Augmenting CNS Glucocerebrosidase Activity As a Therapeutic Strategy for Parkinsonism and Other Gaucher-Related Synucleinopathie

Total Page:16

File Type:pdf, Size:1020Kb

Augmenting CNS Glucocerebrosidase Activity As a Therapeutic Strategy for Parkinsonism and Other Gaucher-Related Synucleinopathie Augmenting CNS glucocerebrosidase activity as SEE COMMENTARY a therapeutic strategy for parkinsonism and other Gaucher-related synucleinopathies S. Pablo Sardia,1, Jennifer Clarkea, Catherine Viela, Monyrath Chana, Thomas J. Tamsetta, Christopher M. Treleavena, Jie Bua, Lindsay Sweeta, Marco A. Passinia, James C. Dodgea, W. Haung Yub, Richard L. Sidmanc,1, Seng H. Chenga, and Lamya S. Shihabuddina aGenzyme, a Sanofi Company, Framingham, MA 01701; bTaub Institute for Research on Alzheimer’s Disease, Columbia University Medical Center, NY 10032; and cBeth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 Contributed by Richard L. Sidman, December 7, 2012 (sent for review September 14, 2012) Mutations of GBA1, the gene encoding glucocerebrosidase, repre- samples from patients with PD and DLB (regardless of whether sent a common genetic risk factor for developing the synucleino- they harbor mutations in GBA1), suggesting that a reduction in pathies Parkinson disease (PD) and dementia with Lewy bodies. PD glucocerebrosidase activity may contribute to the development of patients with or without GBA1 mutations also exhibit lower enzy- synucleinopathies (13–15). matic levels of glucocerebrosidase in the central nervous system A role for glucocerebrosidase in the development of synuclei- (CNS), suggesting a possible link between the enzyme and the nopathies is further supported by clinical observations of patients development of the disease. Previously, we have shown that early with Gaucher-associated parkinsonism. These individuals present treatment with glucocerebrosidase can modulate α-synuclein ag- with increased frequencies and severities of nonmotor symptoms gregation in a presymptomatic mouse model of Gaucher-related (e.g., cognitive impairment) that substantially erode their quality Gba1D409V/D409V synucleinopathy ( ) and ameliorate the associated of life (16, 17). Individuals harboring mutations in GBA1 also fi cognitive de cit. To probe this link further, we have now evalu- have a higher incidence of dementia that is correlated with the ated the efficacy of augmenting glucocerebrosidase activity in the D409V/D409V presence of neocortical accumulation of aggregates of α-synuclein NEUROSCIENCE CNS of symptomatic Gba1 mice and in a transgenic (18, 19). Indeed, mutations in GBA1 are now recognized as an mouse model overexpressing A53T α-synuclein. Adeno-associated independent risk factor for development of cognitive impairment virus-mediated expression of glucocerebrosidase in the CNS of Gba1D409V/D409V in PD patients (20). Another gene associated with an increased symptomatic mice completely corrected the aber- MAPT rant accumulation of the toxic lipid glucosylsphingosine and re- risk for dementia in PD is (21), the gene encoding the duced the levels of ubiquitin, tau, and proteinase K-resistant microtubule-associated protein tau, which helps maintain cyto- α α-synuclein aggregates. Importantly, hippocampal expression of skeletal organization and integrity. Tau-associated and -synu- D409V/D409V – glucocerebrosidase in Gba1 mice (starting at 4 or 12 clein associated pathology frequently occurs in patients with PD – mo of age) also reversed their cognitive impairment when exam- and LBD (22 24) although the relative roles of these proteins ined using a novel object recognition test. Correspondingly, over- are not well defined. Tau is more explicitly involved in Alzheimer’s expression of glucocerebrosidase in the CNS of A53T α-synuclein disease (25). mice reduced the levels of soluble α-synuclein, suggesting that We previously described a Gaucher-related synucleinopathy in increasing the glycosidase activity can modulate α-synuclein pro- mice with progressive CNS accumulation of proteinase K-resistant cessing and may modulate the progression of α-synucleinopathies. α-synuclein/ubiquitin aggregates reminiscent of LNs (10). These Hence, increasing glucocerebrosidase activity in the CNS repre- mice also have high CNS levels of the neurotoxin glucosyl- sents a potential therapeutic strategy for GBA1-related and non- sphingosine (GlcSph) and