Sensors in Hormone Secretion from Excitable Endocrine Cells

Total Page:16

File Type:pdf, Size:1020Kb

Sensors in Hormone Secretion from Excitable Endocrine Cells R1 RAPID COMMUNICATION C Involvement of calpain and synaptotagmin Ca2 sensors in hormone secretion from excitable endocrine cells Ebun Aganna, Jacky M Burrin1, Graham A Hitman and Mark D Turner Centre for Diabetes and Metabolic Medicine, Institute of Cell and Molecular Science, Barts and The London, Queen Mary’s School of Medicine and Dentistry, University of London, Whitechapel, London E1 2AT, UK and 1Centre for Molecular Endocrinology, William Harvey Research Institute, Barts and The London, Queen Mary’s School of Medicine and Dentistry, University of London, Charterhouse Square, London EC1M 6BQ, UK (Requests for offprints should be addressed to M D Turner; Email: [email protected]) Abstract C The requirement for Ca2 to regulate hormone secretion from secretagog-stimulated secretion from both INS-1 and GH3 cells endocrine cells is long established, but the precise function of was completely abolished following pre-incubation with C Ca2 sensors in stimulus–secretion coupling remains unclear. the cysteine protease inhibitor E64, whereas stimulated In the current study, we examined the expression of calpain and secretion from AtT20 cells was modest and completely synaptotagmin in INS-1 pancreatic and GH3 and AtT20 insensitive to E64 inhibition. These results are in stark contrast pituitary cells, and investigated the sensitivity of hormone to synaptotagmin data. Synaptotagmin expression in AtT20 cells secretion from these cells to inhibition of the calpain family of is abundant, whereas INS-1 cells express extremely low C cysteine proteases. Little difference in expression of m-calpain levels of this Ca2 sensor, relative to the pituitary cells. We was observed between the different endocrine cells. However, hypothesize that the expression pattern of calpain and AtT20 cells did exhibit an extremely low abundance of synaptotagmin isoforms may reflect alternative mechanisms of both m-calpain and the 54 kDa isoform of calpain-10 relative stimulus–secretion coupling in excitable endocrine cells. to their expression in INS-1 and GH3 cells. Interestingly, Journal of Endocrinology (2006) 190, R1–R7 Introduction the fine detail of synaptotagmin I action, nonetheless after years of debate there finally appears to be a consensus that this is the C C The Ca2 requirement for stimulated secretion is well primary mediator of Ca2 sensing in neuronal stimulus– C documented, although the contribution of individual Ca2 secretion coupling. However, there are a number of differences sensors and their precise function in stimulus–secretion coupling between the secretory dynamics of hormone secretion and those remains poorly understood. Recently, the calpain family has of neurotransmission. In particular, whilst neurotransmission is been shown to be an important class of molecule mediating an extremely rapid process (Sabatini & Regehr 1999)endocrine insulin secretion from pancreatic b-cells (Ort et al. 2001, Zhou secretion is multiphasic, with rapid exocytosis often only a et al. 2003, Marshall et al. 2005, Parnaud et al. 2005). Moreover, minor component of total regulated secretion (Henkel & C evidence has emerged for a role for calpain-10 as a Ca2 sensor Almers 1996). Therefore, whilst the core fusion machinery mediating the actual exocytotic fusion event itself (Marshall et al. operating in all neuroendocrine cells is very similar, there are 2005). However, despite m-calpain (calpain-1; Ort et al. 2001) likely to be different regulatory molecules operating between and calpain-10 (Marshall et al. 2005) being specifically shown to the systems. The current study examines the contribution of be regulators of insulin secretion, little is known as to whether calpain and synaptotagmin to stimulus–secretion coupling in individual