WO 2015/006740 A2 15 January 2015 (15.01.2015) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2015/006740 A2 15 January 2015 (15.01.2015) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/006740 A2 15 January 2015 (15.01.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 47/48 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US20 14/046425 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 July 2014 ( 11.07.2014) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 61/845,279 11 July 2013 ( 11.07.2013) US (84) Designated States (unless otherwise indicated, for every (71) Applicant: ALNYLAM PHARMACEUTICALS, INC. kind of regional protection available): ARIPO (BW, GH, [US/US]; 300 Third Street, Cambridge, MA 02142 (US). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (72) Inventors: MANOHARAN, Muthiah; 300 Third Street, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Cambridge, MA 02142 (US). NAIR, Jayaprakash, K.; EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, 300 Third Street, Cambridge, MA 02142 (US). KAN- MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, DASAMY, Pachamuthu; 300 Third Street, Cambridge, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, MA 02142 (US). MATSUDA, Shigeo; 300 Third Street, KM, ML, MR, NE, SN, TD, TG). Cambridge, MA 02142 (US). KELIN, Alexander, V.; 300 Third Street, Cambridge, MA 02142 (US). JAYARA- Published: MAN, Muthusamy; 300 Third Street, Cambridge, MA — without international search report and to be republished 02142 (US). RAJEEV, Kallanthottathil, G.; 300 Third upon receipt of that report (Rule 48.2(g)) Street, Cambridge, MA 02142 (US). (74) Agent: LESSLER, Jay, P.; Blank Rome LLP, The Chrysler Building, 405 Lexington Ave., New York, NY 10174-0208 (US). < © ©o © (54) Title: OLIGONUCLEOTIDE-LIGAND CONJUGATES AND PROCESS FOR THEIR PREPARATION (57) Abstract: The present invention relates to ligand conjugates of oligonucleotides (e.g., iRNA agents) and methods for their pre - paration. The ligands are derived primarily from monosaccharides These conjugates are useful for the in vivo delivery of oligonuc- leotides. OLIGONUCLEOTIDE-LIGAND CONJUGATES AND PROCESS FOR THEIR PREPARATION RELATED APPLICATIONS This application claims the benefit of U.S. Provisional Application No. 61/845,279, filed July 11, 2013, which is hereby incorporated by reference in its entirety. FIELD OF THE INVENTION The present invention relates to ligand conjugates of oligonucleotides (e.g., iRNA agents) and methods for their preparation. The ligands are derived primarily from monosaccharides. These conjugates are useful for the in vivo delivery of oligonucleotides. BACKGROUND OF THE INVENTION Efficient delivery to cells in vivo requires specific targeting and substantial protection from the extracellular environment, particularly serum proteins. One method of achieving specific targeting is to conjugate a targeting moiety to the iRNA agent. The targeting moiety helps in targeting the iRNA agent to the required target site. One way a targeting moiety can improve delivery is by receptor mediated endocytotic activity. This mechanism of uptake involves the movement of iRNA agent bound to membrane receptors into the interior of an area that is enveloped by the membrane via invagination of the membrane structure or by fusion of the delivery system with the cell membrane. This process is initiated via activation of a cell- surface or membrane receptor following binding of a specific ligand to the receptor. Many receptor-mediated endocytotic systems are known and have been studied, including those that recognize sugars such as galactose, mannose, mannose-6-phosphate, peptides and proteins such as transferrin, asialoglycoprotein, vitamin B12, insulin and epidermal growth factor (EGF). The Asialoglycoprotein receptor (ASGP-R) is a high capacity receptor, which is highly abundant on hepatocytes. The ASGP-R shows a 50-fold higher affinity for N-Acetyl-D-Galactosylamine (GalNAc) than D-Gal. Previous work has shown that multivalency is required to achieve nM affinity, while spacing among sugars is also crucial. Recently, certain carbohydrate conjugates have been shown to be a valuable delivery alternatively to liposomes for siRNA delivery. SUMMARY OF THE INVENTION The present invention relates to ligand conjugates of oligonucleotides or other biologically active agents which have one or more advantageous