As We Proceed Through Organic Chemistry We Will Often Focus Our

Total Page:16

File Type:pdf, Size:1020Kb

As We Proceed Through Organic Chemistry We Will Often Focus Our 1 Lecture 8 As we proceed through organic chemistry we will often focus our interest on a limited portion of a structure when the remainder of the structure is not important to the topic of discussion. Symbolic representations for generic portions of a structure are given below and are commonly used. We will often use these representations in this and the coming chapters. R = any general carbon group (occasionally, it could also represent hydrogen) Ar = any general aromatic group, (when more specificity than just R is desired) I. Nomenclature Rules For Alkanes and Cycloalkanes The following list provides the names for carbon chains of various lengths. They must be memorized (through C12 for problems in this book). a. CH4 methane (C1) k. CH3(CH2)9CH3 undecane (C11) u. CH3(CH2)19CH3 henicosane (C21) b. CH3CH3 ethane (C2) l. CH3(CH2)10CH3 dodecane (C12) v. CH3(CH2)20CH3 doicosane (C22) c. CH3CH2CH3 propane (C3) m. CH3(CH2)11CH3 tridecane (C13) w. CH3(CH2)21CH3 triicosane (C23) d. CH3CH2CH2CH3 butane (C4) n. CH3(CH2)12CH3 tetradecane (C14) x. CH3(CH2)22CH3 tetraicosane (C24) e. CH3(CH2)3CH3 pentane (C5) o. CH3(CH2)13CH3 pentadecane (C15) y. CH3(CH2)23CH3 pentaicosane (C25) f. CH3(CH2)4CH3 hexane (C6) p. CH3(CH2)14CH3 hexadecane (C16) z. CH3(CH2)24CH3 hexaicosane (C26) g. CH3(CH2)5CH3 heptane (C7) q. CH3(CH2)15CH3 heptadecane (C17) aa. CH3(CH2)25CH3 heptaicosane (C27) h. CH3(CH2)6CH3 octane (C8) r. CH3(CH2)16CH3 octadecane (C18) bb. CH3(CH2)26CH3 octaicosane (C28) i. CH3(CH2)7CH3 nonane (C9) s. CH3(CH2)17CH3 nonadecane (C19) cc. CH3(CH2)27CH3 nonaicosane (C29) j. CH3(CH2)8CH3 decane (C10) t. CH3(CH2)18CH3 icosane (C20) dd. CH3(CH2)28CH3 triacontane (C30) Steps to Name an Alkane 1. Locate the longest carbon chain present. This becomes the parent name. Make sure to check at each branch point for the longest chain path. (Unless it is obvious, count at each branch point through all possible paths.) Where is the longest chain? (R = substituent branch) 2 incorrect 1 3 R 2 4 6 8 10 R 4 6 8 10 12 1 7 9 5 7 9 11 3 5 This chain is longer with This chain is 10 Cs long. 12 Cs so we pick this one. 2 Lecture 8 2. If there are several branches radiating out from a central carbon, you can count how long those branches are and use the longest two plus the central carbon and add them all together. 4 4 3 = a central carbon position 4 2 These two branches are 5 3 1 3 equivalent in length, but 6 the lower one is chosen 3 1 5 4 2 2 4 These two branches are equivalent because it has more 1 3 5 2 and because they are longest must branches on it. It must 4 4 3 6 be part of the longest chain. Either also be part of the longest 3 chain. 4 one can be used. 4 4 = part of the longest chain longest chain = 5 + 6 + 1 = 12 parent name = dodecane Number the longest chain from the end nearest a branch point or first point of difference. (The lowest first number decides which end of the chain you number from.) What end do you number from? incorrect 2 11 12 R on C 1 3 R on C4 10 9 R 9 7 3 1 R 4 6 8 10 12 6 5 4 5 7 9 11 8 2 A lower number for the substituent branch, R, is preferred. C4 is better than C9 so number from the left end. The number will be used to specify the position of the alkyl branch. If additional chains are present, the lowest number of the first chain determines the numbering direction on the longest chain. C3 substitution is lower than C4 substitution 11 12 10 The direction of the numbering is reversed because the new branch would get R 9 7 5 3 1 a lower number, C3, at the first point of differnece, than C4 if the numbering 8 6 4 2 occurred from the opposite direction. 3. When an alkane portion is present as a substituent/branch (i.e. it is not part of the longest carbon chain) one drops the -ane suffix of a similar length alkane and adds the suffix -yl. Alkane becomes alkyl when it is a substituent; (ethane Æ eth + -yl Æ ethyl.) These substituent names are placed in front of the parent name, as prefixes, with their designating numbers immediately in front of them. Use the numbers obtained from rule 2 to show the location(s) of any substituent(s) or branch(es). Each substituent gets a number, even if it is identical to another substituent and on the same carbon. Hyphens are used to separate the numbers from the letters. Separate substituent position numbers from one another with commas (if the numbers are adjacent). The substituents are listed in 3 Lecture 8 alphabetical order. The numerical prefixes (see rule 4) do not count in deciding the alphabetical order (unless they are inside parentheses). 