Secure Business Communications Over Public Networks a Cisco Small Business Guide to Virtual Private Networks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cryptography
Pattern Recognition and Applications Lab CRYPTOGRAPHY Giorgio Giacinto [email protected] University of Cagliari, Italy Spring Semester 2019-2020 Department of Electrical and Electronic Engineering Cryptography and Security • Used to hide the content of a message • Goals – Confidentiality – Authenticity – Integrity • The text is modified by an encryption function – An interceptor should not be able to understand all or part of the message content http://pralab.diee.unica.it 2 Encryption/Decryption Process Key Key (Optional) (Optional) Original Plaintext Encryption Ciphertext Decryption Plaintext http://pralab.diee.unica.it 3 Keys and Locks http://pralab.diee.unica.it 4 Keys L F A Y B D E T C A R C S E E T Y H G S O U S U D H R D F C E I D B T E M E P Q X N R C I D S F T U A E T C A U R M F N P E C J N A C R D B E M K C I O P F B E W U X I Y M C R E P F N O G I D C N T M http://pralab.diee.unica.it 5 Keys L F A Y B D E T C A R C S E E T Y H G S O U S U D H R D F C E I D B T E M E P Q X N R C I D S F T U A E T C A U R M F N P E C J N A C R D B E M K C I O P F B E W U X I Y M C R E P F N O G I D C N T M http://pralab.diee.unica.it 6 Steganography - = http://pralab.diee.unica.it https://towardsdatascience.com/steganography-hiding-an-image-inside-another-77ca66b2acb1 7 Definitions • Cryptography algorithm C = E(K,M) A function E with two inputs – a message M – a key K that outputs – the encrypted message C The algorithm is based on a shared secret between the sender and the receiver K The Encryption Key http://pralab.diee.unica.it 8 Symmetric -
Symmetric Asynchronous Ratcheted Communication with Associated Data
Symmetric Asynchronous Ratcheted Communication with Associated Data B Hailun Yan( ) and Serge Vaudenay Ecole´ Polytechnique F´ed´erale de Lausanne (EPFL), Lausanne, Switzerland {hailun.yan,serge.vaudenay}@epfl.ch Abstract. Following up mass surveillance and privacy issues, modern secure communication protocols now seek strong security, such as forward secrecy and post-compromise security, in the face of state exposures. To address this problem, ratcheting was thereby introduced, widely used in real-world messaging protocols like Signal. However, ratcheting comes with a high cost. Recently, Caforio et al. proposed pragmatic construc- tions which compose a weakly secure “light” protocol and a strongly secure “heavy” protocol, in order to achieve the so-called ratcheting on demand. The light protocol they proposed has still a high complexity. In this paper, we prove the security of the lightest possible proto- col we could imagine, which essentially encrypts then hashes the secret key. We prove it without any random oracle by introducing a new secu- rity notion in the standard model. Our protocol composes well with the generic transformation techniques by Caforio et al. to offer high security and performance at the same time. 1 Introduction A classic communication model usually assumes that the endpoints are secure while the adversary is on the communication channel. However, protocols in recent messaging applications are secured with end-to-end encryption due to the prevalence of malware and system vulnerabilities. They attempt to enable secure communication services by regularly updating (ratcheting) the encryption key. One notable example of ratcheting is the Signal protocol [14] by Open Whisper Systems with its double-ratchet algorithm. -
2012 07 26 Letter to Skype
! Privacy International 46 Bedford Row London WC1R 4LR United Kingdom +44 (0) 20 7242 2836 @privacyint UK Charity No. 1147471 Friday, 27 July 2012 Dear Mr Bates, I am writing to request further information about the privacy implications of recent developments at Skype, as reported in the Washington Post.1 We were delighted to read that you believe these reports are “inaccurate” and“could mislead the Skype community”, and that you want to “clear this up”. 2 The growth of Skype since its launch in 2003 to become the world's leading VoIP provider has been driven by service that is affordable, high quality and, above all, secure. From an early stage in its development, Skype has assured its customers of the security of their communications. Press releases and product descriptions from 2005 boast of "end-to-end encryption for superior privacy" that "nobody can intercept".3 In 2008, a spokesperson reassured users that “[w]e have not received any subpoenas or court orders asking us to perform a live interception or wiretap of Skype-to-Skype communications” and “[i]n any event, because of Skype's peer-to-peer architecture and encryption techniques, Skype would not be able to comply with such a request”.4 In short, a promise was made to Skype customers that the privacy of their conversations and file transfers would be protected. As I'm sure you know, among Skype's 663 million registered users across the world are human rights defenders and pro-democracy activists living under autocratic regimes. In an environment where most channels of communication -
N2N: a Layer Two Peer-To-Peer VPN
