The Nature and Tectonic Significance of Fault-Zone Weakening: an Introduction

Total Page:16

File Type:pdf, Size:1020Kb

The Nature and Tectonic Significance of Fault-Zone Weakening: an Introduction Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 The nature and tectonic significance of fault-zone weakening: an introduction E.H. RUTTER 1, R.E. HOLDSWORTH 2 & R.J. KNIPE 3 1Rock Deformation Laboratory, Earth Sciences Department, University of Manchester, Manchester M13 9PL, UK (e-mail: [email protected]) 2Reactivation Research Group, Department of Geological Sciences, University of Durham, Durham DH1 3LE, UK 3Rock Deformation Research, Earth Sciences Department, University of Leeds, Leeds LS2 9JT, UK Abstract: Fault zones control the location, architecture and evolution of a broad range of geological features, act as conduits for the focused migration of economically important fluids and, as most seismicity is associated with active faults, they also constitute one of the most important global geological hazards. In general, the repeated localization of dis- placements along faults and shear zones, often over very long time scales, strongly suggests that they are weak relative to their surrounding wall rocks. Geophysical obser- vations from plate boundary faults such as the San Andreas fault additionally suggest that this fault zone is weak in an absolute sense, although this remains a controversial issue. Our understanding of fault-zone structure and mechanical behaviour derive from three main sources of information: (1) studies of natural fault zones and their deformation pro- ducts (fault rocks); (2) seismological and neotectonic studies of currently active natural fault systems; (3) laboratory-based deformation experiments using rocks or rock-analogue materials. These provide us with a basic understanding of brittle faulting in the upper crust of the Earth where the stress state is limited by the frictional strength of networks of faults under the prevailing fluid-pressure conditions. Under the long-term loading con- ditions typical of geological fault zones, poorly understood phenomena such as subcritical crack growth in fracture process zones are likely to be of major importance in controlling both fault growth and strength. Grain-size reduction in highly strained fault rocks pro- duced in the plastic-viscous and deeper parts of frictional regime can lead to changes in deformation mechanisms and relative weakening that can account for the localization of deformation and repeated reactivation of crustal faults. Our understanding the interactions between deformation mechanisms, metamorphic processes and the flow of chemically active fluids is a key area for future study. An improved understanding of how fault- or shear-zone linkages, strength and microstructure evolve over large changes in finite strain will ultimately lead to the development of geologically more realistic numerical models of lithosphere deformation that incorporate displacements concentrated into narrow, weaker fault zones. In continental and oceanic regions, the defor- mining the location, modes of transport and mation of the Earth's crust (and lithosphere) is emplacement of economically important hydro- characteristically heterogeneous, with most dis- carbon reservoirs, hydrothermal mineral deposits placements being localized into linked systems and igneous intrusions. In addition, most active of faults and shear zones. In both intraplate and seismicity is associated with displacements plate margin settings, these approximately pla- along fault zones, which therefore represent one nar or tabular deformation zones influence of the most important global geological hazards. strongly the location, architecture and evolution of a broad range of geological features, includ- Fault-zone structure and ing rift basins, orogenic belts and transcurrent fault systems. Many fault zones are known to mechanical behaviour act as conduits for the focused migration of In the upper, seismogenic part of the crust, fluids and clearly play a central role in deter- deformation in fault zones occurs by frictional From: HOLDSWORTH,R.E., STRACHAN,R.A., MAGLOUGHLIN,J.F. & KNIPE, R.J. (eds) 2001. The Nature and Tectonic Significance of Fault Zone Weakening. Geological Society, London, Special Publications, 186, 1-11. 0305-8719/01/$15.00 9 The Geological Societyof London 2001. Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 2 RUTTER ET AL. I DEFORMATION I TYPICALFAULT I REGIME J ROCKS 2000 Earth's Surface 0 2 DISCRETE FAUL TS Breccia/gouge ITi ~" 1600 (Temperature-insensitive,j Catactasites 0 FRICTIONAL Fault googes 5 -- REGIME p.,...... e.,~j 6oooc Catactasitos, Depth crush melenges, (km) faultgo.ges [~ 1200 .............................