11 12 substituents 10 3-methyl There are two one carbon branches on C3 and C9 carbons 8 8-ethyl 9 7 5 3 1 and two two carbon branches, both on the C8 carbon. The 6 4 2 8-ethyl 9-methyl first branch at C3 determines the direction of numbering because it generates the lowest possible number at the first point of difference. parent name = dodecane 1 C branch = methyl 7 C branch = heptyl 2 C branch = ethyl 8 C branch = octyl 3 C branch = propyl 9 C branch = nonyl 4 C branch = butyl 10 C branch = decyl 5 C branch = pentyl 11 C branch = undecyl 6 C branch = hexyl 12 C branch = dodecyl 4. For identical substituents, use the prefixes di-, tri-, tetra-, penta-, hexa-, etc. to indicate 2, 3, 4, 5, 6, etc. of these substituents. These prefixes are not considered in deciding the alphabetical order of each substituent (unless inside parentheses). 11 12 number of identical numerical 10 substituents prefix 2 di- 8 9 1 3 tri- 7 5 4 3 6 2 4 tetra- 5 prnta- 6 hexa- 7 hepta- 8,8-diethyl-3,9-dimethyldodecane etc. 5. With two or more possible longest chains of identical length, choose as the parent name the one with the greater number of substituents. This will produce simpler substituent names. 7-butyl Number from the right because 9-propyl the first branch appears at C . These two branches are 2 5-methyl equivalent in length, but 2-methyl the lower one is chosen 10 because it has more 8 2 9 7 5 3 These two branches are equivalent. branches on it. 12 11 4 6 Either one can be used. 1 10-methyl 8,8-diethyl The substituent alphabetical orders are: b > e > m > p (don't count "d" of di or "t:" of tri-). If you do not write these in 7-butyl-8,8-diethyl-2,5,10-trimethyl-9-propyldodecane the correct order, your structure will still be drawn correctly from the given name. 4 Lecture 8 6. For complex substituents (substituents that have substituents on themselves), follow the above rules for alkanes except: i. The -ane suffix of the subparent name is changed to -yl (see rule 3 above) ii. The longest chain of the complex branch always uses the carbon directly attached to the parent chain as C1. Starting at this position one would count the longest substituent chain possible, as shown below. iii. Parentheses are used to separate the entire complex substituent name, its numbers, its branches, and its subparent name, from the principle parent name. A number and a hyphen precede the entire complex substituent name in parentheses to indicate its location on the parent chain. If the complex branch has a common name, this can be used and no parentheses are necessary, but you have to memorize these. iv. Prefixes do count in alphabetizing the branch names when part of a complex substituent name and inside parentheses. This is not true for simple substituents on the parent chain. 2,10-dimethyl 4' =part of the longest chain 2'' 3' 5-(2-methylpropyl) 3' 1' = point of attachment to longest chain 2'' 1'' 2' 3' 1' 7-(1-ethylbutyl) 2' 1'' 1'' = point of attachment to longest branch chain 1' 1' 10 8 2 1' Outside the parentheses the numerical prefix does not 8-(1,2-dimethylpropyl) 9 5 3 1211 7 6 4 count for alphabetical order, but inside the parentheses 9-propyl 2' the numerical prefix does count for alphabetical order. 1' 1 If you do not write these prefix names in the correct order, 1'' 1' 3' parent chain = dodecane your structure will still be drawn correctly from the given 1'' name. 8-(1,2-dimethylpropyl)-7-(1-ethylbutyl)-2,10-dimethyl-5-(2-methylpropyl)-9-propyldodecane v. If identical complex substituent names are present, a different set of prefixes is used. These are listed below. The appropriate prefix is placed before the parentheses containing the complex substituent name. Prefix Number of Identical Complex Branches bis- 2 tris- 3 tetrakis- 4 pentakis- 5 hexakis- 6 etc. 1' 2' 2 1 5 7 3 1' 2 4 6 10 2' 1 8 3 9 6 4 5 4,4,5,7-tetrakis(1-methylethyl)decane 1,4-bis(1,1-dimethylethyl)cyclohexane 5 Lecture 8 Examples 2 1 CC CC CC Rule 1 - The longest chain is six carbons. 3 1 2 C C CCC C C CCC C C CCC Rule 2 - Number from the end closer to the 3 3 21 two two carbon branches, as C3 positions C C C C C C C C C instead of C positions.
