How Does Calcium Trigger Neurotransmitter Release? George J Augustine

Total Page:16

File Type:pdf, Size:1020Kb

How Does Calcium Trigger Neurotransmitter Release? George J Augustine 320 How does calcium trigger neurotransmitter release? George J Augustine Recent work has established that different geometric A brief introduction to diffusion of Ca2+ arrangements of calcium channels are found at different To appreciate how much Ca2+ is required to trigger trans- presynaptic terminals, leading to a wide spectrum of calcium mitter release, it is important to understand the diffusion signals for triggering neurotransmitter release. These calcium of Ca2+ once it enters the presynaptic terminal. signals are apparently transduced by synaptotagmins — Mathematical models indicate that diffusion yields an calcium-binding proteins found in synaptic vesicles. New immediate accumulation of calcium ions within an area biochemical results indicate that all synaptotagmins undergo covering tens of nanometers around the mouth of open calcium-dependent interactions with membrane lipids and a Ca2+ channels [2,3]. This calcium signal can be damped by number of other presynaptic proteins, but which of these the buffering action of Ca2+-binding proteins [4]. Such uni- interactions is responsible for calcium-triggered transmitter tary Ca2+ influx events will result in qualitatively different release remains unclear. types of intracellular signals, depending on the spatial arrangement of Ca2+ channels relative to each other and to Addresses the relevant Ca2+-binding proteins (Figure 1; and [5,6]). Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, NC 27710, USA; e-mail: [email protected] If the Ca2+-binding proteins are within a few nanometers of 2+ Current Opinion in Neurobiology 2001, 11:320–326 open Ca channels, the signaling arrangement is called a ‘calcium domain’ [2] or, in reference to the spatial dimen- 0959-4388/01/$ — see front matter sions involved, a ‘nanodomain’ [5]. In a single nanodomain, © 2001 Elsevier Science Ltd. All rights reserved. local Ca2+ concentrations vary steeply with distance but can Abbreviations be as high as hundreds of micromolar [3]. When many Ca2+ SNAP-25 25 kDa synaptosomal associated protein channels are clustered together in a membrane area of SNARE soluble NSF-attachment protein receptor roughly 1 µm2, a Ca2+-binding protein positioned within the cluster will sense a ‘microdomain’ of Ca2+ [5,7]. Free Introduction Ca2+ concentration within microdomains can range from Synaptic transmission results from the calcium-regulated tens of micromolar to hundreds of micromolar, depending release of quantal packets of neurotransmitter, with on the amount of summation of individual nanodomains release arising from the exocytotic discharge of neuro- arising from multiple Ca2+ channels [7,8]. transmitter after the fusion of synaptic vesicles with the presynaptic plasma membrane [1]. Given these facts, one A third type of Ca2+ signal arises when Ca2+ channels are might imagine that it would be straightforward to purify 1 µm or further from target Ca2+-binding proteins. In this sit- synaptic vesicles, identify their molecular constituents, uation, ‘radial gradients’ of concentration occur as Ca2+ and thereby understand the molecular basis of neuro- diffuses from the plasma membrane into the interior of the transmitter release. cell [9,10]. Because of the resulting dilution, Ca2+ levels at the target proteins will be much lower than in the previous Unfortunately, the problem has turned out to be more com- two cases and may be in the range of a few micromolar or less plex than appreciated initially. Nearly all of the proteins of synaptic vesicles have been identified and sequenced. Highly localized Ca2+ signaling in presynaptic Many of their binding partners within the presynaptic ter- terminals minal — either on the vesicles, the plasma membrane, or Until recently, there was relatively good agreement that the presynaptic cytoplasm — are now known. Despite this the release of fast-acting neurotransmitters (such as gluta- largess of information, a satisfying picture of the molecular mate and acetylcholine) relies on nanodomain signaling basis of exocytosis has so far eluded us. [11,12]. This consensus was constructed from many lines of evidence. First, injection of Ca2+ buffers with different Part of the problem is that neurotransmitter release rates of Ca2+ binding produces differential effects on involves many different trafficking reactions and each of transmitter release. Specifically, BAPTA, a rapidly binding these requires a substantial number of protein–protein chelator, efficiently blocks release, whereas EGTA, a slow- interactions. In this review, I would like to try to reduce er chelator, does not [13]. Second, high presynaptic Ca2+ the problem of calcium-regulated neurotransmitter release concentrations, of the order of 100–200 µM, are necessary to its simplest possible terms by