(ca,,t.,ete~a~,~) 1~ 10 FRICTIONAL- PLASTIC/VISCOU; Semi.brittle mflonites TRANSITIONAL REGION Pseudotachylytes (Dep~ is Phyltonites ~: 800 - rock-type L5 15 -- - se_ns_i~).. .................... Myfonites /f/ IntracrystallinePlasticity PLASTIC/VISCOU~ if (tem~ratur~sensitive,pressur~insensitive) REGIME 400 900oC 20-- Blastomflonites lOOm , Fig. 2. A widely accepted conceptual model for the o 460 860 12'oo 1~o way that the character of a crustal fault zone might ConfiningPressure (MPa) vary with depth (based on Sibson 1977). Narrow, brittle-frictional faults with a range of possible cata- Fig. 1. Simplified representation of the data of Tullis clastic fault rock products pass with increasing depth & Yund (1977) for the ultimate strength of Westerly into foliated mylonitic fault rocks in which intracrys- granite at a strain rate of c. 10-Ss-1; frictional talline plastic and diffusion-accommodated viscous strength behaves in much the same way. The figure flow processes progresssively dominate. The transi- shows that strength in the brittle regime (up to tional region between the upper and lower flow 300 ~ is insensitive to temperature, but very sensi- regimes is expected to correspond to a crustal tive to confining pressure, giving way at higher tem- strength maximum. The horizontal scale length is peratures to an increased temperature sensitivity, but greatly exaggerated relative to the vertical. Although a reduction in pressure sensitivity as intracrystalline the fault zone is shown broadening with depth, this plastic processes begin to dominate. may not necessarily occur, depending on rock type. processes in which the deformation mechanisms and local conditions (slip velocity, effective involve brittle fracture and frictional sliding. pressure, temperature). Except in initially porous rocks, these processes At greater crustal depths and hence higher lead to dilatancy. Thus, the strength of brittle temperatures, brittle-frictional faults pass faults increases with effective pressure and downward into shear zones (e.g. Fig. 2) and the hence depth of burial (Fig. 1; Byeflee 1978; regime changes to one of viscous flow in which Paterson 1978; Sibson 1983). Recurrence of a range of non-frictional, thermally activated movements on localized faults usually points to deformation mechanisms are involved to pro- the fault zone being weaker than the stress duce crystal plasticity and diffusional creep required to form a fresh fault in the surrounding (Sibson 1977; Tullis & Yund 1977; Schmid & protolith. This degree of weakening after fault Handy 1991). In the region separating these two initiation is probably due to some combination regimes, a frictional-viscous (or sometimes of the formation of fragmentary rock products called brittle-ductile) transition is likely to that are more porous and less cohesive than the coincide with a strength maximum in the litho- protolith (thereby allowing enhanced fluid-rock sphere, based on the findings of laboratory interaction) coupled with the development of a experiments and seismological studies (e.g. foliated fabric, which may involve local concen- Sibson 1977, Sibson, 1983). If the deformation tration of clay minerals. Whether the fault becomes isovolumetric, the stable continuation motion is steady or seismogenic depends on of localized flow demands that the material whether the fault zones display transiently vel- inside the fault zone be weaker than that out- ocity-strengthening or -weakening character- side. It is clear, however, that even high-tem- istics (Scholz 1990, Scholz, 1998). This perature shearing can be accompanied by some characteristic is sensitive both to fault rock type dilatancy, which may be crucial to explain the Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 FAULT ZONE WEAKENING 3 ability of deep shear zones to transport fluids, sources of information: (1) studies of natural both aqueous and melts (Bruhn et al. 2000). fault zones and their deformation products (fault Even at the very high pressures in the deeper rocks); (2) seismological and neotectonic studies parts of subduction zones (400-600km depth), of currently active natural fault systems; (3) lab- localized deformation is indicated by the occur- oratory-based deformation experiments using rence of earthquakes whose first-motion pat- rocks or rock-analogue materials. Natural fault terns indicate shear faulting. These too demand zones generally preserve fault rocks whose com- a dramatic weakening process that is either iso- position and microstmcture can be used to gain volumetric or compactive in nature, so that insights into the nature and evolution of defor- there is no requirement for work to be done mation mechanisms and the theological beha- against the enormous effective pressures at viour of fault zones under a wide range of such depths (Kirby et al. 1996). pressure and temperature conditions (e.g. Handy The repeated localization
Recommended publications
  • Strike and Dip Refer to the Orientation Or Attitude of a Geologic Feature. The
