Photofission of U235 and U238 Using a Compton Scattering Monochromator James Edison Hall Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Photofission of U235 and U238 Using a Compton Scattering Monochromator James Edison Hall Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1970 Photofission of U235 and U238 using a Compton scattering monochromator James Edison Hall Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Nuclear Commons Recommended Citation Hall, James Edison, "Photofission of U235 and U238 using a Compton scattering monochromator " (1970). Retrospective Theses and Dissertations. 4230. https://lib.dr.iastate.edu/rtd/4230 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. 70-25,787 HALL, James Edison, 1942- 0'5c: 900 PHOTOFISSION OF U AND U USING A COMPTON SCATTERING MONOCHROMATOR. Iowa State University, Ph.D., 1970 Physics, nuclear University Microfilms, A XEROX Company, Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECETVFn PHOTOFISSION OF AND USING A COMPTON SCATTERING MONOCHROMATOR by James Edison Haï 1 An Abstract of A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Approved Signature was redacted for privacy. f Major Work Signature was redacted for privacy. or Department Signature was redacted for privacy. Iowa State University Of Science and Technology Ames, Iowa 1970 TABLE OF CONTENTS Page I. INTRODUCTION I A. Theory 1 B. Purpose 8 C. Literature Survey 9 II. GAMMA RAY SOURCE 12 A. Introduction 12 1. Discrete energy sources 12 2. Variable energy sources 13 3. Comparison of source intensities 16 B. Compton Scattering Facility 18 1. Neutron-capture source 18 2. Scattering platd 24 3. Target chamber and shielding 31 4. Direct (n,y) beam 35 5. Scattered beam 45 a. Energy spectrum 45 b. Intensity 50 Ml. EXPERIMENTAL DETAILS 66 A. Fragment detection apparatus 66 B. Targets 67 C. Calibration 70 IV. EXPERIMENTAL RESULTS 74 A. Relative Yield from 74 B. Relative Yield from U^^^ 75 C. Absolute Yield from U^^® 77 V. INTERPRETATION AND CONCLUSIONS 80 A. Photofission Yield Equation 80 B. Present Approach 81 C. Interpretation 83 D. Concluding Remarks 86 VI. LITERATURE CITED 88 VII. ACKNOWLEDGMENTS 9I 1 I. INTRODUCTION A. Theory A striking characteristic of the very heavy nuclei (Z s 90) is their ability to undergo fission whenever they are excited with sufficient energy to overcome a fission energy barrier. The mechanism by which fission occurs at different excitation energies is in many ways very similar. First, the stably deformed target nucleus is excited by a nuclear reaction to an excitation energy E, forming a compound nucleus. This is a complex state in which the excitation energy is distributed among all the degrees of freedom of the nucleus, including the surface deformation. As the process moves towards fission, an increasing amount of the energy becomes potential energy of deformation and the nucleus enters what is called the transition state. At some finite distortion of the transition state nucleus, known as the saddle- point deformation, the increase in energy due to nuclear forces (surface tension) is equal to the decrease in the Coulomb energy. If the nucleus is slightly elongated beyond the saddle shape, the Coulomb forces drive the nucleus to fission. However, if the deformation is slightly reduced, the surface forces predominate and the nucleus reverts back to its original shape. The lowest energy required to reach the saddle-point deformation is defined as the fission barrier. Bohr suggested in I955 that a nucleus possessing this energy is in an almost "cold" state of internal excitation since the energy is expended as deformation energy (1). 2 He proposed that the low-lying levels at the saddle point ought to resemble the spectra near the ground states of stably deformed nuclei. This is shown in Fig. 1 for an even-even nucleus. The low-lying states of an even-even transition state nucleus are predicted to be collective levels, since intrinsic states are not expected until sufficient energy is available for breaking a nucléon pair (about 1.2 MeV). Bohr also postulated that the lowest group of levels should be rotational levels built on the 1^ = 0+, K = 0 level, where I is the angular momentum, rr is the parity, and K is the projection of the angular momentum onto the nuclear symmetry axis. The energies of the rotational states relative to the "ground state" are given by E = ^ ^ 1(1+1) where I is the moment of inertia of the system about an axis perpen­ dicular to the symmetry axis. Since at the saddle point the nucleus is much more deformed, X will be much larger than for the stably 2 deformed nucleus, fi /2I has been calculated from liquid drop theory O "3 O (2) to be about 2 keV for U at the saddle point, whereas it has a value of about 7 keV for the compound nucleus. Thus, the low-lying rotational levels in the transition state nucleus are predicted to be more closely spaced than in the compound nucleus. We should mention at this point that although the constancy of I and M (projection of ! on a space fixed Z axis) is guaranteed by the law of conservation of angular momentum, there is no such restriction on K. In going from the original compound nucleus to the transition 3 }l=2+,3+,4+.5+-. K=2 )l= i~ 2-,3-4—,K=I = 3-,5—; K= 0 = 0+,2+,4+,-', K=0 TRANSITION STATE NUCLEUS 1I = 2+,4+,6+, K=2 J I=2+,4+,6+, "; K = 0 }I = 1-, 3-, 5—•. K = 0 I=0+, 2+,4+,6+, 8+' ; K=0 Ej-Eo" 71(I + !) ksV COMPOUND NUCLEUS 1 L_ DEFORMATION Fig. 1. Bohr's "fission channels" for the transition state of an even-even nucleus 4 state, the nucleus suffers many changes in shape and redistributes its energy and angular momentum in many ways. The K-values of the transition state nucleus are therefore unrelated to the initial K-values. The transition state then corresponds to a collection of channels, each having its own K-value, which are accessible from a given state of the compound nucleus specified by E, I, M, and parity. Once at or past the saddle point the nucleus has a highly deformed shape which is considered to be axially symmetric in the sense that K remains a good quantum number. The assumption that K is conserved upon entry into a fission channel is supported by angular distribution measurements. It is useful to examine the predictions of what other bands of levels should be present in the transition state. Above the rotational band a sequence of collective vibrations is expected. A K = 0, 1^ = 1 ^ 3,5,... band is expected and attributed to a pear-shaped vibration in which material sloshes back and forth from one end of the deformed nucleus to the other. Also expected are low-lying levels built on a bending vibration like the bending vibration of a linear molecule. The bending vibrational channel will couple with the collective rotation to give a band of states with K = 1 and I^ = 1", 2", 3", 4", . The energy spectra of normal even-even heavy nuclei contain a level designated as "y-vibrationa1" which involves a periodic collective deformation about axial symmetry. Collective rotations can be super­ imposed on the y-vibration giving a band with K = 2 and I^ = 2^, 3^, 4^, . The band built on the ^-vibrational level, which is well 5 known for normal heavy even-even nuclei, should not have a counterpart in the transition state since it corresponds to collective motion along the axis of symmetry. This is the principal feature of the act of fission. One could also consider the multiphonon states of these various modes which would produce bands at higher energies. The low-lying levels in the transition state for an odd A nucleus will be very different from those in an even-even nucleus. In an odd A nucleus the lowest transition states are states of intrinsic excitation of a single nucléon, and their associated rotational bands with I = K, K + I, K + 2, . and both parities. These bands of intrinsic excitations should be closely spaced (approximately every 250 keV). Thus Bohr's fission channel theory can be summarized as follows. The compound nucleus state has two constants of motion, total angular momentum I and parity. As the deformation of the nucleus in this state increases, the nucleus makes transitions from one energy surface to another until it reaches the saddle point. By this time a large part of the energy of the system has been absorbed in deformation and, for low excitation energies, the nucleus is "cold". It can be regarded as being in one of a few available transition states which have the same total angular momentum and parity as the compound-nucleus state. The available transition states in low energy fission are also limited by the available energy. In the last few years there have been many attempts to calculate the potential energy surface of the nucleus as a function of deformation. Strutinsky has introduced a model where he incorporates shell effects 6 into the well-known liquid drop model (3, 4). In this, the shell- correction term, as a function of deformation, is calculated directly from summed Nilsson single-particle energies of the deformed shell- model potential. Strutinsky finds that the minima in the shell- correction term occur at deformations where a gap is left in the structure of unfilled single particle levels immediately above the Fermi energy.