properties, such as improved delivery of the oligonucleotide or other biologically active agents, lower manufacturing costs or fewer manufacturing issues, or better chemical stability. These conjugates provide effective delivery of oligonucleotides and other biologically active agents. In one embodiment, the present invention relates to a ligand (e.g., carbohydrate) conjugate of an oligonucleotide (e.g., an iRNA agent) or other biologically active agent of the formula I: Formula I wherein the Oligonucleotide is an oligonucleotide, such as an siRNA, microRNA, antimiR, antagomir, microRNA mimic, decoy, immune stimulatory, G-quadruplex, splice altering, ssRNA, antisense, aptamer, stem-loop RNA or DNA or one of the two strands of any double stranded RNA or DNA or double stranded shortemer RNA or DNA (e.g, siRNA); the Biologically Active Agent is any biologically active agent; the Linker is a linking group between the Ligand(s) and the Oligonucleotide or other biologically active agent, where the Linker may be selected from the linking groups in Table 1 or 1A; and the Ligand(s) are sugar-derived, where (i) the Ligand(s) may be attached to the same or different atoms in the Linker, (ii) the conjugate contains from 1 to 12 Ligands (preferably 1 to 5 or 1 to 3 Ligands), and (iii) the Ligand(s) may be selected from (a) the Ligands in Table 2 or 2A, 2 (b) - R -(R )k, where 9 R is absent (in which case k=l) or a spacer (also referred to as a ligand backbone) having two or more sites of attachment for the R groups, R is a targeting monomer selected from Table 3, and k is 1 to 6 (preferably 1 to 5 or 1 to 3), each R3 may be attached to the same or different atoms in R2 ; and (c) the Ligands in Table 4 or 4A. The conjugate includes at least one Linker from Table 1 or 1A or from the examples, one Ligand from Table 2, 2A, 4, or 4A, or one targeting monomer from Table 3 or 3A. For example, the nucleoside linkers described in the examples can be used as the Linker. In one embodiment, the conjugate includes (i) at least one Linker from Table 1 or 1A or from the examples, (ii) one Ligand from Table 2, 2A, 4, or 4A, and (iii) one targeting monomer from Table 3 or 3A. 9 R can be an amino acid-, polypeptide- (e.g., a dipeptide or tripeptide), heteroaryl- (e.g., a triazole), or sugar-containing group. In one preferred embodiment, each R group is attached via 9 an amide, ether, or amino group to R . In one embodiment, R is attached via an amide group. Each entry in Tables 2, 2A, 4, and 4A shows a spacer bound to at least one targeting monomer. The spacers are bound to the targeting monomers either through a heteroatom (which is at a terminus of the spacer), such as a nitrogen atom, or at the anomeric carbon to the sugar group of a targeting monomer (as shown below). The heteroatom attachment point in the structures shown in Tables 2, 2A, 4, and 4A is the first nitrogen atom when walking along the chain from the sugar group (left side of the ligand) to the remainder of the ligand (right side). The spacers for two ligands in Table 2A are shown in the table below (the arrows indicate the points of attachment for the targeting monomers R , and the right side of the spacer is attached to the Linker). Suitable spacers are also shown in Table 5 below. The Oligonucleotide is preferably attached to the Linker through (i) the 3' or 5'-terminal of the oligonucleotide, (ii) one or more sugar moieties of the nucleoside present in the oligonucleotide independent of position, or (iii) one or more base moieties of the nucleoside present independent of position. In one embodiment, the Ligand is conjugated to one of the two strands of a double stranded siRNA via a Linker. In one embodiment, the Ligand(s) target the asialoglycoprotein receptor (ASGPR). In another embodiment, the Ligand(s) target the liver, such as the parenchymal cells of the liver. The Ligand(s) may be an unmodified or modified monosaccharide, disaccharide, trisaccharide, tetrasaccharide, or higher polysaccharide. The oligonucleotide can be attached to the Linker via a cleavable group (e.g., phosphate, phosphorothiate, or amide) or a non-cleavable group (e.g., ether, carbamate, or C-C (e.g., a bond between two carbon atoms or -CH 2-CH2-)). As described herein, the cleavable or non-cleavable group is within the Oligonucleotide of Formula I. In one embodiment, the -Linker- Ligand is not L96 (shown in the examples).