calpain family members play cell-specific or more three different endocrine cell types. general roles in endocrine secretion per se. This also raises the question, are calpains capable of interchanging function, or do they perform isoform-specific roles based upon their respective C Materials and Methods Ca2 requirements for activation? C The major focus of neuronal Ca2 -sensing studies has largely Materials focused around the synaptotagmin family, and in particular synaptotagmin I (Tokuoka & Goda 2003, Yoshihara et al. 2003, Antibodies used were obtained as follows: rabbit anti-m-calpain Sudhof 2004). Whilst numerous questions still remain regarding (Calbiochem, San Diego, CA, USA), rabbit anti-m-calpain Journal of Endocrinology (2006) 190, R1–R7 DOI: 10.1677/joe.1.06737 0022–0795/06/0190–R1 q 2006 Society for Endocrinology Printed in Great Britain Online version via http://www.endocrinology-journals.org Downloaded from Bioscientifica.com at 10/01/2021 05:24:29PM via free access R2 E AGANNA and others $ Calpain, synaptotagmin and secretion (Calbiochem), mouse anti-synaptotagmin (BD Biosciences, Inc.), and used to normalize insulin values obtained. Media San Diego, CA, USA), rabbit anti-calpain-10 was as described were removed from wells from each plate, and 500 ml previously (Ma et al. 2002, Marshall et al. 2005), goat anti- extraction solution containing 1.5% hydrochloric acid rabbit-HRP conjugate (Bio-Rad), and goat anti-mouse-HRP (37%), 18.5% distilled water, 80% ethanol (95%) added to conjugate (Dako, Ely, UK). E64 (Roche Diagnostics) were each well. After 24 h, at 4 8C, 500 mlof0$1 M sodium K dissolved in methanol to make a stock of 2!10 5 M and hydroxide was added to neutralize the samples, which were stored at K20 8C. Corticotrophin-releasing factor (CRF) then assayed for insulin content using standard ELISA was diluted in sterile distilled water to form a stock solution of protocols (Mercodia, Uppsala, Sweden). K 10 4 M and stored at K20 8C until diluted in culture medium. Forskolin (FSK) was dissolved in sterile dimethylsulf- K FACS analysis oxide to form a stock solution of 10 3 M and stored at 4 8C until diluted in culture medium. All other reagents were INS-1 cells were seeded at 1!106 cells/well in six-well tissue purchased from Sigma unless otherwise stated. culture plates and incubated in G200 mM E64 for 24 h. Cells were trypsinized, pelleted, and washed twice with cold PBS. From each dish, 1!106 cells were suspended in 1 ml binding Cell culture buffer, and 100 mlofthissolution(1!105 cells) transferred to INS-1 pancreatic b-cell line was cultured in RPMI-1640 separate tubes. Five microliters of annexin V-FITC and medium (Sigma) using standard protocols. Both AtT20 and propidium iodide (PI; Annexin V-FITC Apoptosis Detection GH3 cells were cultured in DMEM (high glucose; Gibco) Kit I; BD Pharmingen, San Diego, CA, USA) were added to containing 2 mM L-glutamine and 25 mM glucose, and each tube, after which they were vortexed and then incubated in supplemented with 10% (v/v) horse serum (HS; Gibco), the dark for 15 min at room temperature. To each tube, 400 ml 100 U/ml penicillin-G, and 10 mg/ml streptomycin sulfate at binding buffer was added and then annexin V and PI 37 8C, in a 5% CO2–95% air atmosphere. fluorescence measured by flow cytometry (Becton Dickinson FACScan; Cambridge, UK). Clumped cells and cell debris were excluded from analysis using the method of Jia et al. (2001). Secretion Staurosporine (1 mM) was used as a positive control for the For secretion studies, AtT20 cells were seeded at 5! presence of apoptosis (overnight stimulation). 