note that the number of protons and electrons are equal for any neutral atom. The number of protons is always equal to the atomic number. The mass number equals the sum of the numbers of protons and neutrons. Isotopes 7. Isotopes of cobalt (atomic number 27) with 30, 31, and 33 neutrons: 57 58 60 would have symbols of 27 Co , 27 Co , and 27 Co respectively. Chapter 2 Atoms, Molecules and Ions Isotope Abundance and Atomic Mass 9. Thallium has two stable isotopes 203 Tl and 205 Tl. The more abundant isotope is:___?___ The atomic weight of thallium is 204.4 u. The fact that this weight is closer to 205 than 203 indicates that the 205 isotope is the more abundant isotope. -
Metastable Non-Nucleonic States of Nuclear Matter: Phenomenology
Physical Science International Journal 15(2): 1-25, 2017; Article no.PSIJ.34889 ISSN: 2348-0130 Metastable Non-Nucleonic States of Nuclear Matter: Phenomenology Timashev Serge 1,2* 1Karpov Institute of Physical Chemistry, Moscow, Russia. 2National Research Nuclear University MEPhI, Moscow, Russia. Author’s contribution The sole author designed, analyzed and interpreted and prepared the manuscript. Article Information DOI: 10.9734/PSIJ/2017/34889 Editor(s): (1) Prof. Yang-Hui He, Professor of Mathematics, City University London, UK And Chang-Jiang Chair Professor in Physics and Qian-Ren Scholar, Nan Kai University, China & Tutor and Quondam-Socius in Mathematics, Merton College, University of Oxford, UK. (2) Roberto Oscar Aquilano, School of Exact Science, National University of Rosario (UNR),Rosario, Physics Institute (IFIR)(CONICET-UNR), Argentina. Reviewers: (1) Alejandro Gutiérrez-Rodríguez, Universidad Autónoma de Zacatecas, Mexico. (2) Arun Goyal, Delhi University, India. (3) Stanislav Fisenko, Moscow State Linguistic University, Russia. Complete Peer review History: http://www.sciencedomain.org/review-history/20031 Received 17 th June 2017 Accepted 8th July 2017 Original Research Article th Published 13 July 2017 ABSTRACT A hypothesis of the existence of metastable states for nuclear matter with a locally shaken-up nucleonic structure of the nucleus, was proposed earlier. Such states are initiated by inelastic scattering of electrons by nuclei along the path of weak nuclear interaction. The relaxation of such nuclei is also determined by weak interactions. The use of the hypothesis makes it possible to physically interpret a rather large group of experimental data on the initiation of low energy nuclear reactions (LENRs) and the acceleration of radioactive α- and β-decays in a low-temperature plasma. -
Understanding the Astrophysical Origin of Silver, Palladium and Other Neutron-Capture Elements
Understanding the astrophysical origin of silver, palladium and other neutron-capture elements Camilla Juul Hansen M¨unchen 2010 Understanding the astrophysical origin of silver, palladium and other neutron-capture elements Camilla Juul Hansen Dissertation an der Fakult¨at f¨ur Physik der Ludwig–Maximilians–Universit¨at M¨unchen vorgelegt von Camilla Juul Hansen aus Lillehammer, Norwegen M¨unchen, den 20/12/2010 Erstgutachter: Achim Weiss Zweitgutachter: Joseph Mohr Tag der m¨undlichen Pr¨ufung: 22 M¨arz 2011 Contents 1 Introduction 1 1.1 Evolutionoftheformationprocesses . ..... 2 1.2 Neutron-capture processes: The historical perspective............ 5 1.3 Features and description of the neutron-capture processes.......... 7 1.4 Whatisknownfromobservations? . .. 9 1.5 Why study palladium and silver? . .. 15 1.6 Abiggerpicture................................. 16 2 Data - Sample and Data Reduction 19 2.1 Compositionofthesample . 19 2.1.1 Samplebiases .............................. 21 2.2 Datareduction ................................. 22 2.2.1 Fromrawtoreducedspectra. 22 2.2.2 IRAF versus UVES pipeline . 25 2.3 Merging ..................................... 26 2.3.1 Radialvelocityshift .......................... 27 3 Stellar Parameters 29 3.1 Methods for determining stellar parameters . ........ 29 3.2 Temperature................................... 30 3.2.1 Comparingtemperaturescales . 32 3.3 Gravity ..................................... 34 3.4 Metallicity.................................... 35 3.5 Microturbulence velocity, ξ .......................... -
International Standard Nace Mr0175/ Iso 15156-1