concentrating on the final to produce rapid rates of secretion [14,15]. Third, titration exocytotic reactions that are triggered by calcium ions of presynaptic Ca2+ signals, by injecting Ca2+ buffers with (Ca2+). My focus will be on recent progress that addresses varying affinities, yields similar estimates of Ca2+ levels two related questions: first, how much Ca2+ is needed to during transmitter release [13]. Fourth, measurements of trigger transmitter release? Second, to which protein(s) local Ca2+ concentration with a low-affinity indicator does Ca2+ bind to trigger release? protein suggest very high Ca2+ concentrations during How does calcium trigger neurotransmitter release? Augustine 321 Figure 1 Types of presynaptic Ca2+ signals. Nanodomain Microdomain Radial gradient ‘Nanodomains’ arise from local diffusion from single open Ca2+ channels, ‘microdomains’ Synaptic Synaptic from multiple open Ca2+ channels, and ‘radial vesicle Synaptic vesicles gradients’ from long-distance movements of vesicles Ca2+ away from the channels. CBP indicates a Ca2+-binding protein that translates Ca2+ CBP entry into vesicle fusion. Modified with Plasma permission from [6]. Plasma membrane membrane Calcium channel Multiple calcium channels Current Opinion in Neurobiology transmitter release [7]. Fifth, the use of Ca2+-activated release at Ca2+ levels as low as a few micromolar, and saw potassium channels as monitors suggests that single action signs of saturation at Ca2+ concentrations greater than potentials raise presynaptic Ca2+ concentration to about 20–30 µM (Figure 2a). This relationship is markedly differ- 150 µM [16••]. Sixth, modifying the number of open Ca2+ ent from the Ca2+ requirements for transmitter release from channels causes changes in transmitter release that are other synapses; for example, approximately 20-fold higher consistent with nanodomain Ca2+ signaling [11,17]. Last, Ca2+ concentrations are required at the goldfish bipolar cell measurements of the opening of individual Ca2+ channels terminal (Figure 2a). suggest that only one channel needs to open to release transmitter [12]. Although these results indicate that a low concentration of Ca2+ is needed to trigger transmitter release, they do not From these findings, the evidence seemed strong that necessarily mean that small Ca2+ signals are produced dur- nanodomains trigger the rapid release of fast-acting ing transmitter release. It is possible that large rises in Ca2+ transmitters. Equally compelling data indicate that concentration still occur, but saturate the Ca2+-dependent microdomain-type Ca2+ signals mediate the secretion of release apparatus. Other experiments in these papers indi- transmitters at terminals that may release transmitter toni- cate that this is not the case [22••,23••]. This point was cally, such as sensory synapses [8,18]. Furthermore, radial established by comparing the rates of neurotransmitter shell-type Ca2+ signals seem to operate at peptide-secreting release to those produced by elevating presynaptic Ca2+ to terminals [19,20]. Thus, the picture seemed clear: very local, various concentrations. This null-point method provided nanodomain Ca2+ signals are used when optimizing for estimates of 5–25 µM for the levels of Ca2+ reached during speed, microdomains are used at slightly slower synapses, a presynaptic action potential. and radial shells mediate the delayed secretion of peptides. Again, this contrasts with comparable experiments done in Microdomain Ca2+ signaling at the Calyx of Held other systems; for example, uncaging 80 µM Ca2+ at the Recent studies have turned this simplification on its head, squid giant synapse causes a lower rate of transmitter however, by providing strong evidence that microdomain release than is produced by an action potential [15].Thus, Ca2+ signaling triggers the very rapid secretion of transmitter presynaptic Ca2+ signals differ even among fast-releasing at the Calyx of Held synapse in mammals. This specialized synapses. At the Calyx presynaptic terminal, presynaptic ‘giant’ synapse serves as a key relay in the auditory system. Ca2+ concentration reaches only relatively low levels dur- One early indication that things may be different from the ing an action potential. But the relatively high Ca2+ affinity picture described above came from the observation that of exocytosis allows this small signal to release large EGTA is almost as potent as BAPTA in blocking transmitter amounts of transmitter. release at this synapse [21]. This suggests that there is a sub- stantial distance between the open Ca2+ channels and the These results are compatible with a microdomain style of relevant Ca2+-binding protein, as would be expected if influx Ca2+ signaling, with several channels
Recommended publications
  • Annexin A2 Flop-Out Mediates the Non-Vesicular Release of Damps/Alarmins from C6 Glioma Cells Induced by Serum-Free Conditions