103 cells/well and GH3 cells at 1!104 cells/well in six-well tissue culture plates 24 h prior to incubation GE64 (200 mM) Sub-cellular fractionation for 48 h. For the subsequent 24 h, AtT20 cells were incubated K GCRF (10 7 M) and GH3 cells were incubated GFSK Equal numbers of INS-1, GH3, and AtT20 cells were cultured K (10 5 M) in the continued presence or absence of E64. At the to 80% confluence in 6 cm diameter Petri dishes, then scraped end of this incubation period, media were collected and into 5 ml PBS and spun at 90 g for 5 min. Each pellet was analyzed using a two-site solid-phase IRMA for adreno- resuspended in 150 ml buffer A (10 mM MES-NaOH, pH 7$4, corticotrophic hormone (ACTH) (Euro-Diagnostica AB, 10 mM CaCl2,0$2 mM phenylmethylsulphonyl fluoride) and Malmo, Sweden) or a competitive RIA for growth hormone homogenized by passing through a 25-gauge syringe needle (GH) (Biocode-Hycel, Lie`ge, Belgium). Within- and eight times. Aliquots of homogenate were taken for total between-batch variation (%coefficient of variation) were cellular protein quantification using the BCA assay kit (Pierce). less than 10% for both assays. The homogenates were centrifuged at 500 g at 4 8C for 10 min INS-1 cells were seeded at 1!106 cells/well in six-well to produce post-nuclear supernatants (PNS). Each PNS was tissue culture plates and incubated in G200 mM E64 for 24 h. further centrifuged at 23 000 g at 4 8C for 30 min. The The cells were then washed with Krebs–Ringer solution and supernatant corresponding to cytosol fraction was transferred incubated for 3 h in Krebs–Ringer solution, G15 mM to a clean tube, while the pellet containing the membrane C glucose and 1 mM extracellular Ca2 . Supernatant was fraction was resuspended in distilled water. Equal sample collected and spun down to remove cell debris, complete volume of 2! Laemmli buffer was added to each fraction and protease cocktail was added, and insulin level measured by boiled for 5 min before storing at K20 8C. ELISA rat insulin assay kit (Mercodia, Uppsala, Sweden). Cellular protein content of lysed cells was assayed as per BCA Western blotting kit protocol (Pierce Biotechnology, Inc., Rockford, USA) and used to normalize secretion data. Membrane and cytosol fractions were normalized for cellular protein content and separated on appropriate percentage of SDS-PAGE gels (see figure legends). Protein was transferred Insulin content onto PVDF membrane using a Hoefer TE 70 semi-dry transfer INS-1 cells were seeded as described for secretion data.
Recommended publications
  • Annexin A2 Flop-Out Mediates the Non-Vesicular Release of Damps/Alarmins from C6 Glioma Cells Induced by Serum-Free Conditions
    cells Article Annexin A2 Flop-Out Mediates the Non-Vesicular Release of DAMPs/Alarmins from C6 Glioma Cells Induced by Serum-Free Conditions Hayato Matsunaga 1,2,† , Sebok Kumar Halder 1,3,† and Hiroshi Ueda 1,4,* 1 Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; [email protected] (H.M.); [email protected] (S.K.H.) 2 Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan 3 San Diego Biomedical Research Institute, San Diego, CA 92121, USA 4 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan * Correspondence: [email protected]; Tel.: +81-75-753-4536 † These authors contributed equally to this work. Abstract: Prothymosin alpha (ProTα) and S100A13 are released from C6 glioma cells under serum- free conditions via membrane tethering mediated by Ca2+-dependent interactions between S100A13 and p40 synaptotagmin-1 (Syt-1), which is further associated with plasma membrane syntaxin-1 (Stx-1). The present study revealed that S100A13 interacted with annexin A2 (ANXA2) and this interaction was enhanced by Ca2+ and p40 Syt-1. Amlexanox (Amx) inhibited the association between S100A13 and ANXA2 in C6 glioma cells cultured under serum-free conditions in the in situ proximity ligation assay. In the absence of Amx, however, the serum-free stress results in a flop-out of ANXA2 Citation: Matsunaga, H.; Halder, through the membrane, without the extracellular release. The intracellular delivery of anti-ANXA2 S.K.; Ueda, H. Annexin A2 Flop-Out antibody blocked the serum-free stress-induced cellular loss of ProTα, S100A13, and Syt-1.
