Camassia Scillioides

Total Page:16

File Type:pdf, Size:1020Kb

Camassia Scillioides Camassia scilloides (C.S. Rafinesque-Schmaltz) V.L. Cory Eastern Camas (Camassia fraseri, Cyanotris scilloides, Quamasia hyacinthina) • Also known as Atlantic Camas, Indigo Squill, Meadow Hyacinth, Prairie Hyacinth, or Wild Hyacinth, this perennial bulb is native to the eastern and central portions of North America, including parts of northeast Texas; the genus Camassia J. Lindley (Quamasia) contains about a half dozen species of which all but C. scilloides is native to the northwestern North America; as it's native range may imply, C. scilloides is the best adapted member of the genus to most of our region, being useful in moister soils in USDA hardiness zones 4 to 8a(8b); this species requires moist soils, particularly in winter and spring, when the foliage is actively growing; Eastern Camas can be a bit finicky in requirements to thrive in cultivation in our region; Camassia scilloides is a good example of a summer dormant bulb, with the foliage withering back as the summer's heat approaches returning the following fall to spring depending on how far north or south the plant is grown; plant in sunny to partly sunny exposures. • Foliage of C. scilloides originates as a group of basal linear leaves 8 to 18 (24) long, grass-like, medium to dark green in color and rather floppy; the tulip-like bulbs are dark colored and will develop small conal bulblets from the basal plate to form slow growing colonies; in favorable sites, seedlings may develop and naturalize; overall plant texture is medium; inflorescences resemble open loose Squill or Hyacinth (Hyacinthus relatives) racemes, hence the common names involving hyacinth; individual flowers are blue to blue-violet, rarely white, about ⅝ in diameter with six narrow linear to lanceolate perianth segments in an open bowl or flattened cup-shape; flowers open progressively from the base of the 12 to 18 (24) tall scapose racemes and are effective for a couple of week window in early spring; six yellow stamens surround the pistil. • Although several other members of this genus, including Camassia cusickii S. Watson, Camassia leichtlinii (J.G. Baker) S. Watson, and Camassia quamash (F.T. Pursh) E.L. Greene have even showier inflorescences of white, blue, or violet flowers than C. scilloides, most are poorly adapted to our region and function best in USDA hardiness zones 3 or 4 to 7 where summers are mild; these other species are valuable wildflowers and are frequently cultivated in Northwestern U.S. gardens; Camassia scilloides can be useful in moist portions of perennial borders, near water features, or in rain gardens. • This genus is variously placed in the family Liliaceae or is further segregated into the Asparagaceae, Agavaceae, or Hyacinthaceae depending upon the taxonomic authority; the genus name derives from native American Indian name, kamas or quamash, for plants in this genus, while the specific epithet refers to the resemblance of the inflorescences to distantly related taxa in the Old World genus Scillia L. (Squill); bulbs of some species of Camassia were consumed by native American Indians and reportedly by members of the famous Lewis and Clark expedition; care should be taken as several look-alike bulbs are poisonous. Copyright 2013 by Michael A. Arnold with all rights reserved; intended for future inclusion in Landscape Plants For Texas And Environs, Fourth Edition. .