Recommended publications
  • Implications for Extraterrestrial Hydrocarbon Chemistry: Analysis Of
    The Astrophysical Journal, 889:3 (26pp), 2020 January 20 https://doi.org/10.3847/1538-4357/ab616c © 2020. The American Astronomical Society. All rights reserved. Implications for Extraterrestrial Hydrocarbon Chemistry: Analysis of Acetylene (C2H2) and D2-acetylene (C2D2) Ices Exposed to Ionizing Radiation via Ultraviolet–Visible Spectroscopy, Infrared Spectroscopy, and Reflectron Time-of-flight Mass Spectrometry Matthew J. Abplanalp1,2 and Ralf I. Kaiser1,2 1 W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA 2 Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA Received 2019 October 4; revised 2019 December 7; accepted 2019 December 10; published 2020 January 20 Abstract The processing of the simple hydrocarbon ice, acetylene (C2H2/C2D2), via energetic electrons, thus simulating the processes in the track of galactic cosmic-ray particles penetrating solid matter, was carried out in an ultrahigh vacuum surface apparatus. The chemical evolution of the ices was monitored online and in situ utilizing Fourier transform infrared spectroscopy (FTIR) and ultraviolet–visible spectroscopy and, during temperature programmed desorption, via a quadrupole mass spectrometer with an electron impact ionization source (EI-QMS) and a reflectron time-of-flight mass spectrometer utilizing single-photon photoionization (SPI-ReTOF-MS) along with resonance-enhanced multiphoton photoionization (REMPI-ReTOF-MS). The confirmation of previous in situ studies of ethylene ice irradiation
    [Show full text]
  • First Principles Prediction of Thermodynamic Properties
    2 First Principles Prediction of Thermodynamic Properties Hélio F. Dos Santos and Wagner B. De Almeida NEQC: Núcleo de Estudos em Química Computacional, Departamento de Química, ICE Universidade Federal de Juiz de Fora (UFJF), Campus Universitário Martelos, Juiz de Fora LQC-MM: Laboratório de Química Computacional e Modelagem Molecular Departamento de Química, ICEx, Universidade Federal de Minas Gerais (UFMG) Campus Universitário, Pampulha, Belo Horizonte Brazil 1. Introduction The determination of the molecular structure is undoubtedly an important issue in chemistry. The knowledge of the tridimensional structure allows the understanding and prediction of the chemical-physics properties and the potential applications of the resulting material. Nevertheless, even for a pure substance, the structure and measured properties reflect the behavior of many distinct geometries (conformers) averaged by the Boltzmann distribution. In general, for flexible molecules, several conformers can be found and the analysis of the physical and chemical properties of these isomers is known as conformational analysis (Eliel, 1965). In most of the cases, the conformational processes are associated with small rotational barriers around single bonds, and this fact often leads to mixtures, in which many conformations may exist in equilibrium (Franklin & Feltkamp, 1965). Therefore, the determination of temperature-dependent conformational population is very much welcomed in conformational analysis studies carried out by both experimentalists and theoreticians.