N2N: A Layer Two Peer-to-Peer VPN Luca Deri1, Richard Andrews2 ntop.org, Pisa, Italy1 Symstream Technologies, Melbourne, Australia2 {deri, andrews}@ntop.org Abstract. The Internet was originally designed as a flat data network delivering a multitude of protocols and services between equal peers. Currently, after an explosive growth fostered by enormous and heterogeneous economic interests, it has become a constrained network severely enforcing client-server communication where addressing plans, packet routing, security policies and users’ reachability are almost entirely managed and limited by access providers. From the user’s perspective, the Internet is not an open transport system, but rather a telephony-like communication medium for content consumption. This paper describes the design and implementation of a new type of peer-to- peer virtual private network that can allow users to overcome some of these limitations. N2N users can create and manage their own secure and geographically distributed overlay network without the need for central administration, typical of most virtual private network systems. Keywords: Virtual private network, peer-to-peer, network overlay. 1. Motivation and Scope of Work Irony pervades many pages of history, and computing history is no exception. Once personal computing had won the market battle against mainframe-based computing, the commercial evolution of the Internet in the nineties stepped the computing world back to a substantially rigid client-server scheme. While it is true that the today’s Internet serves as a good transport system for supplying a plethora of data interchange services, virtually all of them are delivered by a client-server model, whether they are centralised or distributed, pay-per-use or virtually free [1]. -
Secure Messaging1
SoK: Secure Messaging1 Nik Unger∗, Sergej Dechandy Joseph Bonneauzx, Sascha Fahl{, Henning Perl{ Ian Goldberg∗, Matthew Smithy ∗ University of Waterloo, y University of Bonn, z Stanford University, x Electronic Frontier Foundation, { Fraunhofer FKIE Abstract—Motivated by recent revelations of widespread state insecure ways. However, as will become clear over the course surveillance of personal communication, many products now of this paper, the academic research community is also failing claim to offer secure and private messaging. This includes both a to learn some lessons from tools in the wild. large number of new projects and many widely adopted tools that have added security features. The intense pressure in the past two Furthermore, there is a lack of coherent vision for the future years to deliver solutions quickly has resulted in varying threat of secure messaging. Most solutions focus on specific issues models, incomplete objectives, dubious security claims, and a lack and have different goals and threat models. This is com- of broad perspective on the existing cryptographic literature on pounded by differing security vocabularies and the absence of secure communication. a unified evaluation of prior work. Outside of academia, many In this paper, we evaluate and systematize current secure messaging solutions and propose an evaluation framework for products mislead users by advertising with grandiose claims their security, usability, and ease-of-adoption properties. We con- of “military grade encryption” or by promising impossible sider solutions from academia, but also identify innovative and features such as self-destructing messages [7]–[10]. The recent promising approaches used “in the wild” that are not considered EFF Secure Messaging Scorecard evaluated tools for basic by the academic literature. -
Security & Savings with Virtual Private Networks
Everybody’s connecting. Security & Savings with Virtual Private Networks In today’s New Economy, small businesses that might have dealt with just local or regional concerns now have to consider global markets and logistics. Many companies even have facilities spread across the country or throughout the world. At the same time security concerns of their network from hackers, Denial-of-Service (DoS) attacks and sending data over the Internet have become more widespread. Whether companies have a local, national, or global presence, they all need one thing: a way to maintain fast, secure, and reliable communications wherever their offices and workers are located. Until recently, such communications were only available by using leased telephone lines to maintain a Wide Area Network (WAN). Leased lines enabled companies to expand their private network beyond their immediate geographic area. Moreover, a WAN provided advantages over a public network like the Internet when it came to reliability, performance, and security. Unfortunately, leased lines are expensive to maintain, with costs rising as the distance between the offices increases. As the popularity of the Internet grew, businesses turned to it as a cost-effective way to extend their networks. The continuing popularity with the Internet has led to the evolution of Virtual Private Networks (VPNs). A VPN is a connection that allows private data to be sent securely over a shared or public network, such as the Internet. In fact, one of the driving forces behind VPNs is the Internet and its global presence. With VPNs, communication links between users and sites can be achieved quickly, inexpensively, and safely across the world. -