Recommended publications
  • Wild Hyacinth (Camassia Scilloides) in Canada
    PROPOSED Species at Risk Act Recovery Strategy Series Adopted under Section 44 of SARA Recovery Strategy for the Wild Hyacinth (Camassia scilloides) in Canada Wild Hyacinth 2015 Recommended citation: Environment Canada. 2015. Recovery Strategy for the Wild Hyacinth (Camassia scilloides) in Canada [Proposed]. Species at Risk Act Recovery Strategy Series. Environment Canada, Ottawa. 21 pp. + Annexes. For copies of the recovery strategy, or for additional information on species at risk, including the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) Status Reports, residence descriptions, action plans, and other related recovery documents, please visit the Species at Risk (SAR) Public Registry1. Cover illustration: © Gary Allen Également disponible en français sous le titre « Programme de rétablissement de la camassie faux-scille (Camassia scilloides) au Canada [Proposition] » © Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment, 2015. All rights reserved. ISBN Catalogue no. Content (excluding the illustrations) may be used without permission, with appropriate credit to the source. 1 http://www.registrelep-sararegistry.gc.ca RECOVERY STRATEGY FOR THE WILD HYACINTH (CAMMASSIA SCILLOIDES) IN CANADA 2015 Under the Accord for the Protection of Species at Risk (1996), the federal, provincial, and territorial governments agreed to work together on legislation, programs, and policies to protect wildlife species at risk throughout Canada. In the spirit of cooperation of the Accord, the Government of Ontario has given permission to the Government of Canada to adopt the Recovery Strategy for the Wild Hyacinth (Camassia scilloides) in Ontario (Part 2) under Section 44 of the Species at Risk Act (SARA).
    [Show full text]
  • AGCBC Seedlist2019booklet
    ! Alpine Garden Club of British Columbia Seed Exchange 2019 Alpine Garden Club of British Columbia Seed Exchange 2019 We are very grateful to all those members who have made our Seed Exchange possible through donating seeds. The number of donors was significantly down this year, which makes the people who do donate even more precious. We particularly want to thank the new members who donated seed in their first year with the Club. A big thank-you also to those living locally who volunteer so much time and effort to packaging and filling orders. READ THE FOLLOWING INSTRUCTIONS CAREFULLY BEFORE FILLING IN THE REQUEST FORM. PLEASE KEEP YOUR SEED LIST, packets will be marked by number only. Return the enclosed request form by mail or, if you have registered to do so, by the on-line form, as soon as possible, but no later than DECEMBER 8. Allocation: Donors may receive up to 60 packets and non-donors 30 packets, limit of one packet of each selection. Donors receive preference for seeds in short supply (USDA will permit no more than 50 packets for those living in the USA). List first choices by number only, in strict numerical order, from left to right on the order form. Enter a sufficient number of second choices in the spaces below, since we may not be able to provide all your first choices. Please print clearly. Please be aware that we have again listed wild collected seed (W) and garden seed (G) of the same species separately, which is more convenient for people ordering on-line.
    [Show full text]
  • Dyuhei Sato Division of Genetics, Bot. Inst. Faculty of Science, Tokyo
    ANALYSIS OF THE KARYOTYPES IN YUCCA, A GA VE AND THE RELATED GENERA WITH SPECIAL REFERENCE TO THE PHYLOGENETIC SIGNIFICANCEI~ Dyuhei SATo Divisionof Genetics, Bot. Inst. Faculty of Science, Tokyo Imperial University McKelvey and Sax (2933) have called attention to the existence of taxonomic and cytological similarities of the genera Yucca, Hesperoyucca, Gleistvucca,Hesperoaloe and Samuela of the Liliaceae with the genera Agave and Fourcroya which belong to a related family, Amaryllidaceae. Wh.itaker (1934) also has reported that Polianhes and Fourcroya have exactly the same chromosome constitution as the Yucca-Abave karyotype (5 long and 25 short chromosomes) (Figs. 1, 2). These observations when considered in respect to taxonomic resemblances, seem to indicate that the genera mentioned above are more closely related than it is shown by their classifica- tion into distinct families. Whitaker also has remarked that Dasylirion (2n=38) and ATolina(2n=36) in Yucceae and Doryanthes (2n=36) in Agavoideae are of different karyotypes from the Yucca-Agave type. In the present work an analysis of the karyotypes in Liliaceous plants has been attempted and several karyotypes have been found in Scilloideae. Eucornis and Carassia have been selected with the purpose of discovering a possible connecting link between these genera and the Yucca-Agave group. In the present paper an analysis of the karyotypes of the following species is given. LILIACEAE Scilloideae 211 Fig. Euconis undulata 60=8L+8M+44S (4b)2) 3 Euconsispallidi ora 60=8L+8M+44S (4b) 4 Eucomispunctata 60=8L±8M+44S (4b) 5 Camassiaescrema 30=6L+24S (2b) 6 Yucceae Yuccafilamentosa 30 60=1OL+50S (2b) 1, 7 Yuccarecurvifolia 30 60=1OL+50S (2b) 2, 8 Yuccaaloifolia 60=1OL+50S (2b) 9 „ var.