    cells Article Annexin A2 Flop-Out Mediates the Non-Vesicular Release of DAMPs/Alarmins from C6 Glioma Cells Induced by Serum-Free Conditions Hayato Matsunaga 1,2,† , Sebok Kumar Halder 1,3,† and Hiroshi Ueda 1,4,* 1 Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; [email protected] (H.M.); [email protected] (S.K.H.) 2 Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan 3 San Diego Biomedical Research Institute, San Diego, CA 92121, USA 4 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan * Correspondence: [email protected]; Tel.: +81-75-753-4536 † These authors contributed equally to this work. Abstract: Prothymosin alpha (ProTα) and S100A13 are released from C6 glioma cells under serum- free conditions via membrane tethering mediated by Ca2+-dependent interactions between S100A13 and p40 synaptotagmin-1 (Syt-1), which is further associated with plasma membrane syntaxin-1 (Stx-1). The present study revealed that S100A13 interacted with annexin A2 (ANXA2) and this interaction was enhanced by Ca2+ and p40 Syt-1. Amlexanox (Amx) inhibited the association between S100A13 and ANXA2 in C6 glioma cells cultured under serum-free conditions in the in situ proximity ligation assay. In the absence of Amx, however, the serum-free stress results in a flop-out of ANXA2 Citation: Matsunaga, H.; Halder, through the membrane, without the extracellular release. The intracellular delivery of anti-ANXA2 S.K.; Ueda, H. Annexin A2 Flop-Out antibody blocked the serum-free stress-induced cellular loss of ProTα, S100A13, and Syt-1.
    [Show full text]
  • Structural Insights Into Membrane Fusion Mediated by Convergent Small Fusogens
    cells Review Structural Insights into Membrane Fusion Mediated by Convergent Small Fusogens Yiming Yang * and Nandini Nagarajan Margam Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; [email protected] * Correspondence: [email protected] Abstract: From lifeless viral particles to complex multicellular organisms, membrane fusion is inarguably the important fundamental biological phenomena. Sitting at the heart of membrane fusion are protein mediators known as fusogens. Despite the extensive functional and structural characterization of these proteins in recent years, scientists are still grappling with the fundamental mechanisms underlying membrane fusion. From an evolutionary perspective, fusogens follow divergent evolutionary principles in that they are functionally independent and do not share any sequence identity; however, they possess structural similarity, raising the possibility that membrane fusion is mediated by essential motifs ubiquitous to all. In this review, we particularly emphasize structural characteristics of small-molecular-weight fusogens in the hope of uncovering the most fundamental aspects mediating membrane–membrane interactions. By identifying and elucidating fusion-dependent functional domains, this review paves the way for future research exploring novel fusogens in health and disease. Keywords: fusogen; SNARE; FAST; atlastin; spanin; myomaker; myomerger; membrane fusion 1. Introduction Citation: Yang, Y.; Margam, N.N. Structural Insights into Membrane Membrane fusion
    [Show full text]
  • Calcium Signaling at the Endoplasmic Reticulum Fine-Tuning Stress
    Cell Calcium 70 (2018) 24–31 Contents lists available at ScienceDirect Cell Calcium journal homepage: www.elsevier.com/locate/ceca Review Calcium signaling at the endoplasmic reticulum: fine-tuning stress responses T ⁎ Amado Carreras-Suredaa,b,c, Philippe Pihána,b,c, Claudio Hetza,b,c,d,e, a Center for Geroscience, Brain Health and Metabolism, Faculty of Medicine, University of Chile, Chile b Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile c Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile d Buck Institute for Research on Aging, Novato, CA, 94945, USA e Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA ARTICLE INFO ABSTRACT Keywords: Endoplasmic reticulum (ER) calcium signaling is implicated in a myriad of coordinated cellular processes. The ER homeostasis ER calcium content is tightly regulated as it allows a favorable environment for protein folding, in addition to ER stress operate as a major reservoir for fast and specific release of calcium. Altered ER homeostasis impacts protein Calcium handling mechanisms folding, activating the unfolded protein response (UPR) as a rescue mechanism to restore proteostasis. ER cal- Calcium homeostasis cium release impacts mitochondrial metabolism and also fine-tunes the threshold to undergo apoptosis under Unfolded protein response chronic stress. The global coordination between UPR signaling and energetic demands takes place at mi- Mitochondrial associated membranes Mitochondria biology tochondrial associated membranes (MAMs), specialized subdomains mediating interorganelle communication. Here we discuss current models explaining the functional relationship between ER homeostasis and various cellular responses to coordinate proteostasis and metabolic maintenance.