INTERNATIONAL NACE STANDARD MR0175/ ISO 15156-1 Item No. 21306 First edition Petroleum and natural gas industries— Materials for use in H2S-containing Environments in oil and gas production— Part 1: General principles for selection of cracking-resistant materials Reference number NACE MR0175/ISO 15156-1:2001(E) ISBN 1-57590-1765 © NACE International/ISO 2001 NACE MR0175/ISO 15156-1:2001(E) © NACE International/ISO 2001 These materials are subject to copyright claims of ISO, ANSI, and NACE. No part of this publication may be reproduced in any form, including an electronic retrieval system, without the prior written permission of NACE. All requests pertaining to the NACE MR0175/ISO 15156 standard should be submitted to NACE. International Organization for Standardization (ISO) Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 Web www.iso.ch American National Standards Institute (ANSI) 25 W. 43rd St., Fourth Floor New York, NY 10036 Tel. +1 212-642-4900 Fax +1 212-398-0023 Web www.ansi.org NACE International 1440 South Creek Dr. Houston, TX 77084-4906 Tel. +1 281-228-6200 Fax +1 281-228-6300 E-mail [email protected] Web: www.nace.org Printed in the U.S.A. by NACE ii NACE International/ISO NACE MR0175/ISO 15156-1:2001(E) Contents 1 Scope ......................................................................................................................... 1 2 Normative references................................................................................................. 2 3 Terms and definitions................................................................................................ -
(12) United States Patent (10) Patent No.: US 6,306,544 B1 Frysz Et Al
USOO630654.4B1 (12) United States Patent (10) Patent No.: US 6,306,544 B1 Frysz et al. (45) Date of Patent: Oct. 23, 2001 (54) COBALT-BASED ALLOYS AS POSITIVE 5,051,233 9/1991 Horn et al. ............................. 420/50 ELECTRODE CURRENT COLLECTORS IN 5,053,297 10/1991 Yamahira et al. ................... 429/194 NONAQUEOUSELECTROCHEMICAL 5,114,810 * 5/1992 Frysz et al. ...... 429/194 CELLS 5,147,739 9/1992 Beard ....... ... 429/194 5,187,033 2/1993 Koshiba ....... ... 429/194 (75) Inventors: Christine A. Frysz, East Amherst; 2. : E. Tateishi et al. ...................... 428/548 2 : Y-2 /1995 Idota .................................... 429/194 Sally Ann Smesko, North Tonawanda; 5,578,396 * 11/1996 Fauteux et al. .. 429/209 Peter A. Kreidler, Oakfield; W. 5,643,690 * 7/1997 Tateishi et al. .. ... 429/34 Richard Brown, Clarence Center; 5,733,680 * 3/1998 Hong ............ ... 429/101 Esther S. Takeuchi, East Amherst, all 5,783,333 * 7/1998 Mayer .............. ... 429/223 of NY (US) 5,795,679 * 8/1998 Kawakami et al. 429/218 5.962,160 * 5/1999 Oyama et al. ....................... 429/104 (73) Assignee: Wilson Greatbatch Ltd., Clarence, NY 6,136,477 10/1998 Gan et al. ............................ 429/307 (US) FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this WO9833224 7/1998 (WO). patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS Standard Specification for Wrought Cobalt-Nickel-Chromi (21) Appl. No.: 09/257,795 um-Molybdenum-Tungsten-Iron Alloy For Surgical Implant Applications; pp. 102-104; Designation F563-88. -
Toxicological Profile for Tungsten
TUNGSTEN 73 4. CHEMICAL AND PHYSICAL INFORMATION 4.1 CHEMICAL IDENTITY Tungsten is a naturally occurring element found in the earth=s surface rocks. Tungsten metal typically does not occur as the free element in nature. Of the more than 20 tungsten-bearing minerals, some of the commonly used commercial ones include feberite (iron tungstate), huebnerite (manganese tungstate), wolframite (iron-manganese tungstate), and scheelite (calcium tungstate). Tungsten appears in Group VIB of the periodic table. Natural tungsten is composed of five stable isotopes: 180W (0.12%), 182W (26.5%), 183W (14.3%), 184W (30.6%), and 186W (28.4%). Twenty-eight radioactive isotopes of tungsten are known; most of these isotopes have short half-lives. Tungsten forms a variety of different compounds, such as tungsten trioxide, tungsten carbide, and ammonium paratungstate (Penrice 1997a). Information regarding the chemical identity of elemental tungsten and tungsten compounds is located in Table 4-1. 4.2 PHYSICAL AND CHEMICAL PROPERTIES Tungsten has several common oxidation states (e.g., W[0], W[2+], W[3+], W[4+], W[5+], and W[6+]). However, tungsten alone has not been observed as a cation. Tungsten is stable, and therefore its most common valence state is +6. The naturally occurring isotopes of tungsten are 180 (0.135%), 182 (26.4%), 183 (14.4%), 184 (30.6%), and 186 (28.4%). Artificial radioactive isotopes of tungsten are 173–179, 181, 185, and 187–189 (O’Neil et al. 2001). Elemental tungsten metal is stable in dry air at room temperature. Above 400 °C, tungsten is susceptible to oxidation. Tungsten is resistant to many chemicals and is also a good electrical conductor (Penrice 1997a). -
Mass Fractionation Laws, Mass-Independent Effects, and Isotopic Anomalies Nicolas Dauphas and Edwin A