    [Show full text]
  • Is Synaptotagmin the Calcium Sensor? Motojiro Yoshihara, Bill Adolfsen and J Troy Littleton
    315 Is synaptotagmin the calcium sensor? Motojiro Yoshihara, Bill Adolfsen and J Troy Littletonà After much debate, recent progress indicates that the synaptic synaptotagmins, which are transmembrane proteins con- vesicle protein synaptotagmin I probably functions as the taining tandem calcium-binding C2 domains (C2A and calcium sensor for synchronous neurotransmitter release. C2B) (Figure 1a). Synaptotagmin I is an abundant cal- Following calcium influx into presynaptic terminals, cium-binding synaptic vesicle protein [8,9] that has been synaptotagmin I rapidly triggers the fusion of synaptic vesicles demonstrated via genetic studies to be important for with the plasma membrane and underlies the fourth-order efficient synaptic transmission in vivo [10–13]. The C2 calcium cooperativity of release. Biochemical and genetic domains of synaptotagmin I bind negatively-charged studies suggest that lipid and SNARE interactions underlie phospholipids in a calcium-dependent manner [9,14,15, synaptotagmin’s ability to mediate the incredible speed of 16–18]. There is compelling evidence that phospholipid vesicle fusion that is the hallmark of fast synaptic transmission. binding is an effector interaction in vesicle fusion, as the calcium dependence of this process ( 74 mM) and its Addresses rapid kinetics (on a millisecond scale) (Figure 1b) fit Picower Center for Learning and Memory, Department of Biology and reasonably well with the predicted requirements of Department of Brain and Cognitive Sciences, Massachusetts synaptic transmission [15]. In addition to phospholipid Institute of Technology, Cambridge, MA 02139, USA Ãe-mail: [email protected] binding, the calcium-stimulated interaction between synaptotagmin and the t-SNAREs syntaxin and SNAP- 25 [15,19–23] provides a direct link between calcium and Current Opinion in Neurobiology 2003, 13:315–323 the fusion complex.
    [Show full text]
  • A FAMILY of NEURONAL Ca2+-BINDING PROTEINS WITH
    Neuroscience Vol. 112, No. 1, pp. 51^63, 2002 ß 2002 IBRO. Published by Elsevier Science Ltd All rights reserved. Printed in Great Britain PII: S0306-4522(02)00063-5 0306-4522 / 02 $22.00+0.00 www.neuroscience-ibro.com NECABS: A FAMILY OF NEURONAL Ca2þ-BINDING PROTEINS WITH AN UNUSUAL DOMAIN STRUCTURE AND A RESTRICTED EXPRESSION PATTERN S. SUGITA,1 A. HO and T. C. SUº DHOFÃ Center for Basic Neuroscience, Department of Molecular Genetics, and Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75235, USA AbstractöCa2þ-signalling plays a major role in regulating all aspects of neuronal function. Di¡erent types of neurons exhibit characteristic di¡erences in the responses to Ca2þ-signals. Correlating with di¡erences in Ca2þ-response are expression patterns of Ca2þ-binding proteins that often serve as markers for various types of neurons. For example, in the cerebral cortex the EF-hand Ca2þ-binding proteins parvalbumin and calbindin are primarily expressed in inhibitory interneurons where they in£uence Ca2þ-dependent responses. We have now identi¢ed a new family of proteins called NECABs (neuronal Ca2þ-binding proteins). NECABs contain an N-terminal EF-hand domain that binds Ca2þ, but di¡erent from many other neuronal EF-hand Ca2þ-binding proteins, only a single EF-hand domain is present. At the C-terminus, NECABs include a DUF176 motif, a bacterial domain of unknown function that was previously not observed in eukaryotes. In rat at least three closely related NECAB genes are expressed either primarily in brain (NECABs 1 and 2) or in brain and muscle (NECAB 3).