    [Show full text]
  • Landscaping with Native Plants by Stephen L
    SHORT-SEASON, HIGH-ALTITUDE GARDENING BULLETIN 862 Landscaping with native plants by Stephen L. Love, Kathy Noble, Jo Ann Robbins, Bob Wilson, and Tony McCammon INTRODUCTION There are many reasons to consider a native plant landscape in Idaho’s short- season, high-altitude regions, including water savings, decreased mainte- nance, healthy and adapted plants, and a desire to create a local theme CONTENTS around your home. Most plants sold for landscaping are native to the eastern Introduction . 1 United States and the moist climates of Europe. They require acid soils, con- The concept of native . 3 stant moisture, and humid air to survive and remain attractive. Most also Landscaping Principles for Native Plant Gardens . 3 require a longer growing season than we have available in the harshest cli- Establishing Native Landscapes and Gardens . 4 mates of Idaho. Choosing to landscape with these unadapted plants means Designing a Dry High-Desert Landscape . 5 Designing a Modified High-Desert Landscape . 6 accepting the work and problems of constantly recreating a suitable artificial Designing a High-Elevation Mountain Landscape . 6 environment. Native plants will help create a landscape that is more “com- Designing a Northern Idaho Mountain/Valley fortable” in the climates and soils that surround us, and will reduce the Landscape . 8 resources necessary to maintain the landscape. Finding Sources of Native Plants . 21 The single major factor that influences Idaho’s short-season, high-altitude climates is limited summer moisture. Snow and rainfall are relatively abun- dant in the winter, but for 3 to 4 months beginning in June, we receive only a YOU ARE A SHORT-SEASON, few inches of rain.
    [Show full text]
  • Plant Propagation Protocol for ​Camassia Quamash ESRM 412
    Plant Propagation Protocol for Camassia quamash ​ ESRM 412 - Native Plant Production Spring 2020 Figure 1 Photo by Gary A Monroe from CalPhotos. Web. 6 May 2020 Figure 2 Plants Database. Camassia quamash. USDA, n.d. Web. Figure 3 Plants Database. Camassia quamash. USDA, n.d. Web. 6 May 2020. 6 May 2020. North American Distribution Washington Distribution TAXONOMY Plant Family Scientific Name Liliaceae1 ​ Common Name Lily family1 ​ Species Scientific Name Scientific Name Camassia quamash (Pursh) Greene1 ​ ​ Varieties No information found Sub-species Camassia quamash ssp. azurea (A. Heller) Gould – ​ small camas Camassia quamash ssp. breviflora Gould – small ​ camas Camassia quamash ssp. intermedia Gould – small ​ camas Camassia quamash ssp. linearis Gould – small ​ camas Camassia quamash ssp. maxima Gould – small ​ camas Camassia quamash ssp. quamash (Pursh) Greene – ​ small camas Camassia quamash ssp. utahensis Gould – Utah ​ small camas Camassia quamash ssp. walpolei (Piper) Gould – ​ Walpole's small camas2 ​ Cultivar No information found Common Synonym(s) Camassia esculenta Lindl. ​ Camassia quamash (Pursh) Greene subsp. teapeae ​ (H. St. John) H. St. John Camassia quamash (Pursh) Greene var. azurea (A. ​ Heller) C.L. Hitchc. Camassia quamash (Pursh) Greene var. breviflora ​ (Gould) C.L. Hitchc. Camassia quamash (Pursh) Greene var. intermedia ​ (Gould) C.L. Hitchc. Camassia quamash (Pursh) Greene var. linearis ​ (Gould) J.T. Howell Camassia quamash (Pursh) Greene var. maxima ​ (Gould) B. Boivin Camassia quamash (Pursh) Greene var. quamash ​ Camassia quamash (Pursh) Greene var. utahensis ​ (Gould) C.L. Hitchc. Quamassia quamash (Pursh) Coville4 ​ ​ Common Names Southern Lushootseed (Coast Salish Language) for camas: blue camas, crow potato, Camassia spp.: c̕ábid. camas, Camassia quamash, C. leichtinii: qʷəɬúʔəl. camas roots that are processed and dried: s√x̌əʤəb.