Recommended publications
  • Hetc-3Step Calculations of Proton Induced Nuclide Production Cross Sections at Incident Energies Between 20 Mev and 5 Gev
    JAERI-Research 96-040 JAERI-Research—96-040 JP9609132 JP9609132 HETC-3STEP CALCULATIONS OF PROTON INDUCED NUCLIDE PRODUCTION CROSS SECTIONS AT INCIDENT ENERGIES BETWEEN 20 MEV AND 5 GEV August 1996 Hiroshi TAKADA, Nobuaki YOSHIZAWA* and Kenji ISHIBASHI* Japan Atomic Energy Research Institute 2 G 1 0 1 (T319-11 l This report is issued irregularly. Inquiries about availability of the reports should be addressed to Research Information Division, Department of Intellectual Resources, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken, 319-11, Japan. © Japan Atomic Energy Research Institute, 1996 JAERI-Research 96-040 HETC-3STEP Calculations of Proton Induced Nuclide Production Cross Sections at Incident Energies between 20 MeV and 5 GeV Hiroshi TAKADA, Nobuaki YOSHIZAWA* and Kenji ISHIBASHP* Department of Reactor Engineering Tokai Research Establishment Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken (Received July 1, 1996) For the OECD/NEA code intercomparison, nuclide production cross sections of l60, 27A1, nalFe, 59Co, natZr and 197Au for the proton incidence with energies of 20 MeV to 5 GeV are calculated with the HETC-3STEP code based on the intranuclear cascade evaporation model including the preequilibrium and high energy fission processes. In the code, the level density parameter derived by Ignatyuk, the atomic mass table of Audi and Wapstra and the mass formula derived by Tachibana et al. are newly employed in the evaporation calculation part. The calculated results are compared with the experimental ones. It is confirmed that HETC-3STEP reproduces the production of the nuclides having the mass number close to that of the target nucleus with an accuracy of a factor of two to three at incident proton energies above 100 MeV for natZr and 197Au.
    [Show full text]
  • R-Process Elements from Magnetorotational Hypernovae
    r-Process elements from magnetorotational hypernovae D. Yong1,2*, C. Kobayashi3,2, G. S. Da Costa1,2, M. S. Bessell1, A. Chiti4, A. Frebel4, K. Lind5, A. D. Mackey1,2, T. Nordlander1,2, M. Asplund6, A. R. Casey7,2, A. F. Marino8, S. J. Murphy9,1 & B. P. Schmidt1 1Research School of Astronomy & Astrophysics, Australian National University, Canberra, ACT 2611, Australia 2ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia 3Centre for Astrophysics Research, Department of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield, AL10 9AB, UK 4Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 5Department of Astronomy, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden 6Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany 7School of Physics and Astronomy, Monash University, VIC 3800, Australia 8Istituto NaZionale di Astrofisica - Osservatorio Astronomico di Arcetri, Largo Enrico Fermi, 5, 50125, Firenze, Italy 9School of Science, The University of New South Wales, Canberra, ACT 2600, Australia Neutron-star mergers were recently confirmed as sites of rapid-neutron-capture (r-process) nucleosynthesis1–3. However, in Galactic chemical evolution models, neutron-star mergers alone cannot reproduce the observed element abundance patterns of extremely metal-poor stars, which indicates the existence of other sites of r-process nucleosynthesis4–6. These sites may be investigated by studying the element abundance patterns of chemically primitive stars in the halo of the Milky Way, because these objects retain the nucleosynthetic signatures of the earliest generation of stars7–13.
    [Show full text]
  • Experimental Γ Ray Spectroscopy and Investigations of Environmental Radioactivity
    Experimental γ Ray Spectroscopy and Investigations of Environmental Radioactivity BY RANDOLPH S. PETERSON 216 α Po 84 10.64h. 212 Pb 1- 415 82 0- 239 β- 01- 0 60.6m 212 1+ 1630 Bi 2+ 1513 83 α β- 2+ 787 304ns 0+ 0 212 α Po 84 Experimental γ Ray Spectroscopy and Investigations of Environmental Radioactivity Randolph S. Peterson Physics Department The University of the South Sewanee, Tennessee Published by Spectrum Techniques All Rights Reserved Copyright 1996 TABLE OF CONTENTS Page Introduction ....................................................................................................................4 Basic Gamma Spectroscopy 1. Energy Calibration ................................................................................................... 7 2. Gamma Spectra from Common Commercial Sources ........................................ 10 3. Detector Energy Resolution .................................................................................. 12 Interaction of Radiation with Matter 4. Compton Scattering............................................................................................... 14 5. Pair Production and Annihilation ........................................................................ 17 6. Absorption of Gammas by Materials ..................................................................... 19 7. X Rays ..................................................................................................................... 21 Radioactive Decay 8. Multichannel Scaling and Half-life .....................................................................