    [Show full text]
  • Calcium Signaling in Aging and Neurodegenerative Diseases 2019
    International Journal of Molecular Sciences Meeting Report Calcium Signaling in Aging and Neurodegenerative Diseases 2019 Luísa Cortes 1,2 , João Malva 2,3,4, Ana Cristina Rego 1,2,3 and Cláudia F. Pereira 1,2,3,* 1 Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Rua Larga, Faculty of Medicine, Polo I, 1st floor, 3004-504 Coimbra, Portugal; [email protected] (L.C.); [email protected] (A.C.R.) 2 CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, Faculty of Medicine, Polo I, 1st floor, 3004-504 Coimbra, Portugal; [email protected] 3 Faculty of Medicine, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal 4 iCRB- Coimbra Institute for Clinical and Biomedical Research; Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal * Correspondence: [email protected] Received: 28 December 2019; Accepted: 4 February 2020; Published: 7 February 2020 Abstract: The European Calcium Society (ECS) workshop, which is held every 2 years, is a dedicated meeting of scientists interested in the elucidation of the action of calcium binding, calcium signaling and the study of proteins and organelles, such as mitochondria and endoplasmic reticulum, thereby involved, either in health and disease conditions. The 8th edition of the ECS workshop was organized by a group of researchers from the University of Coimbra, Portugal, in close collaboration with ECS board members. Thanks to the central role of “Calcium Signaling in Aging and Neurodegenerative Disorders”, the ECS 2019 workshop was attended by 62 experts who presented their results in a plenary lecture and five regular symposia, two oral communication sessions and two poster sessions, followed by a hands-on session on calcium imaging.
    [Show full text]
  • Is Synaptotagmin the Calcium Sensor? Motojiro Yoshihara, Bill Adolfsen and J Troy Littleton
    315 Is synaptotagmin the calcium sensor? Motojiro Yoshihara, Bill Adolfsen and J Troy Littletonà After much debate, recent progress indicates that the synaptic synaptotagmins, which are transmembrane proteins con- vesicle protein synaptotagmin I probably functions as the taining tandem calcium-binding C2 domains (C2A and calcium sensor for synchronous neurotransmitter release. C2B) (Figure 1a). Synaptotagmin I is an abundant cal- Following calcium influx into presynaptic terminals, cium-binding synaptic vesicle protein [8,9] that has been synaptotagmin I rapidly triggers the fusion of synaptic vesicles demonstrated via genetic studies to be important for with the plasma membrane and underlies the fourth-order efficient synaptic transmission in vivo [10–13]. The C2 calcium cooperativity of release. Biochemical and genetic domains of synaptotagmin I bind negatively-charged studies suggest that lipid and SNARE interactions underlie phospholipids in a calcium-dependent manner [9,14,15, synaptotagmin’s ability to mediate the incredible speed of 16–18]. There is compelling evidence that phospholipid vesicle fusion that is the hallmark of fast synaptic transmission. binding is an effector interaction in vesicle fusion, as the calcium dependence of this process ( 74 mM) and its Addresses rapid kinetics (on a millisecond scale) (Figure 1b) fit Picower Center for Learning and Memory, Department of Biology and reasonably well with the predicted requirements of Department of Brain and Cognitive Sciences, Massachusetts synaptic transmission [15]. In addition to phospholipid Institute of Technology, Cambridge, MA 02139, USA Ãe-mail: [email protected] binding, the calcium-stimulated interaction between synaptotagmin and the t-SNAREs syntaxin and SNAP- 25 [15,19–23] provides a direct link between calcium and Current Opinion in Neurobiology 2003, 13:315–323 the fusion complex.