    [Show full text]
  • Comparing Models for Measuring Ring Strain of Common Cycloalkanes
    The Corinthian Volume 6 Article 4 2004 Comparing Models for Measuring Ring Strain of Common Cycloalkanes Brad A. Hobbs Georgia College Follow this and additional works at: https://kb.gcsu.edu/thecorinthian Part of the Chemistry Commons Recommended Citation Hobbs, Brad A. (2004) "Comparing Models for Measuring Ring Strain of Common Cycloalkanes," The Corinthian: Vol. 6 , Article 4. Available at: https://kb.gcsu.edu/thecorinthian/vol6/iss1/4 This Article is brought to you for free and open access by the Undergraduate Research at Knowledge Box. It has been accepted for inclusion in The Corinthian by an authorized editor of Knowledge Box. Campring Models for Measuring Ring Strain of Common Cycloalkanes Comparing Models for Measuring R..ing Strain of Common Cycloalkanes Brad A. Hobbs Dr. Kenneth C. McGill Chemistry Major Faculty Sponsor Introduction The number of carbon atoms bonded in the ring of a cycloalkane has a large effect on its energy. A molecule's energy has a vast impact on its stability. Determining the most stable form of a molecule is a usefol technique in the world of chemistry. One of the major factors that influ­ ence the energy (stability) of cycloalkanes is the molecule's ring strain. Ring strain is normally viewed as being directly proportional to the insta­ bility of a molecule. It is defined as a type of potential energy within the cyclic molecule, and is determined by the level of "strain" between the bonds of cycloalkanes. For example, propane has tl1e highest ring strain of all cycloalkanes. Each of propane's carbon atoms is sp3-hybridized.
    [Show full text]
  • Text Related to Segment 5.02 ©2002 Claude E. Wintner from the Previous Segment We Have the Value of the Heat of Combustion Of
    Text Related to Segment 5.02 ©2002 Claude E. Wintner From the previous segment we have the value of the heat of combustion of an "unstrained" methylene unit as -157.4 kcal/mole. On this basis one would predict that combustion of "unstrained" cyclopropane should liberate 3 X 157.4 = 472.2 kcal/mole; however, when cyclopropane is burned, a value of 499.8 kcal/mole is measured for the actual heat of combustion. The difference of 27.6 kcal/mole is interpreted as representing the higher internal energy ("strain energy") of real cyclopropane as compared to a postulated strain-free "model." ("Model" in this usage speaks of a proposal, or postulate.) These facts are graphed conveniently on an energy diagram as follows: "Strain Energy" represents the error units: kcal/mole not to scale in the "strain-free model" real cyclopropane + 4.5 O2 27.6 "strain-free model" of cyclopropane 499.8 observed heat of combustion + 4.5 O2 472.2 3CO2 + 3H2O heat of combustion predicted for "strain-free model" Note that this estimate of the strain energy in cyclopropane amounts to 9.2 kcal/mole of strain per methylene group (dividing 27.6 by 3, because of the three carbon atoms). Comparable values in kcal/mole for other small and medium rings are given in the following table. As one might expect, in general the strain decreases as the ring is enlarged. units: kcal/mole n Total Strain Strain per CH2 3 27.6 9.2 (CH2)n 4 26.3 6.6 5 6.2 1.2 6 0.1 0.0 ! 7 6.2 0.9 8 9.7 1.2 9 12.6 1.4 10 12.4 1.2 12 4.1 0.3 15 1.9 0.1 Without entering into a discussion of the relevant bonding concepts here, and instead relying on geometry alone, interpretation of the source of the strain energy in cyclopropane and cyclobutane is to some extent self-evident.
    [Show full text]
  • Safety Data Sheet Acc
    Page 1/8 Safety Data Sheet acc. to OSHA HCS Printing date 03/18/2019 Reviewed on 03/18/2019 1 Identification · Product identifier · Product Name: EVEN ALK (C16-C36) · Part Number: ENC-EVEN-1K · Application of the substance / the mixture Certified Reference Material · Details of the supplier of the safety data sheet · Manufacturer/Supplier: SPEX CertiPrep, LLC. 203 Norcross Ave, Metuchen, NJ 08840 USA · Information department: product safety department · Emergency telephone number: Emergency Phone Number (24 hours) CHEMTREC (800-424-9300) Outside US: 703-527-3887 2 Hazard(s) identification · Classification of the substance or mixture GHS02 Flame Flam. Liq. 2 H225 Highly flammable liquid and vapor. GHS08 Health hazard Carc. 2 H351 Suspected of causing cancer. GHS07 Acute Tox. 4 H302 Harmful if swallowed. · Label elements · GHS label elements The product is classified and labeled according to the Globally Harmonized System (GHS). · Hazard pictograms GHS02 GHS07 GHS08 · Signal word Danger · Hazard-determining components of labeling: dichloromethane · Hazard statements H225 Highly flammable liquid and vapor. H302 Harmful if swallowed. H351 Suspected of causing cancer. · Precautionary statements Keep away from heat/sparks/open flames/hot surfaces. - No smoking. Use explosion-proof electrical/ventilating/lighting/equipment. Wear protective gloves/protective clothing/eye protection/face protection. If on skin (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower. Store locked up. Dispose of contents/container in accordance with local/regional/national/international regulations. · Classification system: · NFPA ratings (scale 0 - 4) Health = 1 3 Fire = 3 1 0 Reactivity = 0 (Contd. on page 2) US 48.1.17.1 Page 2/8 Safety Data Sheet acc.