    Name__________________________________ 89.325 – Geology for Engineers Faults, Folds, Outcrop Patterns and Geologic Maps I. Properties of Earth Materials When rocks are subjected to differential stress the resulting build-up in strain can cause deformation. Depending on the material properties the result can either be elastic deformation which can ultimately lead to the breaking of the rock material (faults) or ductile deformation which can lead to the development of folds. In this exercise we will look at the various types of deformation and how geologists use geologic maps to understand this deformation. II. Strike and Dip Strike and dip refer to the orientation or attitude of a geologic feature. The strike line of a bed, fault, or other planar feature, is a line representing the intersection of that feature with a horizontal plane. On a geologic map, this is represented with a short straight line segment oriented parallel to the strike line. Strike (or strike angle) can be given as either a quadrant compass bearing of the strike line (N25°E for example) or in terms of east or west of true north or south, a single three digit number representing the azimuth, where the lower number is usually given (where the example of N25°E would simply be 025), or the azimuth number followed by the degree sign (example of N25°E would be 025°). The dip gives the steepest angle of descent of a tilted bed or feature relative to a horizontal plane, and is given by the number (0°-90°) as well as a letter (N, S, E, W) with rough direction in which the bed is dipping.
    [Show full text]
  • Introduction San Andreas Fault: an Overview
    Introduction This volume is a general geology field guide to the San Andreas Fault in the San Francisco Bay Area. The first section provides a brief overview of the San Andreas Fault in context to regional California geology, the Bay Area, and earthquake history with emphasis of the section of the fault that ruptured in the Great San Francisco Earthquake of 1906. This first section also contains information useful for discussion and making field observations associated with fault- related landforms, landslides and mass-wasting features, and the plant ecology in the study region. The second section contains field trips and recommended hikes on public lands in the Santa Cruz Mountains, along the San Mateo Coast, and at Point Reyes National Seashore. These trips provide access to the San Andreas Fault and associated faults, and to significant rock exposures and landforms in the vicinity. Note that more stops are provided in each of the sections than might be possible to visit in a day. The extra material is intended to provide optional choices to visit in a region with a wealth of natural resources, and to support discussions and provide information about additional field exploration in the Santa Cruz Mountains region. An early version of the guidebook was used in conjunction with the Pacific SEPM 2004 Fall Field Trip. Selected references provide a more technical and exhaustive overview of the fault system and geology in this field area; for instance, see USGS Professional Paper 1550-E (Wells, 2004). San Andreas Fault: An Overview The catastrophe caused by the 1906 earthquake in the San Francisco region started the study of earthquakes and California geology in earnest.
    [Show full text]
  • Faults and Joints
    133 JOINTS Joints (also termed extensional fractures) are planes of separation on which no or undetectable shear displacement has taken place. The two walls of the resulting tiny opening typically remain in tight (matching) contact. Joints may result from regional tectonics (i.e. the compressive stresses in front of a mountain belt), folding (due to curvature of bedding), faulting, or internal stress release during uplift or cooling. They often form under high fluid pressure (i.e. low effective stress), perpendicular to the smallest principal stress. The aperture of a joint is the space between its two walls measured perpendicularly to the mean plane. Apertures can be open (resulting in permeability enhancement) or occluded by mineral cement (resulting in permeability reduction). A joint with a large aperture (> few mm) is a fissure. The mechanical layer thickness of the deforming rock controls joint growth. If present in sufficient number, open joints may provide adequate porosity and permeability such that an otherwise impermeable rock may become a productive fractured reservoir. In quarrying, the largest block size depends on joint frequency; abundant fractures are desirable for quarrying crushed rock and gravel. Joint sets and systems Joints are ubiquitous features of rock exposures and often form families of straight to curviplanar fractures typically perpendicular to the layer boundaries in sedimentary rocks. A set is a group of joints with similar orientation and morphology. Several sets usually occur at the same place with no apparent interaction, giving exposures a blocky or fragmented appearance. Two or more sets of joints present together in an exposure compose a joint system.