Recommended publications
  • Download Author Version (PDF)
    Green Chemistry Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/greenchem Page 1 of 30 Green Chemistry 1 A sustainable biotechnological process for the efficient synthesis of kojibiose 2 3 Marina Díez-Municio, Antonia Montilla, F. Javier Moreno * and Miguel Herrero 4 5 Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI 6 (UAM+CSIC), C/ Nicolás Cabrera 9, 28049 Madrid, Spain. 7 8 * Corresponding author: Tel.: +34 91 0017948; E-mail address: [email protected] 9 GreenChemistry Accepted Manuscript Green Chemistry Page 2 of 30 10 ABSTRACT 11 This work reports the optimization of a cost-effective and scalable process for 12 the enzymatic synthesis of kojibiose (2-O-α-D-glucopyranosyl-α-D-glucose) from 13 readily available and low-cost substrates such as sucrose and lactose.
    [Show full text]
  • Chemical Yields from Low-Temperature Pyrolysis of CCA-Treated Wood
    United States Department of Agriculture Chemical Yields Forest Service from Low-Temperature Forest Products Laboratory Pyrolysis of CCA-Treated Research Paper Wood FPL–RP–652 Qirong Fu Dimitris S. Argyropolous Lucian A. Lucia David C. Tilotta Stan T. Lebow Abstract Acknowledgment Low-temperature pyrolysis offers a feasible option for This project was supported by a grant from the Advanced wood-waste management and the recovery of a variety of Housing Research Center. useful chemicals. The effect of chromated copper arsenate (CCA) wood preservative on the yield and composition of Contents various pyrolysis products was investigated in the present Page research. A novel quantitative 31P nuclear magnetic reso- nance (NMR) spectroscopy methodology has been devel- Introduction ..........................................................................1 oped to quantify levoglucosan and levoglucosenone from Management Options for Reuse .......................................1 the pyrolysate of CCA-treated and untreated wood. The CCA treatment of wood had a notable effect on the charac- Low-Temperature Pyrolysis .............................................2 teristics of the carbohydrate-derived degradation products Experimental ........................................................................2 of tar. In particular, yields of the important pharmaceutical precursors levoglucosan and levoglucosenone were elevated Materials ..........................................................................2 by 3 and 4.5 times, respectively, when compared
    [Show full text]
  • Solid Phosphoric Acid Catalysts Based on Mesoporous Silica For
    Solid phosphoric acid catalysts based on mesoporous silica for levoglucosenone production via cellulose fast pyrolysis J. A. Santander a*, M. Alvarez a, V. Gutierrez b, M. A. Volpe b. a Instituto de Química del Sur, INQUISUR (CONICET-UNS), Av. Alem 1253, Bahía Blanca (8000), Argentina. b Planta Piloto de Ingeniería Química, PLAPIQUI (CONICET-UNS), Florida 7500, Bahía Blanca (8000), Argentina *Corresponding author, José A. Santander, e-mail address: [email protected], phone number: +54 0291 4595101 ext. 3592 Abstract BACKGROUND: Biochemicals are interesting alternatives for biomass valorization owing to their much higher added value compared to biofuels and energy products. Several methods for the production of valuable chemicals such as levoglucosenone (LGO) via thermochemical processes over solid acid catalysts are being investigated due to their important advantages compared to conventional biomass acid impregnation techniques. The present work explores the synthesis of catalytic materials for the production of this platform molecule. Accepted Article This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/jctb.5795 This article is protected by copyright. All rights reserved. RESULTS: Aluminum-loaded SBA-15 mesoporous silica and the corresponding solid phosphoric acid catalysts were prepared, characterized by TEM, FT-IR, MAS NMR, NH3-TPD, N2 adsorption, ICP-AES and titration of “free H3PO4”, and tested in cellulose fast pyrolysis. Post synthesis Al deposition on the silica support produced an increase of bio-oil yield and LGO amount in pyrolysis products.