    [Show full text]
  • Managing Health Risks of Solvent
    BEST PRACTICE GUIDELINES Managing the Health Risks of Solvent Exposure Managing the Health Risks of Solvent Exposure September 2015 CONTENTS 1 Introduction 5 1.1 SCOPE AND OBJECTIVES 5 2 The regulatory landscape 6 2.1 CAD 6 2.2 REACH 6 2.3 CLP 8 3 Health effects and properties of solvents 9 3.1 EFFECTS OF SOLVENTS VIA SKIN AND EYE CONTACT 9 3.2 EFFECTS VIA INHALATION 10 3.3 CLASSIFICATION AND LABELLING OF SOLVENTS 10 3.4 HAZARD AND RISK 11 4 Exposure scenarios (es) - Basic principles 12 4.1 DEVELOPING AN ES 13 4.2 SOLVENTS MANUFACTURERS MEET THE CHALLENGE OF DEVELOPING ES 13 5 The solvents industry’s approach to REACH 14 5.1 NAMING CONVENTION FOR HYDROCARBON SOLVENTS 14 5.2 DEVELOPMENT OF GENERIC EXPOSURE SCENARIOS (GES) 14 5.2.1 THE USE DESCRIPTOR SYSTEM (UDS) (REF 15) 15 5.2.2 THE ESIG GES LIBRARY 15 6 Exposure limit values for solvents 17 6.1 OELs AND DNELs 17 6.2 INDUSTRY-BASED OELs FOR HYDROCARBON SOLVENTS 18 ManagingFlammability: the Health Risks A safety of Solvent guide Exposurefor users 7 Responsibilities of solvent users 19 8 Role of solvent vapour monitoring 23 9 Key messages 24 10 List of acronyms 25 11 References 28 APPENDIX 1 Overview of control approaches for solvents required by CAD 29 APPENDIX 2 CLP Classification phrases for solvents 30 APPENDIX 3 Hydrocarbon solvents registered under REACH - key data 31 APPENDIX 4 Oxygenated solvents registered under REACH - key data 43 APPENDIX 5 Example ES for a hydrocarbon solvent containing N-Hexane (>5-80%) 50 APPENDIX 6 List of common solvent uses matched to ESIG generic exposure scenario (GES) title with examples of relevant solvent types 53 APPENDIX 7 Mixtures 62 3 Managing the Health Risks of Solvent Exposure DISCLAIMER The information contained in this paper is intended for guidance only and whilst the information is provided in utmost good faith and has been based on the best information currently available, it is to be relied upon at the user’s own risk.
    [Show full text]
  • The Enthalpy of Formation of Organic Compounds with “Chemical Accuracy”
    chemengineering Article Group Contribution Revisited: The Enthalpy of Formation of Organic Compounds with “Chemical Accuracy” Robert J. Meier Pro-Deo Consultant, 52525 Heinsberg, North-Rhine Westphalia, Germany; [email protected] Abstract: Group contribution (GC) methods to predict thermochemical properties are of eminent importance to process design. Compared to previous works, we present an improved group contri- bution parametrization for the heat of formation of organic molecules exhibiting chemical accuracy, i.e., a maximum 1 kcal/mol (4.2 kJ/mol) difference between the experiment and model, while, at the same time, minimizing the number of parameters. The latter is extremely important as too many parameters lead to overfitting and, therewith, to more or less serious incorrect predictions for molecules that were not within the data set used for parametrization. Moreover, it was found to be important to explicitly account for common chemical knowledge, e.g., geminal effects or ring strain. The group-related parameters were determined step-wise: first, alkanes only, and then only one additional group in the next class of molecules. This ensures unique and optimal parameter values for each chemical group. All data will be made available, enabling other researchers to extend the set to other classes of molecules. Keywords: enthalpy of formation; thermodynamics; molecular modeling; group contribution method; quantum mechanical method; chemical accuracy; process design Citation: Meier, R.J. Group Contribution Revisited: The Enthalpy of Formation of Organic Compounds with “Chemical Accuracy”. 1. Introduction ChemEngineering 2021, 5, 24. To understand chemical reactivity and/or chemical equilibria, knowledge of thermo- o https://doi.org/10.3390/ dynamic properties such as gas-phase standard enthalpy of formation DfH gas is a necessity.