a hippocampal memory deficit. We GBA1–associated synucleinopathies, including PD. showed these biochemical and behavioral aberrations to be ameliorated by CNS administration into presymptomatic animals lysosomal storage diseases | mouse models | MAPT | memory defect of a recombinant adeno-associated viral (AAV) vector encoding human glucocerebrosidase. The present study further character- utations in the gene for glucocerebrosidase (GBA1) present izes the pathological features in this Gaucher-associated synu- Mthe highest genetic risk factor for developing synucleino- cleinopathy model, adding increased protein tau and demon- pathies such as Parkinson disease (PD) and dementia with Lewy strating cognitive improvement and moderation of CNS pathology bodies (DLB) (1–5). The central nervous system (CNS) of Gaucher when glucocerebrosidase was administered at a clinically relevant patients and carriers who present with parkinsonism and dementia postsymptomatic stage. Finally, to further probe the glucocere- harbor deposits of α-synuclein–positive Lewy bodies (LBs) and brosidase/α-synuclein relationship, the effect of the lysosomal Lewy neurites (LNs) in hippocampal neurons and their processes hydrolase on α-synuclein levels in the A53T α-synuclein mouse was resembling those noted in patients with classical PD and DLB (6, evaluated. 7). Aspects of these characteristics have also been noted in the CNS of several mouse models of neuropathic and nonneuropathic – Gaucher disease (8 10). Consequently, a causal relationship has Author contributions: S.P.S., S.H.C., and L.S.S. designed research; S.P.S., J.C., C.V., M.C., T.J.T., been suggested between the loss of glucocerebrosidase activity or C.M.T., J.B., L.S., M.A.P., J.C.D., and W.H.Y. performed research; S.P.S., J.C., C.V., M.C., W.H.Y., the lysosomal accumulation of undegraded metabolites and the R.L.S., and L.S.S. analyzed data; and S.P.S., R.L.S., S.H.C., and L.S.S. wrote the paper. development of PD and DLB. A more direct link between glu- The authors declare no conflict of interest. cocerebrosidase activity and α-synuclein metabolism has been Freely available online through the PNAS open access option. highlighted by studies of Gaucher cells and mice indicating that See Commentary on page 3214. a reduction in glucocerebrosidase activity by pharmacological or 1To whom correspondence may be addressed. E-mail: [email protected] genetic interventions resulted in increased levels of α-synuclein or [email protected]. – aggregates (9 12). Moreover, a decrease in glucocerebrosidase This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. activity has been noted in cerebrospinal fluid (CSF) and brain 1073/pnas.1220464110/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1220464110 PNAS | February 26, 2013 | vol. 110 | no. 9 | 3537–3542 Downloaded by guest on September 29, 2021 Results the blots with the Tau-5 antibody that recognizes all tau species revealed that the overall levels of the protein were not different CNS of a Mouse Model of Gaucher Disease Exhibits Accumulation of D409V/D409V Tau Aggregates. Accumulation of α-synuclein and tau inclusions between Gba1 and wild-type mice (Fig. 1C), nor were with resultant dementia are the hallmarks of a number of neu- differences in the extent of staining observed between controls Gba1D409V/D409V rodegenerative diseases, including PD and DLB (22, 25, 26). We and age-matched mice when the blots were probed C have reported that a mouse model of Gaucher disease har- with AT180 or AT270 antibodies (Fig. 1 ). However, AT8 boring a single point mutation in the murine Gba1 locus staining, which detects phosphorylation on Ser-202 and Thr-205, D409V/D409V fi (Gba1 ) exhibits progressive, marked accumulation was modestly but signi cantly increased in the lysates of Gba1D409V/D409V ± n = of α-synuclein/ubiquitin aggregates in the CNS and a measurable mice (1.3 0.1 compared with wild-type, 6, P < C deficit in hippocampal memory (10). To determine whether mu- 0.05; Fig. 1 ). This increased phosphorylation on Ser-202 tations in Gba1 with resultant loss of glucocerebrosidase activity and Thr-205, coupled with the progressive accumulation of the tau aggregates (in addition to α-synuclein), indicates that the also promote the accumulation of tau in the CNS, brain sections D409V/D409V D409V/D409V Gba1 of 12-mo-old Gba1 mice were examined immunohis- CNS of mice