    [Show full text]
  • Systematic Variation of Late Pleistocene Fault Scarp Height in the Teton Range, Wyoming, USA: Variable Fault Slip Rates Or Variable GEOSPHERE; V
    Research Paper THEMED ISSUE: Cenozoic Tectonics, Magmatism, and Stratigraphy of the Snake River Plain–Yellowstone Region and Adjacent Areas GEOSPHERE Systematic variation of Late Pleistocene fault scarp height in the Teton Range, Wyoming, USA: Variable fault slip rates or variable GEOSPHERE; v. 13, no. 2 landform ages? doi:10.1130/GES01320.1 Glenn D. Thackray and Amie E. Staley* 8 figures; 1 supplemental file Department of Geosciences, Idaho State University, 921 South 8th Avenue, Pocatello, Idaho 83209, USA CORRESPONDENCE: thacglen@ isu .edu ABSTRACT ously and repeatedly to climate shifts in multiple valleys, they create multi­ CITATION: Thackray, G.D., and Staley, A.E., 2017, ple isochronous markers for evaluation of spatial and temporal variation of Systematic variation of Late Pleistocene fault scarp height in the Teton Range, Wyoming, USA: Variable Fault scarps of strongly varying height cut glacial and alluvial sequences fault motion (Gillespie and Molnar, 1995; McCalpin, 1996; Howle et al., 2012; fault slip rates or variable landform ages?: Geosphere, mantling the faulted front of the Teton Range (western USA). Scarp heights Thackray et al., 2013). v. 13, no. 2, p. 287–300, doi:10.1130/GES01320.1. vary from 11.2 to 37.6 m and are systematically higher on geomorphically older In some cases, faults of known slip rate can also be used to evaluate ages landforms. Fault scarps cutting a deglacial surface, known from cosmogenic of glacial and alluvial sequences. However, this process is hampered by spatial Received 26 January 2016 Revision received 22 November 2016 radionuclide exposure dating to immediately postdate 14.7 ± 1.1 ka, average and temporal variability of offset along individual faults and fault segments Accepted 13 January 2017 12.0 m in height, and yield an average postglacial offset rate of 0.82 ± 0.13 (e.g., Z.
    [Show full text]
  • Geology of the Earthquake Source: an Introduction
    Downloaded from http://sp.lyellcollection.org/ by guest on September 27, 2021 Geology of the earthquake source: an introduction A˚ KE FAGERENG1* & VIRGINIA G. TOY2 1Department of Geological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa 2Department of Geology, University of Otago, PO Box 56, Dunedin 9054, New Zealand *Corresponding author (e-mail: [email protected]) Abstract: Earthquakes arise from frictional ‘stick–slip’ instabilities as elastic strain is released by shear failure, almost always on a pre-existing fault. How the faulted rock responds to applied shear stress depends on its composition, environmental conditions (such as temperature and pressure), fluid presence and strain rate. These geological and physical variables determine the shear strength and frictional stability of a fault, and the dominant mineral deformation mechanism. To differing degrees, these effects ultimately control the partitioning between seismic and aseismic defor- mation, and are recorded by fault-rock textures. The scale-invariance of earthquake slip allows for extrapolation of geological and geophysical observations of earthquake-related deformation. Here we emphasize that the seismological character of a fault is highly dependent on fault geology, and that the high frequency of earthquakes observed by geophysical monitoring demands consider- ation of seismic slip as a major mechanism of finite fault displacement in the geological record. Rick Sibson has, throughout his career, pointed out the geological and physical parameters likely to that earthquakes occur in rocks (e.g. Sibson 1975, control their prevalence discussed. The mechanisms 1977, 1984, 1986, 1989, 2002, 2003). This simple by which rocks were deformed can be inferred from fact implies that fault rocks exert a critical control their textures (Knipe 1989); these relationships for on earthquake nucleation and propagation, and the typical fault rocks encountered in exhumed should contain an integrated record of earthquakes.