    [Show full text]
  • Toxicological Assessment of Hanford Tank Headspace Chemicals - Determination of Chemicals of Potential Concern
    PNNL-14949 Rev. 0 Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy Toxicological Assessment of Hanford Tank Headspace Chemicals - Determination of Chemicals of Potential Concern I. E. Burgeson N. A. Moore A. L. Bunn J. L. Huckaby December 2004 • Prepared for CH2M HILL Hanford Group, Inc. LEGAL NOTICE This report was prepared by Battelle Memorial Institute (Battelle) as an account of sponsored research activities. Neither Client nor Battelle nor any person acting on behalf of either: MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, process, or composition disclosed in this report may not infringe privately owned rights; or Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, process, or composition disclosed in this report. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Battelle. The views and opinions of authors expressed herein do not necessarily state or reflect those of Battelle. @ This document was printed on recycled paper. (9/97) PNNL-14949 Rev. 0 Toxicological Assessment of Hanford Tank Headspace Chemicals - Determination of Chemicals of Potential Concern I. E. Burgeson N. A. Moore A. L. Bunn J. L. Huckaby December 2004 Prepared for CH2M HILL Hanford Group, Inc. Pacific Northwest Nationa] Laboratory Richland, Washington 99352 Summary A toxicological assessment of chemicals found, or predicted to be present, in Hanford tank headspaces was performed by Pacific Northwest National Laboratory in support of the Industrial Hygiene Chemical Vapor Technical Basis produced by CH2M HILL Hanford Group, Inc.
    [Show full text]
  • Adsorption of Light Alkanes on the Surface of Substrates with Varying Symmetry and Composition
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2018 Adsorption of Light Alkanes on the Surface of Substrates with Varying Symmetry and Composition Nicholas Allan Strange University of Tennessee Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Strange, Nicholas Allan, "Adsorption of Light Alkanes on the Surface of Substrates with Varying Symmetry and Composition. " PhD diss., University of Tennessee, 2018. https://trace.tennessee.edu/utk_graddiss/4967 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Nicholas Allan Strange entitled "Adsorption of Light Alkanes on the Surface of Substrates with Varying Symmetry and Composition." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Chemistry. John Z. Larese, Major Professor We have read this dissertation and recommend its acceptance: Takeshi Egami, Jeffrey D. Kovac, Brian K. Long Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Adsorption of Light Alkanes on the Surface of Substrates with Varying Symmetry and Composition A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Nicholas Allan Strange May 2018 Copyright © 2018 by Nicholas A.
    [Show full text]
  • Baeyer Strain Theory Introduction Van't Hoff and Lebel Proposed
    Baeyer Strain Theory instable cycloalkanes. The large ring systems involve negative strain hence do not exists. Introduction The bond angles in cyclohexane and higher Van’t Hoff and Lebel proposed tetrahedral cycloalkanes (cycloheptane, cyclooctane, geometry of carbon. The bond angel is of 109˚ cyclononane……..) are not larger than 109.5 28' (or 109.5˚) for carbon atom in tetrahedral because the carbon rings of those compounds geometry (methane molecule). Baeyer are not planar (flat) but they are puckered observed different bond angles for different (Wrinkled). cycloalkanes and also observed some These assumptions are helpful to understand different properties and stability .On this instability of cycloalkane ring systems. basis, he proposed angle strain theory. The theory explains reactivity and stability of Cyclopropane is more prone to cycloalkanes. Baeyer proposed that the undergo ring opening reaction than optimum overlap of atomic orbitals is cyclobutane or cyclopentane achieved for bond angel of 109.5 .In short, it is Cyclopropane is more reactive than ideal bond angle for alkane compounds. cyclobutane and cyclopentane Effective and optimum overlap of atomic orbitals produces maximum bond strength The ring of cyclopropane is triangle. hance stable molecule. All the three angles are of 60 in place of 109.5 (normal bond angle for If bond angles deviate from the ideal carbon atom) to adjust them into then ring produce strain. triangle ring system. Higher the strain higher the In same manner, cyclobutane is instability. square and the bond angles are of 90o in place of 109.5o (normal bond Higher strain increases reactivity and angle for carbon atom) to adjust them increases heat of combustion.