recapitulates pathological features tochemically with a specific anti-tau antibody. Marked punctate in PD and DLB patients. staining was noted primarily in the hippocampal regions (Fig. 1A), Administration of Glucocerebrosidase into the Hippocampus Re- although immunoreactivity was also observed in other areas, in- verses the Biochemical and Memory Aberrations of Postsymptomatic cluding cerebral cortex and cerebellum. The onset and rate of ac- D409V/D409V D409V/D409V Gba1 Mice. To determine whether reconstitution of the cumulation of the tau aggregates in the brains of Gba1 CNS with recombinant glucocerebrosidase can correct the bio- mice were determined as well. At 2 mo of age, tau immunore- fi Gba1D409V/D409V chemical aberrations and memory de cits of symptomatic activity in mice was not different from that in Gba1D409V/D409V A B mice, a recombinant self-complementary AAV wild-type controls (Fig. 1 and ). However, the level of tau – Gba1D409V/D409V fi vector (serotype 1) encoding human glucocerebrosidase
Recommended publications
  • Oral Ambroxol Increases Brain Glucocerebrosidase Activity in a Nonhuman Primate
    Received: 17 November 2016 | Revised: 24 January 2017 | Accepted: 12 February 2017 DOI 10.1002/syn.21967 SHORT COMMUNICATION Oral ambroxol increases brain glucocerebrosidase activity in a nonhuman primate Anna Migdalska-Richards1 | Wai Kin D. Ko2 | Qin Li2,3 | Erwan Bezard2,3,4,5 | Anthony H. V. Schapira1 1Department of Clinical Neurosciences, Institute of Neurology, University College Abstract London, NW3 2PF, United Kingdom Mutations in the glucocerebrosidase 1 (GBA1) gene are related to both Parkinson disease (PD) and 2Motac Neuroscience, Manchester, United Gaucher disease (GD). In both cases, the condition is associated with deficiency of glucocerebrosi- Kingdom dase (GCase), the enzyme encoded by GBA1. Ambroxol is a small molecule chaperone that has 3 Institute of Laboratory Animal Sciences, been shown in mice to cross the blood-brain barrier, increase GCase activity and reduce alpha- China Academy of Medical Sciences, Beijing synuclein protein levels. In this study, we analyze the effect of ambroxol treatment on GCase City, People’s Republic of China activity in healthy nonhuman primates. We show that daily administration of ambroxol results in 4University de Bordeaux, Institut des Maladies Neurodeg en eratives, UMR 5293, increased brain GCase activity. Our work further indicates that ambroxol should be investigated as Bordeaux F-33000, France a novel therapy for both PD and neuronopathic GD in humans. 5CNRS, Institut des Maladies Neurodeg en eratives, UMR 5293, Bordeaux F-33000, France KEYWORDS Correspondence ambroxol, glucocerebrosidase,
    [Show full text]
  • GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies
    International Journal of Molecular Sciences Review GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies Andrés Felipe Leal 1 , Eliana Benincore-Flórez 1, Daniela Solano-Galarza 1, Rafael Guillermo Garzón Jaramillo 1 , Olga Yaneth Echeverri-Peña 1, Diego A. Suarez 1,2, Carlos Javier Alméciga-Díaz 1,* and Angela Johana Espejo-Mojica 1,* 1 Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] (A.F.L.); [email protected] (E.B.-F.); [email protected] (D.S.-G.); [email protected] (R.G.G.J.); [email protected] (O.Y.E.-P.); [email protected] (D.A.S.) 2 Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 110231, Colombia * Correspondence: [email protected] (C.J.A.-D.); [email protected] (A.J.E.-M.); Tel.: +57-1-3208320 (ext. 4140) (C.J.A.-D.); +57-1-3208320 (ext. 4099) (A.J.E.-M.) Received: 6 July 2020; Accepted: 7 August 2020; Published: 27 August 2020 Abstract: GM2 gangliosidoses are a group of pathologies characterized by GM2 ganglioside accumulation into the lysosome due to mutations on the genes encoding for the β-hexosaminidases subunits or the GM2 activator protein. Three GM2 gangliosidoses have been described: Tay–Sachs disease, Sandhoff disease, and the AB variant. Central nervous system dysfunction is the main characteristic of GM2 gangliosidoses patients that include neurodevelopment alterations, neuroinflammation, and neuronal apoptosis. Currently, there is not approved therapy for GM2 gangliosidoses, but different therapeutic strategies have been studied including hematopoietic stem cell transplantation, enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, and gene therapy.