IM Security Documentation on Page Vi
Trend Micro Incorporated reserves the right to make changes to this document and to the product described herein without notice. Before installing and using the product, review the readme files, release notes, and/or the latest version of the applicable documentation, which are available from the Trend Micro website at: http://docs.trendmicro.com/en-us/enterprise/trend-micro-im-security.aspx Trend Micro, the Trend Micro t-ball logo, Control Manager, MacroTrap, and TrendLabs are trademarks or registered trademarks of Trend Micro Incorporated. All other product or company names may be trademarks or registered trademarks of their owners. Copyright © 2016. Trend Micro Incorporated. All rights reserved. Document Part No.: TIEM16347/140311 Release Date: September 2016 Protected by U.S. Patent No.: Pending This documentation introduces the main features of the product and/or provides installation instructions for a production environment. Read through the documentation before installing or using the product. Detailed information about how to use specific features within the product may be available at the Trend Micro Online Help Center and/or the Trend Micro Knowledge Base. Trend Micro always seeks to improve its documentation. If you have questions, comments, or suggestions about this or any Trend Micro document, please contact us at [email protected]. Evaluate this documentation on the following site: http://www.trendmicro.com/download/documentation/rating.asp Privacy and Personal Data Collection Disclosure Certain features available in Trend Micro products collect and send feedback regarding product usage and detection information to Trend Micro. Some of this data is considered personal in certain jurisdictions and under certain regulations. -
Investigating Mobile Messaging Security
Technische Universitat¨ Munchen¨ Department of Informatics Interdisciplinary Project in Electrical Engineering Investigating Mobile Messaging Security Elias Hazboun Technische Universitat¨ Munchen¨ Department of Informatics Interdisciplinary Project in Electrical Engineering Investigating Mobile Messaging Security Untersuchung von Mobile Messaging Sicherheit Author Elias Hazboun Supervisor Prof. Dr.-Ing. Georg Carle Advisor Dr. Matthias Wachs, Quirin Scheitle Date April 27, 2016 Informatik VIII Chair for Network Architectures and Services Abstract In this report we document our work in analyzing the security of a selection of mobile messaging apps. Focusing on network based security, we studied traffic generated by the apps to gain an understanding of the current state of applying encryption and authentication protocols. Our findings show a positive trend in security with developers steadily improving security with newer app updates partly due to the increased scrutiny from the community and academia. Although not all apps analyzed had perfect state of the art security properties, none have shown any major vulnerabilities exploited by normal adversaries. It was also evident that only one app - namely TextSecure - is using the industry standard TLS for server-client authentication and security while others have opted for custom made protocols and algorithms. I Contents 1 Introduction 1 1.1 Research Question . .2 1.2 Outline . .2 2 Background and Related Work 3 2.1 Methodology . .3 2.1.1 App Selection . .3 2.1.2 Approach . .3 2.2 Definition of Security Concepts . .4 2.2.1 Layers of Encryption . .4 2.2.2 Transport Layer Security Protocol (TLS) . .5 2.2.3 Perfect Forward Secrecy (PFS) . .5 2.2.4 Asynchronous Messaging Security . -
Zfone: a New Approach for Securing Voip Communication
Zfone: A New Approach for Securing VoIP Communication Samuel Sotillo [email protected] ICTN 4040 Spring 2006 Abstract This paper reviews some security challenges currently faced by VoIP systems as well as their potential solutions. Particularly, it focuses on Zfone, a vendor-neutral security solution developed by PGP’s creator, Phil Zimmermann. Zfone is based on the Z Real-time Transport Protocol (ZRTP), which is an extension of the Real-time Transport Protocol (RTP). ZRTP offers a very simple and robust approach to providing protection against the most common type of VoIP threats. Basically, the protocol offers a mechanism to guarantee high entropy in a Diffie- Hellman key exchange by using a session key that is computed through the hashing several secrets, including a short authentication string that is read aloud by callers. The common shared secret is calculated and used only for one session at a time. However, the protocol allows for a part of the shared secret to be cached for future sessions. The mechanism provides for protection for man-in-the-middle, call hijack, spoofing, and other common types of attacks. Also, this paper explores the fact that VoIP security is a very complicated issue and that the technology is far from being inherently insecure as many people usually claim. Introduction Voice over IP (VoIP) is transforming the telecommunication industry. It offers multiple opportunities such as lower call fees, convergence of voice and data networks, simplification of deployment, and greater integration with multiple applications that offer enhanced multimedia functionality [1]. However, notwithstanding all these technological and economic opportunities, VoIP also brings up new challenges. -