    [Show full text]
  • An Octad for Darmstadtium and Excitement for Copernicium
    SYNOPSIS An Octad for Darmstadtium and Excitement for Copernicium The discovery that copernicium can decay into a new isotope of darmstadtium and the observation of a previously unseen excited state of copernicium provide clues to the location of the “island of stability.” By Katherine Wright holy grail of nuclear physics is to understand the stability uncover its position. of the periodic table’s heaviest elements. The problem Ais, these elements only exist in the lab and are hard to The team made their discoveries while studying the decay of make. In an experiment at the GSI Helmholtz Center for Heavy isotopes of flerovium, which they created by hitting a plutonium Ion Research in Germany, researchers have now observed a target with calcium ions. In their experiments, flerovium-288 previously unseen isotope of the heavy element darmstadtium (Z = 114, N = 174) decayed first into copernicium-284 and measured the decay of an excited state of an isotope of (Z = 112, N = 172) and then into darmstadtium-280 (Z = 110, another heavy element, copernicium [1]. The results could N = 170), a previously unseen isotope. They also measured an provide “anchor points” for theories that predict the stability of excited state of copernicium-282, another isotope of these heavy elements, says Anton Såmark-Roth, of Lund copernicium. Copernicium-282 is interesting because it University in Sweden, who helped conduct the experiments. contains an even number of protons and neutrons, and researchers had not previously measured an excited state of a A nuclide’s stability depends on how many protons (Z) and superheavy even-even nucleus, Såmark-Roth says.
    [Show full text]
  • The R-Process Nucleosynthesis and Related Challenges
    EPJ Web of Conferences 165, 01025 (2017) DOI: 10.1051/epjconf/201716501025 NPA8 2017 The r-process nucleosynthesis and related challenges Stephane Goriely1,, Andreas Bauswein2, Hans-Thomas Janka3, Oliver Just4, and Else Pllumbi3 1Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles, CP 226, 1050 Brussels, Belgium 2Heidelberger Institut fr¨ Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany 3Max-Planck-Institut für Astrophysik, Postfach 1317, 85741 Garching, Germany 4Astrophysical Big Bang Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan Abstract. The rapid neutron-capture process, or r-process, is known to be of fundamental importance for explaining the origin of approximately half of the A > 60 stable nuclei observed in nature. Recently, special attention has been paid to neutron star (NS) mergers following the confirmation by hydrodynamic simulations that a non-negligible amount of matter can be ejected and by nucleosynthesis calculations combined with the predicted astrophysical event rate that such a site can account for the majority of r-material in our Galaxy. We show here that the combined contribution of both the dynamical (prompt) ejecta expelled during binary NS or NS-black hole (BH) mergers and the neutrino and viscously driven outflows generated during the post-merger remnant evolution of relic BH-torus systems can lead to the production of r-process elements from mass number A > 90 up to actinides. The corresponding abundance distribution is found to reproduce the∼ solar distribution extremely well. It can also account for the elemental distributions observed in low-metallicity stars. However, major uncertainties still affect our under- standing of the composition of the ejected matter.
    [Show full text]
  • A Measurement of the 2 Neutrino Double Beta Decay Rate of 130Te in the CUORICINO Experiment by Laura Katherine Kogler
    A measurement of the 2 neutrino double beta decay rate of 130Te in the CUORICINO experiment by Laura Katherine Kogler A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Stuart J. Freedman, Chair Professor Yury G. Kolomensky Professor Eric B. Norman Fall 2011 A measurement of the 2 neutrino double beta decay rate of 130Te in the CUORICINO experiment Copyright 2011 by Laura Katherine Kogler 1 Abstract A measurement of the 2 neutrino double beta decay rate of 130Te in the CUORICINO experiment by Laura Katherine Kogler Doctor of Philosophy in Physics University of California, Berkeley Professor Stuart J. Freedman, Chair CUORICINO was a cryogenic bolometer experiment designed to search for neutrinoless double beta decay and other rare processes, including double beta decay with two neutrinos (2νββ). The experiment was located at Laboratori Nazionali del Gran Sasso and ran for a period of about 5 years, from 2003 to 2008. The detector consisted of an array of 62 TeO2 crystals arranged in a tower and operated at a temperature of ∼10 mK. Events depositing energy in the detectors, such as radioactive decays or impinging particles, produced thermal pulses in the crystals which were read out using sensitive thermistors. The experiment included 4 enriched crystals, 2 enriched with 130Te and 2 with 128Te, in order to aid in the measurement of the 2νββ rate. The enriched crystals contained a total of ∼350 g 130Te. The 128-enriched (130-depleted) crystals were used as background monitors, so that the shared backgrounds could be subtracted from the energy spectrum of the 130- enriched crystals.