    [Show full text]
  • Genetics and Epigenetics in Parkinson´S Disease
    Genetics and epigenetics in Parkinson´s disease. Luis Navarro Sánchez. Thesis supervisor: Jordi Pérez Tur. Unitat de Genètica Molecular, Institut de Biomedicina de València, CSIC. Doctoral studies: Biotechnology. Facultat de Ciències Biològiques, Universitat de València. Tras preguntas y más preguntas y miedo y nervios y ansiedad y más ansiedad y bloqueos y periodos depresivos y tristeza y mucha, pero mucha, mierda… acabas. Tarde y reventado, pero acabas. Y lo único que quieres es pasar página y que esto no te pase más nunca. ¿Y? Pues que te surgen más preguntas y más miedo y más nervios…. Y te das cuenta de que vives en un puto bucle científico que se está comiendo tu vida. ¿Y? No lo sé, estoy en ello. Terapia y medicación, supongo. Aunque la autodestrucción y los realities son muy apetecibles. En primer lugar, las formalidades. Gracias Jordi por dejarme que trabajara en la UGM. A estas alturas, creo que los dos nos habremos planteado muchas veces si fue una buena decisión, pero ya da igual. A continuación, el momento pasteleo, aunque si no sé dar un abrazo, no penséis que esto me va a salir fluido. Y menos aún, estando sobrio. Y que no se me enfade nadie si no he puesto su nombre o si no he escrito un parrafazo lacrimógeno y azucarado exaltando la belleza de nuestra relación. Si dejo que leas esto, significa que también eres importante para mí. Lo mejor de todo este tiempo sois, de calle, vosotros y vosotras: Bea, Carolina, Eva, Fer, LauraA, LauraG, María, Marta, Pili, Silvia, Vicente/Andreu y VicenteH.
    [Show full text]
  • Polymorphisms in the Glucocerebrosidase Gene And
    BMC Medical Genetics BioMed Central Technical advance Open Access Polymorphisms in the glucocerebrosidase gene and pseudogene urge caution in clinical analysis of Gaucher disease allele c.1448T>C (L444P) Justin T Brown*, Cora Lahey, Walairat Laosinchai-Wolf and Andrew G Hadd Address: Asuragen, Inc., Austin, Texas, USA Email: Justin T Brown* - [email protected]; Cora Lahey - [email protected]; Walairat Laosinchai- Wolf - [email protected]; Andrew G Hadd - [email protected] * Corresponding author Published: 03 August 2006 Received: 17 March 2006 Accepted: 03 August 2006 BMC Medical Genetics 2006, 7:69 doi:10.1186/1471-2350-7-69 This article is available from: http://www.biomedcentral.com/1471-2350/7/69 © 2006 Brown et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Gaucher disease is a potentially severe lysosomal storage disorder caused by mutations in the human glucocerebrosidase gene (GBA). We have developed a multiplexed genetic assay for eight diseases prevalent in the Ashkenazi population: Tay-Sachs, Gaucher type I, Niemann- Pick types A and B, mucolipidosis type IV, familial dysautonomia, Canavan, Bloom syndrome, and Fanconi anemia type C. This assay includes an allelic determination for GBA allele c.1448T>C (L444P). The goal of this study was to clinically evaluate this assay. Methods: Biotinylated, multiplex PCR products were directly hybridized to capture probes immobilized on fluorescently addressed microspheres. After incubation with streptavidin- conjugated fluorophore, the reactions were analyzed by Luminex IS100.