    [Show full text]
  • Regulation of Neuronal Communication by G Protein-Coupled Receptors ⇑ Yunhong Huang, Amantha Thathiah
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 589 (2015) 1607–1619 journal homepage: www.FEBSLetters.org Review Regulation of neuronal communication by G protein-coupled receptors ⇑ Yunhong Huang, Amantha Thathiah VIB Center for the Biology of Disease, Leuven, Belgium Center for Human Genetics (CME) and Leuven Institute for Neurodegenerative Diseases (LIND), University of Leuven (KUL), Leuven, Belgium article info abstract Article history: Neuronal communication plays an essential role in the propagation of information in the brain and Received 31 March 2015 requires a precisely orchestrated connectivity between neurons. Synaptic transmission is the mech- Revised 5 May 2015 anism through which neurons communicate with each other. It is a strictly regulated process which Accepted 5 May 2015 involves membrane depolarization, the cellular exocytosis machinery, neurotransmitter release Available online 14 May 2015 from synaptic vesicles into the synaptic cleft, and the interaction between ion channels, G Edited by Wilhelm Just protein-coupled receptors (GPCRs), and downstream effector molecules. The focus of this review is to explore the role of GPCRs and G protein-signaling in neurotransmission, to highlight the func- tion of GPCRs, which are localized in both presynaptic and postsynaptic membrane terminals, in reg- Keywords: G protein-coupled receptors ulation of intrasynaptic and intersynaptic communication, and to discuss the involvement of G-proteins astrocytic GPCRs in the regulation of neuronal communication. Neuronal communication Ó 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. Synaptic transmission Signaling Astrocytes Neurons Autoreceptors Neurotransmitters 1.
    [Show full text]
  • A FAMILY of NEURONAL Ca2+-BINDING PROTEINS WITH
    Neuroscience Vol. 112, No. 1, pp. 51^63, 2002 ß 2002 IBRO. Published by Elsevier Science Ltd All rights reserved. Printed in Great Britain PII: S0306-4522(02)00063-5 0306-4522 / 02 $22.00+0.00 www.neuroscience-ibro.com NECABS: A FAMILY OF NEURONAL Ca2þ-BINDING PROTEINS WITH AN UNUSUAL DOMAIN STRUCTURE AND A RESTRICTED EXPRESSION PATTERN S. SUGITA,1 A. HO and T. C. SUº DHOFÃ Center for Basic Neuroscience, Department of Molecular Genetics, and Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75235, USA AbstractöCa2þ-signalling plays a major role in regulating all aspects of neuronal function. Di¡erent types of neurons exhibit characteristic di¡erences in the responses to Ca2þ-signals. Correlating with di¡erences in Ca2þ-response are expression patterns of Ca2þ-binding proteins that often serve as markers for various types of neurons. For example, in the cerebral cortex the EF-hand Ca2þ-binding proteins parvalbumin and calbindin are primarily expressed in inhibitory interneurons where they in£uence Ca2þ-dependent responses. We have now identi¢ed a new family of proteins called NECABs (neuronal Ca2þ-binding proteins). NECABs contain an N-terminal EF-hand domain that binds Ca2þ, but di¡erent from many other neuronal EF-hand Ca2þ-binding proteins, only a single EF-hand domain is present. At the C-terminus, NECABs include a DUF176 motif, a bacterial domain of unknown function that was previously not observed in eukaryotes. In rat at least three closely related NECAB genes are expressed either primarily in brain (NECABs 1 and 2) or in brain and muscle (NECAB 3).