    [Show full text]
  • Photofission Cross Sections of 238U and 235U from 5.0 Mev to 8.0 Mev Robert Andrew Anderl Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1972 Photofission cross sections of 238U and 235U from 5.0 MeV to 8.0 MeV Robert Andrew Anderl Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Nuclear Commons, and the Oil, Gas, and Energy Commons Recommended Citation Anderl, Robert Andrew, "Photofission cross sections of 238U and 235U from 5.0 MeV to 8.0 MeV " (1972). Retrospective Theses and Dissertations. 4715. https://lib.dr.iastate.edu/rtd/4715 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction, 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity, 2.
    [Show full text]
  • Compilation and Evaluation of Fission Yield Nuclear Data Iaea, Vienna, 2000 Iaea-Tecdoc-1168 Issn 1011–4289
    IAEA-TECDOC-1168 Compilation and evaluation of fission yield nuclear data Final report of a co-ordinated research project 1991–1996 December 2000 The originating Section of this publication in the IAEA was: Nuclear Data Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria COMPILATION AND EVALUATION OF FISSION YIELD NUCLEAR DATA IAEA, VIENNA, 2000 IAEA-TECDOC-1168 ISSN 1011–4289 © IAEA, 2000 Printed by the IAEA in Austria December 2000 FOREWORD Fission product yields are required at several stages of the nuclear fuel cycle and are therefore included in all large international data files for reactor calculations and related applications. Such files are maintained and disseminated by the Nuclear Data Section of the IAEA as a member of an international data centres network. Users of these data are from the fields of reactor design and operation, waste management and nuclear materials safeguards, all of which are essential parts of the IAEA programme. In the 1980s, the number of measured fission yields increased so drastically that the manpower available for evaluating them to meet specific user needs was insufficient. To cope with this task, it was concluded in several meetings on fission product nuclear data, some of them convened by the IAEA, that international co-operation was required, and an IAEA co-ordinated research project (CRP) was recommended. This recommendation was endorsed by the International Nuclear Data Committee, an advisory body for the nuclear data programme of the IAEA. As a consequence, the CRP on the Compilation and Evaluation of Fission Yield Nuclear Data was initiated in 1991, after its scope, objectives and tasks had been defined by a preparatory meeting.
    [Show full text]
  • 3 Gamma-Ray Detectors
    3 Gamma-Ray Detectors Hastings A Smith,Jr., and Marcia Lucas S.1 INTRODUCTION In order for a gamma ray to be detected, it must interact with matteu that interaction must be recorded. Fortunately, the electromagnetic nature of gamma-ray photons allows them to interact strongly with the charged electrons in the atoms of all matter. The key process by which a gamma ray is detected is ionization, where it gives up part or all of its energy to an electron. The ionized electrons collide with other atoms and liberate many more electrons. The liberated charge is collected, either directly (as with a proportional counter or a solid-state semiconductor detector) or indirectly (as with a scintillation detector), in order to register the presence of the gamma ray and measure its energy. The final result is an electrical pulse whose voltage is proportional to the energy deposited in the detecting medhtm. In this chapter, we will present some general information on types of’ gamma-ray detectors that are used in nondestructive assay (NDA) of nuclear materials. The elec- tronic instrumentation associated with gamma-ray detection is discussed in Chapter 4. More in-depth treatments of the design and operation of gamma-ray detectors can be found in Refs. 1 and 2. 3.2 TYPES OF DETECTORS Many different detectors have been used to register the gamma ray and its eneqgy. In NDA, it is usually necessary to measure not only the amount of radiation emanating from a sample but also its energy spectrum. Thus, the detectors of most use in NDA applications are those whose signal outputs are proportional to the energy deposited by the gamma ray in the sensitive volume of the detector.