    [Show full text]
  • Cycloalkanes, Cycloalkenes, and Cycloalkynes
    CYCLOALKANES, CYCLOALKENES, AND CYCLOALKYNES any important hydrocarbons, known as cycloalkanes, contain rings of carbon atoms linked together by single bonds. The simple cycloalkanes of formula (CH,), make up a particularly important homologous series in which the chemical properties change in a much more dramatic way with increasing n than do those of the acyclic hydrocarbons CH,(CH,),,-,H. The cyclo- alkanes with small rings (n = 3-6) are of special interest in exhibiting chemical properties intermediate between those of alkanes and alkenes. In this chapter we will show how this behavior can be explained in terms of angle strain and steric hindrance, concepts that have been introduced previously and will be used with increasing frequency as we proceed further. We also discuss the conformations of cycloalkanes, especially cyclo- hexane, in detail because of their importance to the chemistry of many kinds of naturally occurring organic compounds. Some attention also will be paid to polycyclic compounds, substances with more than one ring, and to cyclo- alkenes and cycloalkynes. 12-1 NOMENCLATURE AND PHYSICAL PROPERTIES OF CYCLOALKANES The IUPAC system for naming cycloalkanes and cycloalkenes was presented in some detail in Sections 3-2 and 3-3, and you may wish to review that ma- terial before proceeding further. Additional procedures are required for naming 446 12 Cycloalkanes, Cycloalkenes, and Cycloalkynes Table 12-1 Physical Properties of Alkanes and Cycloalkanes Density, Compounds Bp, "C Mp, "C diO,g ml-' propane cyclopropane butane cyclobutane pentane cyclopentane hexane cyclohexane heptane cycloheptane octane cyclooctane nonane cyclononane "At -40". bUnder pressure. polycyclic compounds, which have rings with common carbons, and these will be discussed later in this chapter.
    [Show full text]
  • Revised Group Additivity Values for Enthalpies of Formation (At 298 K) of Carbon– Hydrogen and Carbon–Hydrogen–Oxygen Compounds
    Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon– Hydrogen and Carbon–Hydrogen–Oxygen Compounds Cite as: Journal of Physical and Chemical Reference Data 25, 1411 (1996); https://doi.org/10.1063/1.555988 Submitted: 17 January 1996 . Published Online: 15 October 2009 N. Cohen ARTICLES YOU MAY BE INTERESTED IN Additivity Rules for the Estimation of Molecular Properties. Thermodynamic Properties The Journal of Chemical Physics 29, 546 (1958); https://doi.org/10.1063/1.1744539 Critical Evaluation of Thermochemical Properties of C1–C4 Species: Updated Group- Contributions to Estimate Thermochemical Properties Journal of Physical and Chemical Reference Data 44, 013101 (2015); https:// doi.org/10.1063/1.4902535 Estimation of the Thermodynamic Properties of Hydrocarbons at 298.15 K Journal of Physical and Chemical Reference Data 17, 1637 (1988); https:// doi.org/10.1063/1.555814 Journal of Physical and Chemical Reference Data 25, 1411 (1996); https://doi.org/10.1063/1.555988 25, 1411 © 1996 American Institute of Physics for the National Institute of Standards and Technology. Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon-Hydrogen and Carbon-Hydrogen-Oxygen Compounds N. Cohen Thermochemical Kinetics Research, 6507 SE 31st Avenue, Portland, Oregon 97202-8627 Received January 17, 1996; revised manuscript received September 4, 1996 A program has been undertaken for the evaluation and revision of group additivity values (GAVs) necessary for predicting, by means of Benson's group additivity method, thermochemical properties of organic molecules. This review reports on the portion of that program dealing with GAVs for enthalpies of formation at 298.15 K (hereinafter abbreviated as 298 K) for carbon-hydrogen and carbon-hydrogen-oxygen compounds.
    [Show full text]