    [Show full text]
  • Bio-Solvents: Synthesis, Industrial Production and Applications Novisi K
    Chapter Bio-Solvents: Synthesis, Industrial Production and Applications Novisi K. Oklu, Leah C. Matsinha and Banothile C.E. Makhubela Abstract Solvents are at the heart of many research and industrial chemical processes and consumer product formulations, yet an overwhelming number are derived from fossils. This is despite societal and legislative push that more products be produced from carbon-neutral resources, so as to reduce our carbon footprint and environmental impact. Biomass is a promising renewable alternative resource for producing bio-solvents, and this review focuses on their extraction and synthesis on a laboratory and large scale. Starch, lignocellulose, plant oils, animal fats and proteins have been combined with creative synthetic pathways, novel technolo- gies and processes to afford known or new bio-derived solvents including acids, alkanes, aromatics, ionic liquids (ILs), furans, esters, ethers, liquid polymers and deep eutectic solvents (DESs)—all with unique physiochemical properties that warrant their use as solvation agents in manufacturing, pharmaceutical, cosmet- ics, chemicals, energy, food and beverage industries, etc. Selected bio-solvents, conversion technologies and processes operating at commercial and demonstration scale including (1) Solvay’s Augeo™ SL 191 renewable solvent, (2) Circa Group’s Furacell™ technology and process for making levoglucosenone (LGO) to produce dihydrolevoglucosenone (marketed as Cyrene™), (3) Sappi’s Xylex® technology and demonstration scale processes that aim to manufacture precursors for bio- solvents and (4) Anellotech’s Bio-TCat™ technology and process for producing benzene, toluene and xylenes (BTX) are highlighted. Keywords: bio-solvents, renewable resources, green chemistry, biorefinery, biomass 1. Introduction Air quality deterioration, environmental, health and safety issues have raised serious concerns over continued processing of fossil-based feedstocks in producing chemical products such as fuels and solvents.
    [Show full text]
  • Enzymatic Synthesis of L-Fucose from L-Fuculose Using a Fucose Isomerase
    Kim et al. Biotechnol Biofuels (2019) 12:282 https://doi.org/10.1186/s13068-019-1619-0 Biotechnology for Biofuels RESEARCH Open Access Enzymatic synthesis of L-fucose from L-fuculose using a fucose isomerase from Raoultella sp. and the biochemical and structural analyses of the enzyme In Jung Kim1†, Do Hyoung Kim1†, Ki Hyun Nam1,2 and Kyoung Heon Kim1* Abstract Background: L-Fucose is a rare sugar with potential uses in the pharmaceutical, cosmetic, and food industries. The enzymatic approach using L-fucose isomerase, which interconverts L-fucose and L-fuculose, can be an efcient way of producing L-fucose for industrial applications. Here, we performed biochemical and structural analyses of L-fucose isomerase identifed from a novel species of Raoultella (RdFucI). Results: RdFucI exhibited higher enzymatic activity for L-fuculose than for L-fucose, and the rate for the reverse reaction of converting L-fuculose to L-fucose was higher than that for the forward reaction of converting L-fucose to L-fuculose. In the equilibrium mixture, a much higher proportion of L-fucose (~ ninefold) was achieved at 30 °C and pH 7, indicating that the enzyme-catalyzed reaction favors the formation of L-fucose from L-fuculose. When biochemical analysis was conducted using L-fuculose as the substrate, the optimal conditions for RdFucI activity were determined to be 40 °C and pH 10. However, the equilibrium composition was not afected by reaction temperature in the range 2 of 30 to 50 °C. Furthermore, RdFucI was found to be a metalloenzyme requiring Mn + as a cofactor. The comparative crystal structural analysis of RdFucI revealed the distinct conformation of α7–α8 loop of RdFucI.