    [Show full text]
  • Calmodulin Suppresses Synaptotagmin-2 Transcription In
    Supplemental Material can be found at: http://www.jbc.org/content/suppl/2010/09/08/M110.150151.DC1.html THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 285, NO. 44, pp. 33930–33939, October 29, 2010 © 2010 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A. Calmodulin Suppresses Synaptotagmin-2 Transcription in Cortical Neurons*□S Received for publication, June 1, 2010, and in revised form, July 23, 2010 Published, JBC Papers in Press, August 20, 2010, DOI 10.1074/jbc.M110.150151 Zhiping P. Pang‡1,2, Wei Xu‡§1, Peng Cao§, and Thomas C. Su¨dhof‡§3 From the ‡Department of Molecular and Cellular Physiology and the §Howard Hughes Medical Institute, Stanford University, Palo Alto, California 94304-5543 ؉ Calmodulin (CaM) is a ubiquitous Ca2 sensor protein that modes of synaptic vesicle exocytosis are triggered by Ca2ϩ. The plays a pivotal role in regulating innumerable neuronal func- synchronous release mode exhibits an apparent Ca2ϩ cooper- tions, including synaptic transmission. In cortical neurons, ativity of ϳ5 (1–3), and the asynchronous release shows an ؉ most neurotransmitter release is triggered by Ca2 binding to apparent Ca2ϩ cooperativity of ϳ2 (3). The role of synaptotag- synaptotagmin-1; however, a second delayed phase of release, mins as primary Ca2ϩ sensors for synchronous neurotransmit- ؉ referred to as asynchronous release, is triggered by Ca2 binding ter release is well established (4–11). However, the molecular ؉ Downloaded from to an unidentified secondary Ca2 sensor. To test whether CaM identity of the Ca2ϩ sensor that mediates asynchronous release ؉ could be the enigmatic Ca2 sensor for asynchronous release, remains unknown.
    [Show full text]
  • Observation of Ls Time-Scale Protein Dynamics in the Presence of Ln Ions
    J Biomol NMR (2007) 37:79–95 DOI 10.1007/s10858-006-9105-y ARTICLE Observation of ls time-scale protein dynamics in the presence of Ln3+ ions: application to the N-terminal domain of cardiac troponin C Christian Eichmu¨ ller Æ Nikolai R. Skrynnikov Received: 20 September 2006 / Accepted: 2 October 2006 / Published online: 19 December 2006 Ó Springer Science+Business Media B.V. 2006 Abstract The microsecond time-scale motions in the environment of the reporting spin does not change. This N-terminal domain of cardiac troponin C (NcTnC) happens, for example, when the motion involves a ‘rigid’ loaded with lanthanide ions have been investigated by structural unit such as individual a-helix. Even more means of a 1HN off-resonance spin-lock experiment. significantly, the dispersions based on pseudocontact The observed relaxation dispersion effects strongly shifts offer better chances for structural characterization increase along the series of NcTnC samples containing of the dynamic species. This method can be generalized La3+,Ce3+, and Pr3+ ions. This rise in dispersion effects for a large class of applications via the use of specially is due to modulation of long-range pseudocontact shifts designed lanthanide-binding tags. by ls time-scale dynamics. Specifically, the motion in the coordination sphere of the lanthanide ion (i.e. in the Keywords Cardiac troponin C Á Spin-lock relaxation NcTnC EF-hand motif) causes modulation of the dispersion experiment Á ls–ms protein dynamics Á paramagnetic susceptibility tensor which, in turn, causes Lanthanide Á Pseudocontact shift Á Calmodulin modulation of pseudocontact shifts. It is also probable that opening/closing dynamics, previously identified in Ca2+–NcTnC, contributes to some of the observed Introduction dispersions.
    [Show full text]
  • Membrane Transport Quiz
    Membrane Transport Quiz 1. Which of the following is an example of extracellular fluid? a. Cytosol b. Plasma c. Interstitial Fluid d. Both b and c 2. Which of the following correctly describes passive transport? a. the cell uses ATP in passive transport b. most pumps are examples of passive transport c. diffusion is an example of passive transport d. exocytosis is an example of passive transport 3. Simple diffusion occurs ______________. a. with transporters in the cell membrane b. directly across the cell membrane c. through exocytosis d. through endocytosis 4. Which of the following is an example of active transport? a. Filtration b. Osmosis c. Endocytosis d. Exocytosis e. Both c and d 5. Which type of active transport uses ATP directly? a. Primary Active Transport b. Secondary Active Transport c. Both a and b 6. Which of the following is an example of receptor mediated endocytosis? a. Phagocytosis b. Primary Active Transport c. Exocytosis d. ALL are For use with TCC iTunes University Membrane Transport Lecture. 1 Developed by: Martha Kutter 2009 for the Learning Commons at Tallahassee Community College. 7. A transporter that moves one type of particle in one direction is _______________. a. Uniporter b. Symporter c. Antiporter 8. A transporter the moves two different particles in two different directions is ________. a. Endocytosis b. Exocytosis c. Uniporter d. Symporter e. Antiporter 9. Which of the following is an example of a primary active transporter? a. Na+/Ca2+ transporter on cardiac contractile cells b. Na+ channels on neurons c. Na+/K+ ATPase on all cells d.