    [Show full text]
  • Calmodulin Suppresses Synaptotagmin-2 Transcription In
    Supplemental Material can be found at: http://www.jbc.org/content/suppl/2010/09/08/M110.150151.DC1.html THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 285, NO. 44, pp. 33930–33939, October 29, 2010 © 2010 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A. Calmodulin Suppresses Synaptotagmin-2 Transcription in Cortical Neurons*□S Received for publication, June 1, 2010, and in revised form, July 23, 2010 Published, JBC Papers in Press, August 20, 2010, DOI 10.1074/jbc.M110.150151 Zhiping P. Pang‡1,2, Wei Xu‡§1, Peng Cao§, and Thomas C. Su¨dhof‡§3 From the ‡Department of Molecular and Cellular Physiology and the §Howard Hughes Medical Institute, Stanford University, Palo Alto, California 94304-5543 ؉ Calmodulin (CaM) is a ubiquitous Ca2 sensor protein that modes of synaptic vesicle exocytosis are triggered by Ca2ϩ. The plays a pivotal role in regulating innumerable neuronal func- synchronous release mode exhibits an apparent Ca2ϩ cooper- tions, including synaptic transmission. In cortical neurons, ativity of ϳ5 (1–3), and the asynchronous release shows an ؉ most neurotransmitter release is triggered by Ca2 binding to apparent Ca2ϩ cooperativity of ϳ2 (3). The role of synaptotag- synaptotagmin-1; however, a second delayed phase of release, mins as primary Ca2ϩ sensors for synchronous neurotransmit- ؉ referred to as asynchronous release, is triggered by Ca2 binding ter release is well established (4–11). However, the molecular ؉ Downloaded from to an unidentified secondary Ca2 sensor. To test whether CaM identity of the Ca2ϩ sensor that mediates asynchronous release ؉ could be the enigmatic Ca2 sensor for asynchronous release, remains unknown.
    [Show full text]
  • Observation of Ls Time-Scale Protein Dynamics in the Presence of Ln Ions
    J Biomol NMR (2007) 37:79–95 DOI 10.1007/s10858-006-9105-y ARTICLE Observation of ls time-scale protein dynamics in the presence of Ln3+ ions: application to the N-terminal domain of cardiac troponin C Christian Eichmu¨ ller Æ Nikolai R. Skrynnikov Received: 20 September 2006 / Accepted: 2 October 2006 / Published online: 19 December 2006 Ó Springer Science+Business Media B.V. 2006 Abstract The microsecond time-scale motions in the environment of the reporting spin does not change. This N-terminal domain of cardiac troponin C (NcTnC) happens, for example, when the motion involves a ‘rigid’ loaded with lanthanide ions have been investigated by structural unit such as individual a-helix. Even more means of a 1HN off-resonance spin-lock experiment. significantly, the dispersions based on pseudocontact The observed relaxation dispersion effects strongly shifts offer better chances for structural characterization increase along the series of NcTnC samples containing of the dynamic species. This method can be generalized La3+,Ce3+, and Pr3+ ions. This rise in dispersion effects for a large class of applications via the use of specially is due to modulation of long-range pseudocontact shifts designed lanthanide-binding tags. by ls time-scale dynamics. Specifically, the motion in the coordination sphere of the lanthanide ion (i.e. in the Keywords Cardiac troponin C Á Spin-lock relaxation NcTnC EF-hand motif) causes modulation of the dispersion experiment Á ls–ms protein dynamics Á paramagnetic susceptibility tensor which, in turn, causes Lanthanide Á Pseudocontact shift Á Calmodulin modulation of pseudocontact shifts. It is also probable that opening/closing dynamics, previously identified in Ca2+–NcTnC, contributes to some of the observed Introduction dispersions.