    [Show full text]
  • Agavaceae Subf. Chlorogaloideae)
    Taylor, D.W. and D.J. Keil. 2018. Hooveria , a new genus liberated from Chlorogalum (Agavaceae subf. Chlorogaloideae). Phytoneuron 2018-67: 1–6. Published 1 October 2018. ISSN 2153 733X HOOVERIA , A NEW GENUS LIBERATED FROM CHLOROGALUM (AGAVACEAE SUBF. CHLOROGALOIDEAE) DEAN W. TAYLOR Redwood Drive Aptos, California 95003-2517 [email protected] DAVID J. KEIL Professor Emeritus Biological Sciences Department California Polytechnic State University San Luis Obispo, California 93407 [email protected] ABSTRACT Molecular phylogenetic analyses have indicated that Chlorogalum (sensu lato) (Agavaceae subf. Chlorogaloideae) comprises more than one lineage. A recently published study indicated that Chlorogalum is paraphyletic, with two well-supported clades that are successive sister groups to the remainder of the Chlorogaloideae. The first is composed of three vespertine-flowering species (Chlorogalum sensu stricto), and the second comprises two diurnally flowering species. Additional morphological and cytological evidence independently support recognition of two lineages. Hooveria , gen. nov. , is proposed to accommodate the diurnally flowering species of the second lineage. Three taxa are transferred from Chlorogalum to the new genus: Hooveria parviflora (S. Wats.) D.W. Taylor & D.J. Keil, comb. nov. , H. purpurea (Brandeg.) D.W. Taylor & D.J. Keil, comb. nov. , and H. purpurea var. reducta (Hoover) D.W. Taylor & D.J. Keil, comb. nov. A neotype is designated for Chlorogalum parviflorum S. Wats. Chlorogalum Kunth (Agavaceae subf. Chlorogaloideae) as treated traditionally is a genus of five species with nine terminal taxa (Jernstedt 2002; Callahan 2015a, b; Table 1). Chlorogalum is endemic to the California Floristic Province, extending from its northern limit in southern Coos County, Oregon (Callahan 2015b), southward to extreme northwestern Baja California (Rebman et al.
    [Show full text]
  • CAMASSIA Stella Exley
    Issue 37 Cornucopia Spring 2016 CAMASSIA Stella Exley I’ve often read in the horticultural press that the genus Camassia is the perfect gap filler in gardens between the end of spring and the beginning of summer. Whilst this is the time of year that camassia are in full flight, I shudder at the thought of these beauties being labelled in such a way. In my opinion, they are worthy of stand-alone recognition for their beauty and grace, and stunning additions to a plethora of planting schemes. Camassia is a genus of bulbous perennials with 5/6 species groups. They are extremely hardy and will thrive in most conditions: sunny and moist, to drier with some shade. I have found they easily adapt and flourish in heavy damp soils as well as drier conditions, and to date I have never experienced problems with pests or diseases. What’s not to love? They hail from North America and at one time many moons ago were, apparently, a food staple for indigenous folk, who used to roast them. Although I haven’t tried this, I’m led to understand that when roasted, they taste something similar to a sweet potato. The name camassia was derived from kamas, used by native Americans. They look fabulous in virtually any planting scheme, from formal to informal, woodland areas, damp meadows and alongside ponds and streams, as well as wildflower meadows. I also use them in containers large and small to brighten up shadier areas. They are a perfect fit for naturalistic planting. Once established, they create a calming visual feast for the eyes as their star-like six-petalled blooms slowly open from the bottom upwards along their lofty spires, reaching heights of between 40cm and 120cm.