    [Show full text]
  • New Computational Approaches for Investigating the Impact of Mutations on the Transglucosylation Activity of Sucrose Phosphorylase Enzyme
    Thesis submitted to the Université de la Réunion for award of Doctor of Philosophy in Sciences speciality in bioinformatics New computational approaches for investigating the impact of mutations on the transglucosylation activity of sucrose phosphorylase enzyme Mahesh VELUSAMY Thesis to be presented on 18th December 2018 in front of the jury composed of Mme Isabelle ANDRE, Directeur de Recherche CNRS, INSA de TOULOUSE, Rapporteur M. Manuel DAUCHEZ, Professeur, Université de Reims Champagne Ardennes, Rapporteur M. Richard DANIELLOU, Professeur, Université d'Orléans, Examinateur M. Yves-Henri SANEJOUAND, Directeur de Recherche CNRS, Université de Nantes, Examinateur Mme Irène MAFFUCCI, Maître de Conférences, Université de Technologie de Compiègne, Examinateur Mme Corinne MIRAL, Maître de Conférences HDR, Université de Nantes, Examinateur M. Frédéric CADET, Professeur, Université de La Réunion, Co-directeur de thèse M. Bernard OFFMANN, Professeur, Université de Nantes, Directeur de thèse ெ்்ந்ி ிைு்ூுத் ெ்யாம் ெ்த உதி்ு ையகு் ானகு் ஆ்ற் அிு. -ிு்ு் ுதி் அ்ப் ுுக், எனு த்ைத ேுாி, தா் க்ூி, அ்ண் ு்ு்ுமா், த்ைக பா்பா, ஆ்தா ுு்மா், ீனா, அ்ண் ்ுக், ெபிய்பா, ெபிய்மா ம்ு் உுுைணயா் இு்த அைண்ு ந்ப்கு்ு் எனு மனமா்்த ந்ி. இ்த ஆ்ி்ைக ுுைம அை3த்ு ுுுத்்காரண், எனு ஆ்ி்ைக இய்ுன் ேபராிிய் ெப்னா்் ஆஃ்ேம். ப்ேு துண்கி் நா் மனதாு், ெபாுளாதார அளிு் க்3்ி் இு்தேபாு, என்ு இ்ெனாு த்ைதயாகே இு்ு எ்ைன பா்்ு்ெகா்3ா். ுி்பாக, எனு ூ்றா் ஆ்ு இுிி், அ்்ு எ்ளோ தி்ப்3 க3ைமக் ம்ு் ிர்ிைனக் இு்தாு், அைத்ெபாு்பு்தாு, அ் என்ு ெ்த ெபாுளாதார உதி, ப்கைB்கழக பிு ம்ு் இதர ி்ாக ்ப்த்ப்3 உதிகு்ு எ்ன ைகமா்ு ெகாு்தாு் ஈ3ாகாு.
    [Show full text]
  • ( 12 ) United States Patent ( 10 ) Patent No .: US 11,019,776 B2 Klessig Et Al
    US011019776B2 ( 12 ) United States Patent ( 10 ) Patent No .: US 11,019,776 B2 Klessig et al . ( 45 ) Date of Patent : * Jun . 1 , 2021 ( 54 ) COMPOSITIONS AND METHODS FOR AOIN 43/38 ( 2006.01 ) MODULATING IMMUNITY IN PLANTS AOIN 63/10 ( 2020.01 ) ( 52 ) U.S. CI . ( 71 ) Applicant: Boyce Thompson Institute for Plant CPC A01H 3/04 ( 2013.01 ) ; A01N 43/16 Research , Inc. , Ithaca , NY ( US ) ( 2013.01 ) ; AOIN 43/38 ( 2013.01 ) ; AOIN 63/10 ( 2020.01 ) ; C12N 15/8281 ( 2013.01 ) ; ( 72 ) Inventors : Daniel Klessig , Dryden , NY ( US ) ; C12N 15/8282 ( 2013.01 ) ; C12N 15/8283 Frank Schroeder , Ithaca , NY ( US ) ; ( 2013.01 ) ; C12N 15/8285 ( 2013.01 ) Patricia Manosalva, Ithaca, NY ( US ) ( 58 ) Field of Classification Search CPC C12N 15/8282 ; C12N 15/8281 ( 73 ) Assignee : BOYCE THOMPSON INSTITUTE See application file for complete search history. FOR PLANT RESEARCH , INC . , Ithaca , NY (US ) ( 56 ) References Cited ( * ) Notice: Subject to any disclaimer , the term of this U.S. PATENT DOCUMENTS patent is extended or adjusted under 35 U.S.C. 154 ( b ) by 26 days. 8,318,146 B1 11/2012 Teal et al . This patent is subject to a terminal dis FOREIGN PATENT DOCUMENTS claimer . WO 2010/009241 A2 1/2010 WO 2010/146062 A2 12/2010 ( 21 ) Appl. No .: 16 / 161,252 WO 2012/084858 A2 6/2012 WO 2013/022985 A2 2/2013 ( 22 ) Filed : Oct. 16 , 2018 WO 2013/022997 A2 2/2013 ( Continued ) ( 65 ) Prior Publication Data US 2019/0053451 A1 Feb. 21 , 2019 OTHER PUBLICATIONS Hsueh , Y.-P. et al 2013.