    [Show full text]
  • Impaired Β-Glucocerebrosidase Activity and Processing in Frontotemporal Dementia Due to Progranulin Mutations Andrew E
    Arrant et al. Acta Neuropathologica Communications (2019) 7:218 https://doi.org/10.1186/s40478-019-0872-6 RESEARCH Open Access Impaired β-glucocerebrosidase activity and processing in frontotemporal dementia due to progranulin mutations Andrew E. Arrant1,2*, Jonathan R. Roth1, Nicholas R. Boyle1, Shreya N. Kashyap1, Madelyn Q. Hoffmann1, Charles F. Murchison1,3, Eliana Marisa Ramos4, Alissa L. Nana5, Salvatore Spina5, Lea T. Grinberg5,6, Bruce L. Miller5, William W. Seeley5,6 and Erik D. Roberson1,7* Abstract Loss-of-function mutations in progranulin (GRN) are a major autosomal dominant cause of frontotemporal dementia. Most pathogenic GRN mutations result in progranulin haploinsufficiency, which is thought to cause frontotemporal dementia in GRN mutation carriers. Progranulin haploinsufficiency may drive frontotemporal dementia pathogenesis by disrupting lysosomal function, as patients with GRN mutations on both alleles develop the lysosomal storage disorder neuronal ceroid lipofuscinosis, and frontotemporal dementia patients with GRN mutations (FTD-GRN) also accumulate lipofuscin. The specific lysosomal deficits caused by progranulin insufficiency remain unclear, but emerging data indicate that progranulin insufficiency may impair lysosomal sphingolipid- metabolizing enzymes. We investigated the effects of progranulin insufficiency on sphingolipid-metabolizing enzymes in the inferior frontal gyrus of FTD-GRN patients using fluorogenic activity assays, biochemical profiling of enzyme levels and posttranslational modifications, and quantitative neuropathology. Of the enzymes studied, only β-glucocerebrosidase exhibited impairment in FTD-GRN patients. Brains from FTD-GRN patients had lower activity than controls, which was associated with lower levels of mature β-glucocerebrosidase protein and accumulation of insoluble, incompletely glycosylated β-glucocerebrosidase. Immunostaining revealed loss of neuronal β- glucocerebrosidase in FTD-GRN patients.
    [Show full text]
  • Mutagenesis of Human Alpha-Galactosidase a for the Treatment of Fabry Disease
    City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 9-2017 Mutagenesis of Human Alpha-Galactosidase A for the Treatment of Fabry Disease Erin Stokes The Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/2338 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] CITY COLLEGE, CITY UNIVERSITY OF NEW YORK MUTAGENESIS OF HUMAN ALPHA-GALACTOSIDASE A FOR THE TREATMENT OF FABRY DISEASE By Erin Stokes A dissertation submitted to the Graduate Faculty in Biochemistry in partial fulfillment of the requirement for the degree of Doctor of Philosophy, The City University of New York 2017 ©2017 Erin Stokes All rights reserved ii Mutagenesis of Human α-Galactosidase A for the Treatment of Fabry Disease By Erin Stokes This manuscript has been read and accepted for the Graduate Faculty Biochemistry in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. ______________________ David H. Calhoun Date Chair of Examining Committee ______________________ Richard Magliozzo Date Executive Officer Supervisory Committee: Haiping Cheng (Lehman College, CUNY) M. Lane Gilchrist (City College of New York, CUNY) Emanuel Goldman (New Jersey Medical School, Rutgers) Kevin Ryan (City College of New York, CUNY) THE CITY UNIVERSITY OF NEW YORK iii Abstract Mutagenesis of Human α-Galactosidase A for the Treatment of Fabry Disease By Erin Stokes Advisor: Dr.
    [Show full text]
  • Identification of an Unusual Glycosyltransferase from a Non
    Identification of an unusual glycosyltransferase from a non-cultivated microorganism and the construction of an improved Escherichia coli strain harboring the rpoD gene from Clostridium cellulolyticum for metagenome searches Dissertation Zur Erlangung der Würde des Doktors der Naturwissenschaften des Fachbereichs Biologie, der Fakultät für Mathematik, Informatik und Naturwissenschaften, der Universität Hamburg vorgelegt von Julia Jürgensen aus Henstedt-Ulzburg Hamburg 2015 Table of contents I Table of contents 1 Introduction ...................................................................................................... 1 1.1 Flavonoids................................................................................................... 1 1.2 Glycosyltransferases ................................................................................... 3 1.3 Biotechnology ............................................................................................. 4 1.3.1 Biotechnological relevance of glycosyltranferases....................................... 5 1.4 Metagenomics ............................................................................................. 5 1.5 Transcription ............................................................................................... 7 1.6 Phyla ........................................................................................................... 8 1.6.1 Proteobacteria ............................................................................................. 8 1.6.2 Firmicutes ..................................................................................................