    [Show full text]
  • Floristic Quality Assessment Report
    FLORISTIC QUALITY ASSESSMENT IN INDIANA: THE CONCEPT, USE, AND DEVELOPMENT OF COEFFICIENTS OF CONSERVATISM Tulip poplar (Liriodendron tulipifera) the State tree of Indiana June 2004 Final Report for ARN A305-4-53 EPA Wetland Program Development Grant CD975586-01 Prepared by: Paul E. Rothrock, Ph.D. Taylor University Upland, IN 46989-1001 Introduction Since the early nineteenth century the Indiana landscape has undergone a massive transformation (Jackson 1997). In the pre-settlement period, Indiana was an almost unbroken blanket of forests, prairies, and wetlands. Much of the land was cleared, plowed, or drained for lumber, the raising of crops, and a range of urban and industrial activities. Indiana’s native biota is now restricted to relatively small and often isolated tracts across the State. This fragmentation and reduction of the State’s biological diversity has challenged Hoosiers to look carefully at how to monitor further changes within our remnant natural communities and how to effectively conserve and even restore many of these valuable places within our State. To meet this monitoring, conservation, and restoration challenge, one needs to develop a variety of appropriate analytical tools. Ideally these techniques should be simple to learn and apply, give consistent results between different observers, and be repeatable. Floristic Assessment, which includes metrics such as the Floristic Quality Index (FQI) and Mean C values, has gained wide acceptance among environmental scientists and decision-makers, land stewards, and restoration ecologists in Indiana’s neighboring states and regions: Illinois (Taft et al. 1997), Michigan (Herman et al. 1996), Missouri (Ladd 1996), and Wisconsin (Bernthal 2003) as well as northern Ohio (Andreas 1993) and southern Ontario (Oldham et al.
    [Show full text]
  • New Award Named for Tom Patrick
    Volume 94 Number 4 July 2019 Georgia Botanical Society IN THIS New Award Named for Tom Patrick ISSUE: As we all know, our Georgia Botanical Society (BotSoc) is among a number of groups interested in the conservation of botanical resources. Another such group, coordinated Society News by Jennifer F. Ceska, is the Georgia Plant Conservation Alliance (GPCA), a network of - P3 more than forty universities, botanical gardens, zoos, state and federal agencies, ESA News - conservation organizations (including BotSoc) and private companies and individuals committed to botanical preservation and protection. Headquartered at the State P4 Botanical Garden of Georgia in Athens, the GPCA’s range includes the entire state of Field Trip Georgia and beyond. In fact, The National Association of Environmental Professionals, Reports - P5 during their May 20, 2019 meeting in Baltimore, awarded GPCA with an honorable mention for environmental excellence . Upcoming Field Trips - During the GPCA meeting of May 16, 2019 at the Beech Hollow Wildflower Farm in P11 Lexington, Georgia, the attendees beheld a wonderful ceremony. Tom Patrick was recognized by the GPCA for his many years of botanical excellence and commitment to the study and preservation of Georgia’s native flora. His award, represented by a specially designed medallion, was presented by Jennifer Cruse-Sanders, Director at State Botanical Garden of Georgia. The medallion’s inscription reads: “Tom Patrick, 2019 For Lifetime Achievement in study, teaching and service benefitting Georgia’s native Flora. With love and gratitude, GPCA” This new award in honor of Tom Patrick, the first recipient, will recognize career-long dedication to botanical conservation.