    [Show full text]
  • Therapeutics of Pediatric Urinary Tract Infections
    iMedPub Journals ARCHIVES OF MEDICINE 2015 http://wwwimedpub.com Special Issue Synaptotagmin Functions as a Larry H Bernstein Calcium Sensor: How Calcium New York Methodist Hospital, Brooklyn, Ions Regulate the Fusion of New York, USA Vesicles with Cell Membranes during Neurotransmission Corresponding Author: Larry H Bernstein New York Methodist Hospital, Brooklyn, New York, USA Short Communication This article is part of a series of articles discussed the mechanism [email protected] of the signaling of smooth muscle cells by the interacting parasympathetic neural innervation that occurs by calcium Tel: 2032618671 triggering neuro-transmitter release by initiating synaptic vesicle fusion. It involves the interaction of soluble N-acetylmaleimide- sensitive factor (SNARE) and SM proteins, and in addition, the the tip, calcium enters the cell. In response, the neuron liberates discovery of a calcium-dependsent Syt1 (C) domain of protein- chemical messengers—neurotransmitters—which travel to the kinase C isoenzyme, which binds to phospholipids. It is reasonable next neuron and thus pass the baton. to consider that it differs from motor neuron activation of skeletal He further stipulates that synaptic vesicle exocytosis operates muscles, mainly because the innervation is in the involuntary by a general mechanism of membrane fusion that revealed domain. The cranial nerve rooted innervation has evolved itself to be a model for all membrane fusion, but that is uniquely comes from the spinal ganglia at the corresponding level of the regulated by a calcium-sensor protein called synaptotagmin. spinal cord. It is in this specific neural function that we find a Neurotransmission is thus a combination of electrical signal and mechanistic interaction with adrenergic hormonal function, a chemical transport.
    [Show full text]
  • Advanced Fiber Type-Specific Protein Profiles Derived from Adult Murine
    proteomes Article Advanced Fiber Type-Specific Protein Profiles Derived from Adult Murine Skeletal Muscle Britta Eggers 1,2,* , Karin Schork 1,2, Michael Turewicz 1,2 , Katalin Barkovits 1,2 , Martin Eisenacher 1,2, Rolf Schröder 3, Christoph S. Clemen 4,5 and Katrin Marcus 1,2,* 1 Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany; [email protected] (K.S.); [email protected] (M.T.); [email protected] (K.B.); [email protected] (M.E.) 2 Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801 Bochum, Germany 3 Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; [email protected] 4 German Aerospace Center, Institute of Aerospace Medicine, 51147 Cologne, Germany; [email protected] 5 Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany * Correspondence: [email protected] (B.E.); [email protected] (K.M.) Abstract: Skeletal muscle is a heterogeneous tissue consisting of blood vessels, connective tissue, and muscle fibers. The last are highly adaptive and can change their molecular composition depending on external and internal factors, such as exercise, age, and disease. Thus, examination of the skeletal muscles at the fiber type level is essential to detect potential alterations. Therefore, we established a protocol in which myosin heavy chain isoform immunolabeled muscle fibers were laser Citation: Eggers, B.; Schork, K.; microdissected and separately investigated by mass spectrometry to develop advanced proteomic Turewicz, M.; Barkovits, K.; profiles of all murine skeletal muscle fiber types.
    [Show full text]
  • Synaptotagmin 7 Functions As a Ca2+-Sensor for Synaptic Vesicle Replenishment
    IN PRESS Synaptotagmin 7 Functions as a Ca2+-sensor for Synaptic Vesicle Replenishment Huisheng Liu (University of Wisconsin), Hua Bai (University of Wisconsin), Enfu Hui (University of Wisconsin), Lu Yang (University of Wisconsin), Chantell Evans (University of Wisconsin), Zhao Wang (University of Wisconsin), Sung Kwon (University of Wisconsin), and Edwin Chapman (University of Wisconsin) Abstract: Synaptotagmin (syt) 7 is one of three syt isoforms found in all metazoans; it is ubiquitously expressed, yet its function in neurons remains obscure. Here, we resolved Ca2+-dependent and Ca2+-independent synaptic vesicle (SV) replenishment pathways, and found that syt 7 plays a selective and critical role in the Ca2+-dependent pathway. Mutations that disrupt Ca2+-binding to syt 7 abolish this function, suggesting that syt 7 functions as a Ca2+-sensor for replenishment. The Ca2+-binding protein calmodulin (CaM) has also been implicated in SV replenishment, and we found that loss of syt 7 was phenocopied by a CaM antagonist. Moreover, we discovered that syt 7 binds to CaM in a highly specific and Ca2+-dependent manner; this interaction requires intact Ca2+-binding sites within syt 7. Together, these data indicate that a complex of two conserved Ca2+-binding proteins, syt 7 and CaM, serve as a key regulator of SV replenishment in presynaptic nerve terminals. http://dx.doi.org/10.7554/elife.01524 Please address questions to [email protected]. Details on how to cite eLife articles in news stories and our media policy are available at http://www.elifesciences.org/news/for-the- press. Articles published in eLife may be read on the journal site at http://elife.elifesciences.org.