    [Show full text]
  • Present Day Plate Boundary Deformation in the Caribbean and Crustal Deformation on Southern Haiti Steeve Symithe Purdue University
    Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations 4-2016 Present day plate boundary deformation in the Caribbean and crustal deformation on southern Haiti Steeve Symithe Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Caribbean Languages and Societies Commons, Geology Commons, and the Geophysics and Seismology Commons Recommended Citation Symithe, Steeve, "Present day plate boundary deformation in the Caribbean and crustal deformation on southern Haiti" (2016). Open Access Dissertations. 715. https://docs.lib.purdue.edu/open_access_dissertations/715 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School Form 30 Updated ¡ ¢¡£ ¢¡¤ ¥ PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Steeve Symithe Entitled Present Day Plate Boundary Deformation in The Caribbean and Crustal Deformation On Southern Haiti. For the degree of Doctor of Philosophy Is approved by the final examining committee: Christopher L. Andronicos Chair Andrew M. Freed Julie L. Elliott Ayhan Irfanoglu To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of Integrity in Research” and the use of copyright material. Andrew M. Freed Approved by Major Professor(s): Indrajeet Chaubey 04/21/2016 Approved by: Head of the Departmental Graduate Program Date PRESENT DAY PLATE BOUNDARY DEFORMATION IN THE CARIBBEAN AND CRUSTAL DEFORMATION ON SOUTHERN HAITI A Dissertation Submitted to the Faculty of Purdue University by Steeve J.
    [Show full text]
  • Composition, Alteration, and Texture of Fault-Related Rocks from Safod Core and Surface Outcrop Analogs
    Pure Appl. Geophys. Ó 2014 Springer Basel DOI 10.1007/s00024-014-0896-6 Pure and Applied Geophysics Composition, Alteration, and Texture of Fault-Related Rocks from Safod Core and Surface Outcrop Analogs: Evidence for Deformation Processes and Fluid-Rock Interactions 1 1 1 1 1 KELLY K. BRADBURY, COLTER R. DAVIS, JOHN W. SHERVAIS, SUSANNE U. JANECKE, and JAMES P. EVANS Abstract—We examine the fine-scale variations in mineralogi- 1. Introduction cal composition, geochemical alteration, and texture of the fault- related rocks from the Phase 3 whole-rock core sampled between 3,187.4 and 3,301.4 m measured depth within the San Andreas Fault Well-constrained geological, geochemical, and Observatory at Depth (SAFOD) borehole near Parkfield, California. geophysical models of active fault zones are needed if This work provides insight into the physical and chemical properties, we are to understand fault zone behavior and earth- structural architecture, and fluid-rock interactions associated with the actively deforming traces of the San Andreas Fault zone at depth. quake deformation, constraining the factors that affect Exhumed outcrops within the SAF system comprised of serpentinite- the distribution of earthquakes, and the nature of slip bearing protolith are examined for comparison at San Simeon, Goat in the shallow crust by developing realistic models of Rock State Park, and Nelson Creek, California. In the Phase 3 SAFOD drillcore samples, the fault-related rocks consist of multiple subsurface fault zone structure and ground motion juxtaposed lenses of sheared, foliated siltstone and shale with block- predictions. Earthquakes nucleate in rocks at depth in-matrix fabric, black cataclasite to ultracataclasite, and sheared (e.g., FAGERENG and TOY 2011;SIBSON 1977; 2003), serpentinite-bearing, finely foliated fault gouge.