    [Show full text]
  • LIMP-2 Expression Is Critical for Β-Glucocerebrosidase Activity and Α-Synuclein Clearance
    LIMP-2 expression is critical for β-glucocerebrosidase activity and α-synuclein clearance Michelle Rothauga,1, Friederike Zunkea,1, Joseph R. Mazzullib, Michaela Schweizerc, Hermann Altmeppend, Renate Lüllmann-Rauche, Wouter W. Kallemeijnf, Paulo Gasparg, Johannes M. Aertsf, Markus Glatzeld, Paul Saftiga, Dimitri Kraincb, Michael Schwakea,h, and Judith Blanza,2 aInstitute of Biochemistry and eAnatomical Institute, Christian Albrechts University of Kiel, 24098 Kiel, Germany; bDepartment of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; cDepartment of Electron Microscopy, Centre for Molecular Neurobiology, and dInstitute of Neuropathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; fDepartment of Medical Biochemistry, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; gUnidade de Biologia do Lisossoma e do Peroxissoma, Instituto de Biologia Molecular e Celular, 4150-180 Porto, Portugal; and hFaculty of Chemistry/Biochemistry III, University of Bielefeld, 33615 Bielefeld, Germany Edited by Thomas C. Südhof, Stanford University School of Medicine, Stanford, CA, and approved September 15, 2014 (received for review April 4, 2014) Mutations within the lysosomal enzyme β-glucocerebrosidase (GC) transgenic mouse models of GD and PD (16). Moreover, recent data result in Gaucher disease and represent a major risk factor for suggestthataccumulatedα-syn disrupts ER/Golgi trafficking of GC, developing Parkinson disease (PD). Loss of GC activity leads to
    [Show full text]
  • Evidence That Small Molecule Enhancement of Β-Hexosaminidase Activity Corrects the Behavioral Phenotype in Dutch APPE69
    OPEN Molecular Psychiatry (2015) 20, 109–117 © 2015 Macmillan Publishers Limited All rights reserved 1359-4184/15 www.nature.com/mp IMMEDIATE COMMUNICATION Evidence that small molecule enhancement of β-hexosaminidase activity corrects the behavioral phenotype in Dutch APPE693Q mice through reduction of ganglioside-bound Aβ EM Knight1, HN Williams2, AC Stevens3, SH Kim1, JC Kottwitz4, AD Morant4, JW Steele3, WL Klein5, K Yanagisawa6, RE Boyd2, DJ Lockhart3, ER Sjoberg3, ME Ehrlich4, BA Wustman3 and S Gandy1,7 Certain mutant Alzheimer’s amyloid-β (Aβ) peptides (that is, Dutch mutant APPE693Q) form complexes with gangliosides (GAβ). These mutant Aβ peptides may also undergo accelerated aggregation and accumulation upon exposure to GM2 and GM3. We hypothesized that increasing β-hexosaminidase (β-hex) activity would lead to a reduction in GM2 levels, which in turn, would cause a reduction in Aβ aggregation and accumulation. The small molecule OT1001 is a β-hex-targeted pharmacological chaperone with good bioavailability, blood–brain barrier penetration, high selectivity for β-hex and low cytotoxicity. Dutch APPE693Q transgenic mice accumulate oligomeric Aβ as they age, as well as Aβ oligomer-dose-dependent anxiety and impaired novel object recognition (NOR). Treatment of Dutch APPE693Q mice with OT1001 caused a dose-dependent increase in brain β-hex levels up to threefold over those observed at baseline. OT1001 treatment was associated with reduced anxiety, improved learning behavior in the NOR task and dramatically reduced GAβ accumulation in the subiculum and perirhinal cortex, both of which are brain regions required for normal NOR. Pharmacological chaperones that increase β-hex activity may be useful in reducing accumulation of certain mutant species of Aβ and in preventing the associated behavioral pathology.