    [Show full text]
  • Endoplasmic Reticulum Stress Is Important for the Manifestations Ofα
    3306 • The Journal of Neuroscience, March 7, 2012 • 32(10):3306–3320 Neurobiology of Disease Endoplasmic Reticulum Stress Is Important for the Manifestations of ␣-Synucleinopathy In Vivo Emanuela Colla,1 Philippe Coune,2 Ying Liu,1 Olga Pletnikova,1 Juan C Troncoso,1 Takeshi Iwatsubo,3 Bernard L. Schneider,2 and Michael K. Lee1,4,5 1Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, 2Brain Mind Institute, Ecole Polytechnique Fe´de´rale de Lausanne (EPFL), 1015 Lausanne, Switzerland, 3Department of Neuropathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku Tokyo 113-0030, Japan, and 4Department of Neuroscience and 5Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55102 Accumulation of misfolded ␣-synuclein (␣S) is mechanistically linked to neurodegeneration in Parkinson’s disease (PD) and other ␣-synucleinopathies. However, how ␣S causes neurodegeneration is unresolved. Because cellular accumulation of misfolded proteins can lead to endoplasmic reticulum stress/unfolded protein response (ERS/UPR), chronic ERS could contribute to neurodegeneration in ␣-synucleinopathy. Using the A53T mutant human ␣S transgenic (A53T␣S Tg) mouse model of ␣-synucleinopathy, we show that disease onset in the ␣S Tg model is coincident with induction of ER chaperones in neurons exhibiting ␣S pathology. However, the neuronal ER chaperone induction was not accompanied by the activation of phospho-eIF2␣, indicating that ␣-synucleinopathy is associated with abnormal UPR that could promote cell death. Induction of ERS/UPR was associated with increased levels of ER/microsomal (ER/M) associated ␣S monomers and aggregates. Significantly, human PD cases also exhibit higher relative levels of ER/M ␣S than the control cases.
    [Show full text]
  • Actin Filament Disassembly Is a Sufficient Final Trigger for Exocytosis in Nonexcitable Cells Shmuel Muallem, Katarzyna Kwiatkowska, Xin Xu, and Helen L
    Actin Filament Disassembly Is a Sufficient Final Trigger for Exocytosis in Nonexcitable Cells Shmuel Muallem, Katarzyna Kwiatkowska, Xin Xu, and Helen L. Yin Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75235-9040 Abstract. Although the actin cytoskeleton has been Direct visualization and quantitation of actin filaments implicated in vesicle trafficking, docking and fusion, showed that B-thymosin, like agonists, induced actin its site of action and relation to the Ca2÷-mediated ac- depolymerization at the apical membrane where exo- tivation of the docking and fusion machinery have cytosis occurs. Blocking actin depolymerization by not been elucidated. In this study, we examined the phalloidin or neutralizing fl-thymosin by complexing role of actin filaments in regulated exocytosis by in- with exogenous actin prevented exocytosis. These troducing highly specific actin monomer-binding findings show that the cortical actin network acts as a proteins, the ~-thymosins or a gelsolin fragment, into dominant negative clamp which blocks constitutive streptolysin O-permeabilized pancreatic acinar cells. exocytosis. In addition, actin filaments also have a These proteins had stimulatory and inhibitory ef- positive role. High concentrations of the actin depoly- fects. Low concentrations elicited rapid and robust merizing proteins inhibited all phases of exocytosis. exocytosis with a profile comparable to the initial The inhibition overrides stimulation by agonists and all phase of regulated exocytosis, but without raising downstream effectors tested, suggesting that exocytosis [Ca2+], and even when [Ca 2÷] was clamped at low lev- cannot occur without a minimal actin cytoskeletal els by EGTA. No additional cofactors were required. structure. hE final steps of regulated exocytosis involve vesicle In the present study, we used a different approach to exam- docking, triggering, and membrane fusion.