    [Show full text]
  • A GPS and Modelling Study of Deformation in Northern Central America
    Geophys. J. Int. (2009) 178, 1733–1754 doi: 10.1111/j.1365-246X.2009.04251.x A GPS and modelling study of deformation in northern Central America M. Rodriguez,1 C. DeMets,1 R. Rogers,2 C. Tenorio3 and D. Hernandez4 1Geology and Geophysics, University of Wisconsin-Madison, Madison, WI 53706 USA. E-mail: [email protected] 2Department of Geology, California State University Stanislaus, Turlock, CA 95382,USA 3School of Physics, Faculty of Sciences, Universidad Nacional Autonoma de Honduras, Tegucigalpa, Honduras 4Servicio Nacional de Estudios Territoriales, Ministerio de Medio Ambiente y Recursos Naturales, Km. 5 1/2 carretera a Santa Tecla, Colonia y Calle Las Mercedes, Plantel ISTA, San Salvador, El Salvador Accepted 2009 May 9. Received 2009 May 8; in original form 2008 August 15 SUMMARY We use GPS measurements at 37 stations in Honduras and El Salvador to describe active deformation of the western end of the Caribbean Plate between the Motagua fault and Central American volcanic arc. All GPS sites located in eastern Honduras move with the Caribbean Plate, in accord with geologic evidence for an absence of neotectonic deformation in this region. Relative to the Caribbean Plate, the other stations in the study area move west to west–northwest at rates that increase gradually from 3.3 ± 0.6 mm yr−1 in central Honduras to 4.1 ± 0.6 mm yr−1 in western Honduras to as high as 11–12 mm yr−1 in southern Guatemala. The site motions are consistent with slow westward extension that has been inferred by previous authors from the north-striking grabens and earthquake focal mechanisms in this region.
    [Show full text]
  • Gy403 Structural Geology Kinematic Analysis Kinematics
    GY403 STRUCTURAL GEOLOGY KINEMATIC ANALYSIS KINEMATICS • Translation- described by a vector quantity • Rotation- described by: • Axis of rotation point • Magnitude of rotation (degrees) • Sense of rotation (reference frame; clockwise or anticlockwise) • Dilation- volume change • Loss of volume = negative dilation • Increase of volume = positive dilation • Distortion- change in original shape RIGID VS. NON-RIGID BODY DEFORMATION • Rigid Body Deformation • Translation: fault slip • Rotation: rotational fault • Non-rigid Body Deformation • Dilation: burial of sediment/rock • Distortion: ductile deformation (permanent shape change) TRANSLATION EXAMPLES • Slip along a planar fault • 360 meters left lateral slip • 50 meters normal dip slip • Classification: normal left-lateral slip fault 30 Net Slip Vector X(S) 40 70 N 50m dip slip X(N) 360m strike slip 30 40 0 100m ROTATIONAL FAULT • Fault slip is described by an axis of rotation • Rotation is anticlockwise as viewed from the south fault block • Amount of rotation is 50 degrees Axis W E 50 FAULT SEPARATION VS. SLIP • Fault separation: the apparent slip as viewed on a planar outcrop. • Fault slip: must be measured with net slip vector using a linear feature offset by the fault. 70 40 150m D U 40 STRAIN ELLIPSOID X • A three-dimensional ellipsoid that describes the magnitude of dilational and distortional strain. • Assume a perfect sphere before deformation. • Three mutually perpendicular axes X, Y, and Z. • X is maximum stretch (S ) and Z is minimum stretch (S ). X Z Y Z • There are unique directions
    [Show full text]
  • The Penokean Orogeny in the Lake Superior Region Klaus J
    Precambrian Research 157 (2007) 4–25 The Penokean orogeny in the Lake Superior region Klaus J. Schulz ∗, William F. Cannon U.S. Geological Survey, 954 National Center, Reston, VA 20192, USA Received 16 March 2006; received in revised form 1 September 2006; accepted 5 February 2007 Abstract The Penokean orogeny began at about 1880 Ma when an oceanic arc, now the Pembine–Wausau terrane, collided with the southern margin of the Archean Superior craton marking the end of a period of south-directed subduction. The docking of the buoyant craton to the arc resulted in a subduction jump to the south and development of back-arc extension both in the initial arc and adjacent craton margin to the north. A belt of volcanogenic massive sulfide deposits formed in the extending back-arc rift within the arc. Synchronous extension and subsidence of the Superior craton resulted in a broad shallow sea characterized by volcanic grabens (Menominee Group in northern Michigan). The classic Lake Superior banded iron-formations, including those in the Marquette, Gogebic, Mesabi and Gunflint Iron Ranges, formed in that sea. The newly established subduction zone caused continued arc volcanism until about 1850 Ma when a fragment of Archean crust, now the basement of the Marshfield terrane, arrived at the subduction zone. The convergence of Archean blocks of the Superior and Marshfield cratons resulted in the major contractional phase of the Penokean orogeny. Rocks of the Pembine–Wausau arc were thrust northward onto the Superior craton causing subsidence of a foreland basin in which sedimentation began at about 1850 Ma in the south (Baraga Group rocks) and 1835 Ma in the north (Rove and Virginia Formations).