    [Show full text]
  • Neuronal Calcium Sensor-1 Enhancement of Insp3 Receptor Activity Is Inhibited by Therapeutic Levels of Lithium
    Neuronal calcium sensor-1 enhancement of InsP3 receptor activity is inhibited by therapeutic levels of lithium Christina Schlecker, … , Klara Szigeti-Buck, Barbara E. Ehrlich J Clin Invest. 2006;116(6):1668-1674. https://doi.org/10.1172/JCI22466. Research Article Neuroscience Regulation and dysregulation of intracellular calcium (Ca2+) signaling via the inositol 1,4,5-trisphosphate receptor (InsP3R) has been linked to many cellular processes and pathological conditions. In the present study, addition of neuronal calcium sensor-1 (NCS-1), a high-affinity, low-capacity, calcium-binding protein, to purified InsP3R type 1 (InsP3R1) increased the channel activity in both a calcium-dependent and -independent manner. In intact cells, enhanced expression of NCS-1 resulted in increased intracellular calcium release upon stimulation of the phosphoinositide signaling pathway. To determine whether InsP3R1/NCS-1 interaction could be functionally relevant in bipolar disorders, conditions in which NCS-1 is highly expressed, we tested the effect of lithium, a salt widely used for treatment of bipolar disorders. Lithium inhibited the enhancing effect of NCS-1 on InsP3R1 function, suggesting that InsP3R1/NCS-1 interaction is an essential component of the pathomechanism of bipolar disorder. Find the latest version: https://jci.me/22466/pdf Research article Neuronal calcium sensor-1 enhancement of InsP3 receptor activity is inhibited by therapeutic levels of lithium Christina Schlecker,1,2,3 Wolfgang Boehmerle,1,4 Andreas Jeromin,5 Brenda DeGray,1 Anurag Varshney,1 Yogendra Sharma,6 Klara Szigeti-Buck,7 and Barbara E. Ehrlich1,3 1Department of Pharmacology, Yale University, New Haven, Connecticut, USA. 2Department of Neuroscience, University of Magdeburg, Magdeburg, Germany.
    [Show full text]
  • Molecular Mechanism of Fusion Pore Formation Driven by the Neuronal SNARE Complex
    Molecular mechanism of fusion pore formation driven by the neuronal SNARE complex Satyan Sharmaa,1 and Manfred Lindaua,b aLaboratory for Nanoscale Cell Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany and bSchool of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850 Edited by Axel T. Brunger, Stanford University, Stanford, CA, and approved November 1, 2018 (received for review October 2, 2018) Release of neurotransmitters from synaptic vesicles begins with a systems in which various copy numbers of syb2 were incorporated narrow fusion pore, the structure of which remains unresolved. To in an ND while the t-SNAREs were present on a liposome have obtain a structural model of the fusion pore, we performed coarse- been used experimentally to study SNARE-mediated mem- grained molecular dynamics simulations of fusion between a brane fusion (13, 17). The small dimensions of the ND compared nanodisc and a planar bilayer bridged by four partially unzipped with a spherical vesicle makes such systems ideally suited for MD SNARE complexes. The simulations revealed that zipping of SNARE simulations without introducing extreme curvature, which is well complexes pulls the polar C-terminal residues of the synaptobrevin known to strongly influence the propensity of fusion (18–20). 2 and syntaxin 1A transmembrane domains to form a hydrophilic MARTINI-based CGMD simulations have been used in several – core between the two distal leaflets, inducing fusion pore forma- studies of membrane fusion (16, 21 23). To elucidate the fusion tion. The estimated conductances of these fusion pores are in good pore structure and the mechanism of its formation, we performed agreement with experimental values.
    [Show full text]