    [Show full text]
  • Lecture 22 Alpha Decay 1 Introduction 2 Fission and Fusion
    Nuclear and Particle Physics - Lecture 22 Alpha decay 1 Introduction We have looked at gamma decays (due to the EM force) and beta decays (due to the weak force) and now will look at alpha decays, which are due to the strong/nuclear force. In contrast to the previous decays which do not change A, alpha decays happen by emission of some of the 4 nucleons from the nucleus. Specifically, for alpha decay, an alpha particle, 2He, is ejected so generically A A−4 4 X − Y + He Z !Z 2 2 for some X and Y . Y clearly has a different number of nucleons to X. Compare how alpha and beta decays move the nuclei around in Z,N plane N β+ β- α Z Note that gamma decays cannot change Z, N or A. 2 Fission and fusion Alpha decay is in fact only one specific case of a whole range of processes which involve emission of nucleons. These range from single proton or neutron emission up to splitting the nucleus into two roughly equal parts. Particularly in the latter case, these are called fission decays. Which nuclei would we expect to fission? The binding energy per nucleon curve shows that 56 the maximum occurs around 26Fe and drops off to either side. Hence, both small A and large A nuclei are less strongly bound per nucleon than medium A. This means there will be some energy release if two small nuclei are combined into a larger one, a process called fusion which will be discussed later in the course.
    [Show full text]
  • Radioactive Decay
    North Berwick High School Department of Physics Higher Physics Unit 2 Particles and Waves Section 3 Fission and Fusion Section 3 Fission and Fusion Note Making Make a dictionary with the meanings of any new words. Einstein and nuclear energy 1. Write down Einstein’s famous equation along with units. 2. Explain the importance of this equation and its relevance to nuclear power. A basic model of the atom 1. Copy the components of the atom diagram and state the meanings of A and Z. 2. Copy the table on page 5 and state the difference between elements and isotopes. Radioactive decay 1. Explain what is meant by radioactive decay and copy the summary table for the three types of nuclear radiation. 2. Describe an alpha particle, including the reason for its short range and copy the panel showing Plutonium decay. 3. Describe a beta particle, including its range and copy the panel showing Tritium decay. 4. Describe a gamma ray, including its range. Fission: spontaneous decay and nuclear bombardment 1. Describe the differences between the two methods of decay and copy the equation on page 10. Nuclear fission and E = mc2 1. Explain what is meant by the terms ‘mass difference’ and ‘chain reaction’. 2. Copy the example showing the energy released during a fission reaction. 3. Briefly describe controlled fission in a nuclear reactor. Nuclear fusion: energy of the future? 1. Explain why nuclear fusion might be a preferred source of energy in the future. 2. Describe some of the difficulties associated with maintaining a controlled fusion reaction.
    [Show full text]
  • Arxiv:1901.01410V3 [Astro-Ph.HE] 1 Feb 2021 Mental Information Is Available, and One Has to Rely Strongly on Theoretical Predictions for Nuclear Properties
    Origin of the heaviest elements: The rapid neutron-capture process John J. Cowan∗ HLD Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019, USA Christopher Snedeny Department of Astronomy, University of Texas, 2515 Speedway, Austin, TX 78712-1205, USA James E. Lawlerz Physics Department, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706-1390, USA Ani Aprahamianx and Michael Wiescher{ Department of Physics and Joint Institute for Nuclear Astrophysics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA Karlheinz Langanke∗∗ GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany and Institut f¨urKernphysik (Theoriezentrum), Fachbereich Physik, Technische Universit¨atDarmstadt, Schlossgartenstraße 2, 64298 Darmstadt, Germany Gabriel Mart´ınez-Pinedoyy GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany; Institut f¨urKernphysik (Theoriezentrum), Fachbereich Physik, Technische Universit¨atDarmstadt, Schlossgartenstraße 2, 64298 Darmstadt, Germany; and Helmholtz Forschungsakademie Hessen f¨urFAIR, GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany Friedrich-Karl Thielemannzz Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland and GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany (Dated: February 2, 2021) The production of about half of the heavy elements found in nature is assigned to a spe- cific astrophysical nucleosynthesis process: the rapid neutron capture process (r-process). Although this idea has been postulated more than six decades ago, the full understand- ing faces two types of uncertainties/open questions: (a) The nucleosynthesis path in the nuclear chart runs close to the neutron-drip line, where presently only limited experi- arXiv:1901.01410v3 [astro-ph.HE] 1 Feb 2021 mental information is available, and one has to rely strongly on theoretical predictions for nuclear properties.
    [Show full text]