    [Show full text]
  • Conserved Arginine Residues in Synaptotagmin 1 Regulate Fusion Pore Expansion Through Membrane Contact
    ARTICLE https://doi.org/10.1038/s41467-021-21090-x OPEN Conserved arginine residues in synaptotagmin 1 regulate fusion pore expansion through membrane contact Sarah B. Nyenhuis1,4, Nakul Karandikar 1, Volker Kiessling 2,3, Alex J. B. Kreutzberger 2,3,5, Anusa Thapa1, ✉ Binyong Liang2,3, Lukas K. Tamm 2,3 & David S. Cafiso 1,2,3 2+ 1234567890():,; Synaptotagmin 1 is a vesicle-anchored membrane protein that functions as the Ca sensor for synchronous neurotransmitter release. In this work, an arginine containing region in the second C2 domain of synaptotagmin 1 (C2B) is shown to control the expansion of the fusion pore and thereby the concentration of neurotransmitter released. This arginine apex, which is opposite the Ca2+ binding sites, interacts with membranes or membrane reconstituted SNAREs; however, only the membrane interactions occur under the conditions in which fusion takes place. Other regions of C2B influence the fusion probability and kinetics but do not control the expansion of the fusion pore. These data indicate that the C2B domain has at least two distinct molecular roles in the fusion event, and the data are consistent with a model where the arginine apex of C2B positions the domain at the curved membrane surface of the expanding fusion pore. 1 Department of Chemistry, University of Virginia, Charlottesville, VA, USA. 2 Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA. 3 Center for Membrane Biology, University of Virginia, Charlottesville, VA, USA. 4Present address: Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.
    [Show full text]
  • The Crystal Structure of Calcium-Free Human M-Calpain Suggests an Electrostatic Switch Mechanism for Activation by Calcium
    The crystal structure of calcium-free human m-calpain suggests an electrostatic switch mechanism for activation by calcium Stefan Strobl*†‡, Carlos Fernandez-Catalan*†, Marianne Braun†, Robert Huber†, Hajime Masumoto§, Kazuhiro Nakagawa§, Akihiro Irie§, Hiroyuki Sorimachi§¶, Gleb Bourenkowʈ, Hans Bartunikʈ, Koichi Suzuki§, and Wolfram Bode†** †Max-Planck-Institute of Biochemistry, Am Klopferspitz 18a, D 82 152 Planegg-Martinsried, Germany; §Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; and ʈArbeitsgruppe Proteindynamik Max-Planck-Gesellschaft Arbeitsgruppen für Strukfurelle Molekularbiologie, c͞o Deutsches Elektronen Synchrotron, D-22603 Hamburg, Germany Contributed by Robert Huber, November 16, 1999 Calpains (calcium-dependent cytoplasmic cysteine proteinases) are functioning of calpains, the structures of full-length calpain must implicated in processes such as cytoskeleton remodeling and signal to be known. We (10) and others (11) have communicated transduction. The 2.3-Å crystal structure of full-length het- crystals of full-length human and partially truncated rat m- -erodimeric [80-kDa (dI-dIV) ؉ 30-kDa (dV؉dVI)] human m-calpain calpain, respectively. In the following, we describe the funda crystallized in the absence of calcium reveals an oval disc-like mental properties of full-length human m-calpain and discuss the shape, with the papain-like catalytic domain dII and the two possible mechanisms of calcium activation. calmodulin-like domains dIV؉dVI occupying opposite poles, and the tumor necrosis factor ␣-like ␤-sandwich domain dIII and the Materials and Methods -N-terminal segments dI؉dV located between. Compared with Full-length human m-calpain containing an N-terminal GlyArg -papain, the two subdomains dIIa؉dIIb of the catalytic unit are ArgAspArgSer L-chain elongation was overexpressed in a bac rotated against one another by 50°, disrupting the active site and ulovirus expression system and was purified (12).
    [Show full text]