Analysis of Recent Attacks on Ssl/Tls Protocols A
ANALYSIS OF RECENT ATTACKS ON SSL/TLS PROTOCOLS A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF APPLIED MATHEMATICS OF MIDDLE EAST TECHNICAL UNIVERSITY BY DUYGU OZDEN¨ IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CRYPTOGRAPHY SEPTEMBER 2016 Approval of the thesis: ANALYSIS OF RECENT ATTACKS ON SSL/TLS PROTOCOLS submitted by DUYGU OZDEN¨ in partial fulfillment of the requirements for the de- gree of Master of Science in Department of Cryptography, Middle East Technical University by, Prof. Dr. Bulent¨ Karasozen¨ Director, Graduate School of Applied Mathematics Prof. Dr. Ferruh Ozbudak¨ Head of Department, Cryptography Assoc. Prof. Dr. Murat Cenk Supervisor, Cryptography, METU Examining Committee Members: Assoc. Prof. Dr. Murat Cenk Cryptography, METU Assoc. Prof. Dr. Ali Doganaksoy˘ Mathematics, METU Asst. Prof. Dr. Fatih Sulak Mathematics, ATILIM UNIVERSITY Date: I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last Name: DUYGU OZDEN¨ Signature : v vi ABSTRACT ANALYSIS OF RECENT ATTACKS ON SSL/TLS PROTOCOLS Ozden,¨ Duygu M.S., Department of Cryptography Supervisor : Assoc. Prof. Dr. Murat Cenk September 2016, 46 pages Transport Layer Security(TLS) and its predecessor Secure Socket Layer(SSL) are two important cryptographic, certificate based protocols that satisfy secure communication in a network channel. They are widely used in many areas such as online banking systems, online shopping, e-mailing, military systems or governmental systems. -
Cryptographic Control Standard, Version
Nuclear Regulatory Commission Office of the Chief Information Officer Computer Security Standard Office Instruction: OCIO-CS-STD-2009 Office Instruction Title: Cryptographic Control Standard Revision Number: 2.0 Issuance: Date of last signature below Effective Date: October 1, 2017 Primary Contacts: Kathy Lyons-Burke, Senior Level Advisor for Information Security Responsible Organization: OCIO Summary of Changes: OCIO-CS-STD-2009, “Cryptographic Control Standard,” provides the minimum security requirements that must be applied to the Nuclear Regulatory Commission (NRC) systems which utilize cryptographic algorithms, protocols, and cryptographic modules to provide secure communication services. This update is based on the latest versions of the National Institute of Standards and Technology (NIST) Guidance and Federal Information Processing Standards (FIPS) publications, Committee on National Security System (CNSS) issuances, and National Security Agency (NSA) requirements. Training: Upon request ADAMS Accession No.: ML17024A095 Approvals Primary Office Owner Office of the Chief Information Officer Signature Date Enterprise Security Kathy Lyons-Burke 09/26/17 Architecture Working Group Chair CIO David Nelson /RA/ 09/26/17 CISO Jonathan Feibus 09/26/17 OCIO-CS-STD-2009 Page i TABLE OF CONTENTS 1 PURPOSE ............................................................................................................................. 1 2 INTRODUCTION .................................................................................................................. -
Exploring User Mental Models of End-To-End Encrypted Communication Tools
Exploring User Mental Models of End-to-End Encrypted Communication Tools Ruba Abu-Salma Elissa M. Redmiles Blase Ur, Miranda Wei University College London University of Maryland University of Chicago Abstract a key obstacle to the adoption of secure communication tools and other privacy-enhancing technologies [1, 26]. End-to-end (E2E) encrypted communication tools can Prior qualitative work has explored users’ familiarity help users keep their communications secure from gov- with secure communication tools and gaps in their men- ernment or corporate surveillance. In this work, we con- tal models [1]. In our work, we seek to quantitatively duct a quantitative survey (n=125) to assess general men- validate and expand on these findings. We do so by tal models and understandings of a hypothetical E2E en- studying both users and non-users via a quantitative sur- crypted communication tool. We find that the vast ma- vey through which we assess high-level mental models jority of respondents had adopted E2E encrypted tools of E2E encryption and its security properties. We fo- in the real world, but lacked confidence and accuracy in cus specifically on one type of secure communication, their mental models of E2E encryption. Two key mis- E2E encrypted communication, abstracted away from conceptions include (1) three-quarters of respondents be- detailed predispositions of any specific tool created by lieving that their E2E encrypted communications could any particular brand. be accessed by unauthorized entities, and (2) one-half of To this end, we surveyed 125 respondents about a hy- respondents feeling that SMS and landline phone calls pothetical E2E encrypted communication tool.