    [Show full text]
  • Glucocerebrosidase: Functions in and Beyond the Lysosome
    Journal of Clinical Medicine Review Glucocerebrosidase: Functions in and Beyond the Lysosome Daphne E.C. Boer 1, Jeroen van Smeden 2,3, Joke A. Bouwstra 2 and Johannes M.F.G Aerts 1,* 1 Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Faculty of Science, 2333 CC Leiden, The Netherlands; [email protected] 2 Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Faculty of Science, 2333 CC Leiden, The Netherlands; [email protected] (J.v.S.); [email protected] (J.A.B.) 3 Centre for Human Drug Research, 2333 CL Leiden, The Netherlands * Correspondence: [email protected] Received: 29 January 2020; Accepted: 4 March 2020; Published: 9 March 2020 Abstract: Glucocerebrosidase (GCase) is a retaining β-glucosidase with acid pH optimum metabolizing the glycosphingolipid glucosylceramide (GlcCer) to ceramide and glucose. Inherited deficiency of GCase causes the lysosomal storage disorder named Gaucher disease (GD). In GCase-deficient GD patients the accumulation of GlcCer in lysosomes of tissue macrophages is prominent. Based on the above, the key function of GCase as lysosomal hydrolase is well recognized, however it has become apparent that GCase fulfills in the human body at least one other key function beyond lysosomes. Crucially, GCase generates ceramides from GlcCer molecules in the outer part of the skin, a process essential for optimal skin barrier property and survival. This review covers the functions of GCase in and beyond lysosomes and also pays attention to the increasing insight in hitherto unexpected catalytic versatility of the enzyme. Keywords: glucocerebrosidase; lysosome; glucosylceramide; skin; Gaucher disease 1.
    [Show full text]
  • Lysosomal Enzyme Activities As Possible CSF Biomarkers Of
    Clinica Chimica Acta 495 (2019) 13–24 Contents lists available at ScienceDirect Clinica Chimica Acta journal homepage: www.elsevier.com/locate/cca Lysosomal enzyme activities as possible CSF biomarkers of synucleinopathies T ⁎ Silvia Paciottia,b, , Leonardo Gatticchia, Tommaso Beccaric, Lucilla Parnettib a Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy b Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy c Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy ARTICLE INFO ABSTRACT Keywords: Mutations on the GBA gene, encoding for the lysosomal enzyme β-glucocerebrosidase (GCase), have been Lysosomal enzyme activity identified as the most common genetic risk factor involved in the development of Parkinson's disease (PD) and Cerebrospinal fluid dementia with Lewy bodies (DLB), indicating a direct contribution of this enzyme to the pathogenesis of sy- β -glucocerebrosidase nucleinopathies. Parkinson's disease Decreased GCase activity has been observed repeatedly in brain tissues and biological fluids of both GBA Synucleinopathies mutation carrier and non-carrier PD and DLB patients, suggesting that lower GCase activity constitutes a typical GBA feature of these disorders. Additional genetic, pathological and biochemical data on other lysosomal enzymes (e.g., Acid sphingomye- linase, Cathepsin D, α-galactosidase A and β-hexosaminidase) have further strengthened the evidence of a link between lysosomal dysfunction and synucleinopathies. A few studies have been performed for assessing the potential value of lysosomal enzyme activities in cere- brospinal fluid (CSF) as biomarkers for synucleinopathies. The reduction of GCase activity in the CSF of PD and DLB patients was validated in several of them, whereas the behaviour of other lysosomal enzyme activities was not consistently reliable among the studies.
    [Show full text]
  • 2018 GRC Abstract Book
    40th Annual Graduate Research Conference Presented by: 40th Annual Graduate Research Conference presented by the Graduate Student Association Contents: 4 President’s Message 5 Forward 6 Student Award Winners 7 Keynote Speaker Biography 8 Schedule of Events 9 Session Assignments 10 Abstracts 55 Presenter Index 2 The GSA would like to thank our sponsors and supporting organizations for helping make this conference possible. Agilent BD Biosciences BioLegend Biostorage Labs Gliknik Peprotech Pierce Biotechnology (now part of Thermo Fisher) Proteintech Rainin USA Scientific, Inc. Xpress Bio 3 A Message from the President March 15, 2018 Congratulations to the Graduate Student Association on its 40th annual Graduate Research Conference. What an incredible milestone! This is one of the University’s very best and most enduring traditions, inviting students from all schools and disciplines to share in each other’s work, to learn about new avenues of discovery and research, and most importantly, to create opportunities for the kind of interprofessional, interdisciplinary collaboration that so often breeds breakthroughs. This instinct to share is important. It’s important that each of us understands how our colleagues contribute to our collective mission, and it’s important that we consider our work not in isolation but in context. The search for context has ignited partnerships at all levels of this institution, and I remain convinced that we work best for the people of this state, this nation, and this world when we work together. I hope the day proves enlightening and exciting. I hope it opens up possibilities to take your work further. I hope others might find in your research the spark or scaffolding they need for their own.
    [Show full text]