    [Show full text]
  • Collision Orogeny
    Downloaded from http://sp.lyellcollection.org/ by guest on October 6, 2021 PROCESSES OF COLLISION OROGENY Downloaded from http://sp.lyellcollection.org/ by guest on October 6, 2021 Downloaded from http://sp.lyellcollection.org/ by guest on October 6, 2021 Shortening of continental lithosphere: the neotectonics of Eastern Anatolia a young collision zone J.F. Dewey, M.R. Hempton, W.S.F. Kidd, F. Saroglu & A.M.C. ~eng6r SUMMARY: We use the tectonics of Eastern Anatolia to exemplify many of the different aspects of collision tectonics, namely the formation of plateaux, thrust belts, foreland flexures, widespread foreland/hinterland deformation zones and orogenic collapse/distension zones. Eastern Anatolia is a 2 km high plateau bounded to the S by the southward-verging Bitlis Thrust Zone and to the N by the Pontide/Minor Caucasus Zone. It has developed as the surface expression of a zone of progressively thickening crust beginning about 12 Ma in the medial Miocene and has resulted from the squeezing and shortening of Eastern Anatolia between the Arabian and European Plates following the Serravallian demise of the last oceanic or quasi- oceanic tract between Arabia and Eurasia. Thickening of the crust to about 52 km has been accompanied by major strike-slip faulting on the rightqateral N Anatolian Transform Fault (NATF) and the left-lateral E Anatolian Transform Fault (EATF) which approximately bound an Anatolian Wedge that is being driven westwards to override the oceanic lithosphere of the Mediterranean along subduction zones from Cephalonia to Crete, and Rhodes to Cyprus. This neotectonic regime began about 12 Ma in Late Serravallian times with uplift from wide- spread littoral/neritic marine conditions to open seasonal wooded savanna with coiluvial, fluvial and limnic environments, and the deposition of the thick Tortonian Kythrean Flysch in the Eastern Mediterranean.
    [Show full text]
  • Modeling Crustal Deformation Near Active Faults and Volcanic Centers—A Catalog of Deformation Models
    Modeling Crustal Deformation near Active Faults and Volcanic Centers—A Catalog of Deformation Models Chapter 1 of Section B, Modeling of Volcanic Processes Book 13, Volcanic Monitoring Techniques and Methods 13–B1 U.S. Department of the Interior U.S. Geological Survey Modeling Crustal Deformation near Active Faults and Volcanic Centers—A Catalog of Deformation Models By Maurizio Battaglia, Peter F. Cervelli, and Jessica R. Murray Chapter 1 of Section B, Modeling of Volcanic Processes Book 13, Volcanic Monitoring Techniques and Methods 13-B1 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2013 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Battaglia, Maurizio, Cervelli, P.F., and Murray, J.R., 2013, Modeling crustal deformation near active faults and volcanic centers—A catalog of deformation models: U.S.
    [Show full text]