EA44CH26-Dauphas ARI 10 June 2016 9:41 ANNUAL REVIEWS Further Click here to view this article's online features: • Download figures as PPT slides • Navigate linked references • Download citations Mass Fractionation Laws, • Explore related articles • Search keywords Mass-Independent Effects, and Isotopic Anomalies Nicolas Dauphas1,∗ and Edwin A. Schauble2 1Origins Laboratory, Department of the Geophysical Sciences and Enrico Fermi Institute, The University of Chicago, Chicago, Illinois 60637; email: [email protected] 2Department of Earth and Space Sciences, University of California, Los Angeles, California 90095 Annu. Rev. Earth Planet. Sci. 2016. 44:709–83 Keywords First published online as a Review in Advance on isotopes, fractionation, laws, NFS, nuclear, anomalies, nucleosynthesis, May 18, 2016 meteorites, planets The Annual Review of Earth and Planetary Sciences is online at earth.annualreviews.org Abstract This article’s doi: Isotopic variations usually follow mass-dependent fractionation, meaning 10.1146/annurev-earth-060115-012157 that the relative variations in isotopic ratios scale with the difference in Copyright c 2016 by Annual Reviews. mass of the isotopes involved (e.g., δ17O ≈ 0.5 × δ18O). In detail, how- All rights reserved ever, the mass dependence of isotopic variations is not always the same, ∗ Corresponding author and different natural processes can define distinct slopes in three-isotope diagrams. These variations are subtle, but improvements in analytical capa- Access provided by University of Chicago Libraries on 07/19/16. For personal use only. Annu. Rev. Earth Planet. Sci. 2016.44:709-783. Downloaded from www.annualreviews.org bilities now allow precise measurement of these effects and make it possi- ble to draw inferences about the natural processes that caused them (e.g., reaction kinetics versus equilibrium isotope exchange). -
General Disclaimer One Or More of the Following Statements May Affect
General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) ,-M (NASA-CR-140957) THE RESTSTANCB OF N75-12115 a ; SELECTED HIGH STRENGTH ALLOYS TO E&BRITTLEMENT BY A HYDROGEN ENVZhONMENT (Worth Carolina Stake Univ.) 13 p HC Unclas ^ y $3.25 CSCL 11F G3/26 02808 k' 1 AEG r 3 0' E ' E . Y xr - THE RESISTANCE OF SLLECTED HIGH STRENGTH r. ALLOTS TO EMBRITTLEMENT BY A HYDROGEN ENVIRONMENT S i _. Ray B. Benson, Jr. P North ,Carolina State University Raleigh, North Carolina 4 } 3l ABSTRACT Selected high strength iron base and cobalt base alloys with yield strengths in the range of 1233 to 2129'N1Nm' 2 (179-309 KSI)— were resistant to degradation of mechanical properties in a one ( p^{{^j` atmosphere hydrogen environment at ambient temperature. These alloys were strengthened initially by cold working which produced strain induced e'-lisp martensite and fcc mechanical twins in an 1 ; fcc matrix. -
Vitae CHRISTOPHER H. GAMMONS
vitae CHRISTOPHER H. GAMMONS Ph.D. Geochemistry and Mineralogy, The Pennsylvania State University, 1988 B.S. Geology (High Honors, Magna Cum Laude, Phi Beta Kappa), Bates College, 1980 Professional Geologist, State of Wyoming, 1999 to present Dept. of Geological Engineering phone (W): (406) 496-4763 Montana Tech of the University of Montana phone (H): (406) 782-3179 Butte, Montana, 59701 FAX: (406) 496-4133 [email protected] Geology-Related Employment 2003-present Professor, Montana Tech, Dept. of Geological Engineering 2013-2016 Head of the Dept. of Geological Engineering, Montana Tech 1999-2003 Associate Professor, Montana Tech, Dept. of Geological Engineering 1997-1999 Assistant Professor, Montana Tech, Dept. of Geological Engineering 1993-1996 4/93 to 12/96: Research Associate/Faculty Lecturer, McGill University 1992-1993 2/92 to 4/93: Postdoctoral Research Fellow, Swiss Fed. Inst. Tech. (ETH) 1988-1991 11/88 to 11/91: Postdoctoral Research Fellow, Monash University, Australia 1979-1982 4/79 to 8/79; 6/80 to 11/80; 4/81 to 9/82: Exploration Geologist, Anaconda Minerals Co. Teaching Experience Classes I have taught include (19 different subjects): Hydrogeochemistry, Acid Rock Drainage, Environmental Geology, Geochemical Modeling, Hydrogeology, Introductory Petrology, Mineralogy and Petrology, Earth and Life History, Astrobiology and Evolution of the Early Earth, Economic Geology, Hydrothermal Ore Deposits, Advanced Topics in Economic Geology, Geothermal Systems, Isotope Geochemistry, Physical Geology, Geology of Montana, Introduction to Geologic Field Mapping, Field Geology (3 week summer course) and Field Hydrogeology (3 week summer course). I enjoy teaching, and have always received excellent student evaluations. This is true for introductory service classes, as well as graduate or upper level undergraduate courses.