    [Show full text]
  • Camassia Quamash) in Southern Idaho and Implications For
    USING A SPECIES DISTRIBUTION APPROACH TO MODEL HISTORIC CAMAS (CAMASSIA QUAMASH) IN SOUTHERN IDAHO AND IMPLICATIONS FOR FORAGING IN THE LATE ARCHAIC by Royce Johnson A thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts in Anthropology Boise State University December 2020 © 2020 Royce Johnson ALL RIGHTS RESERVED BOISE STATE UNIVERSITY GRADUATE COLLEGE DEFENSE COMMITTEE AND FINAL READING APPROVALS of the thesis submitted by Royce Johnson Thesis Title: Using a Species Distribution Approach to Model Historic Camas (Camassia quamash) Distribution in Southern Idaho and Implications for Foraging in the Late Archaic Date of Final Oral Examination: 17 March 2020 The following individuals read and discussed the thesis submitted by Royce Johnson, and they evaluated their presentation and response to questions during the final oral examination. They found that the student passed the final oral examination. Pei-lin Yu, Ph.D. Chair, Supervisory Committee Mark Plew, Ph.D. Co-Chair, Supervisory Committee Cheryl Anderson, Ph.D. Member, Supervisory Committee The final reading approval of the thesis was granted by Pei-lin Yu, Ph.D., Chair of the Supervisory Committee. The thesis was approved by the Graduate College. ACKNOWLEDGMENTS First, I would like to thank Dr Pei-Lin Yu and Dr Plew for all the feedback and help you have given me over the course of my undergraduate and graduate career. I have greatly valued the time and energy you both have put in helping your students. Your mentorship pushed me to do my best work, and for that I thank you both. Second, I would like to thank my wife for her support during my college career.
    [Show full text]
  • True Blue Camassias’
    Trecanna’s Choice Trecanna Nursery is a family-run plant nursery owned by Mark & Karen Wash and set on Cornish slopes of the Tamar Valley, specialising in unusual bulbs & perennials, Crocosmias and other South African plants, and Sempervivums. Each month Mark will write a feature on some of his very favourite plants. Trecanna Nursery is open on Fridays & Saturdays throughout the year, from 10am to 5pm, (or phone to arrange a visit at other times). During October, there will be a host of fresh bulbs and late flowering herbaceous perennials ready for sale. Bulbs can also be posted – send an SAE for a list. A wide collection of Crocosmia are now being divided an a new list will be available soon. Trecanna Nursery is located approx. 2 miles north of Gunnislake. Follow the signs from opposite the Donkey Park on the A390, Callington to Gunnislake road. Tel: 01822 834680. Email: [email protected] ‘True Blue Camassias’ Amongst the wide range of plants and bulbs that we see here at the nursery over the course of the year, a number stand out and perform so well in the local climate that we are encouraged to search out more varieties. One such genus that has caught our attention over the past few years is the relatively little-known ‘Camassia’. Camassias originate in North America and Canada - they grow in damp open grassland where they carry local names of Quamash, or Bears Grass. In places they fill the meadows with their hues of blue and white, very much resembling our own swathes of native bluebells.
    [Show full text]
  • Comparison of Burning and Mowing Treatments in a Remnant Willamette Valley Wet Prairie, Oregon, 2001–2007 Author(S): Jason L
    Comparison of Burning and Mowing Treatments in a Remnant Willamette Valley Wet Prairie, Oregon, 2001–2007 Author(s): Jason L. Nuckols, Nathan T. Rudd, Edward R. Alverson and Gilbert A. Voss Source: Northwest Science, 85(2):303-316. Published By: Northwest Scientific Association DOI: http://dx.doi.org/10.3955/046.085.0217 URL: http://www.bioone.org/doi/full/10.3955/046.085.0217 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Jason L. Nuckols1, The Nature Conservancy, 87200 Rathbone Road, Eugene, Oregon 97402 Nathan T. Rudd, The Nature Conservancy, 821 S.E. 14th Avenue, Portland, Oregon 97214 Edward R. Alverson, and Gilbert A. Voss, The Nature Conservancy, 87200 Rathbone Road, Eugene, Oregon 97402 Comparison of Burning and Mowing Treatments in a Remnant Willamette Valley Wet Prairie, Oregon, 2001–2007 Abstract Wet prairies dominated by the perennial bunchgrass Deschampsia cespitosa occurred extensively in the Willamette Valley at the time of Euro-American settlement.
    [Show full text]