    [Show full text]
  • Efficient Enzymatic Synthesis of L-Rhamnulose and L-Fuculose
    Bioorganic & Medicinal Chemistry Letters 26 (2016) 969–972 Contents lists available at ScienceDirect Bioorganic & Medicinal Chemistry Letters journal homepage: www.elsevier.com/locate/bmcl Efficient enzymatic synthesis of L-rhamnulose and L-fuculose y y ⇑ ⇑ Liuqing Wen a, , Lanlan Zang b, , Kenneth Huang a, Shanshan Li a, Runling Wang b, , Peng George Wang a, a Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30303, USA b Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China article info abstract Article history: L-Rhamnulose (6-deoxy-L-arabino-2-hexulose) and L-fuculose (6-deoxy-L-lyxo-2-hexulose) were prepared Received 2 November 2015 from L-rhamnose and L-fucose by a two-step strategy. In the first reaction step, isomerization of L-rham- Revised 12 December 2015 nose to L-rhamnulose, or L-fucose to L-fuculose was combined with a targeted phosphorylation reaction Accepted 15 December 2015 catalyzed by L-rhamnulose kinase (RhaB). The by-products (ATP and ADP) were selectively removed by Available online 17 December 2015 silver nitrate precipitation method. In the second step, the phosphate group was hydrolyzed to produce L-rhamnulose or L-fuculose with purity exceeding 99% in more than 80% yield (gram scale). Keywords: Ó 2015 Elsevier Ltd. All rights reserved. L-Rhamnulose L-Fuculose Enzymatic synthesis Phosphorylation De-phosphorylation Among 36 hexoses and pentoses (12 ketoses and 24 corre- (RhaD) or L-fuculose 1-phosphate aldolase (FucA) to facilitate fur- sponding aldoses), only seven monosaccharides are naturally ther metabolic function.11 RhaD and FucA are two powerful biocat- present in substantial quantities (D-xylose, D-ribose, L-arabinose, alysts and have been widely used in synthetic chemistry to 1 12 D-galactose, D-glucose, D-mannose, and D-fructose).
    [Show full text]
  • Catalytic Dehydration of Levoglucosan to Levoglucosenone Using Brønsted Solid Acid Catalysts in Tetrahydrofuran Green Chemistry
    Green Volume 21 Number 18 21 September 2019 Pages 4827–5132 Chemistry Cutting-edge research for a greener sustainable future rsc.li/greenchem ISSN 1463-9262 PAPER Nelson Cardona-Martínez et al. Catalytic dehydration of levoglucosan to levoglucosenone using Brønsted solid acid catalysts in tetrahydrofuran Green Chemistry PAPER Catalytic dehydration of levoglucosan to levoglucosenone using Brønsted solid acid Cite this: Green Chem., 2019, 21, 4988 catalysts in tetrahydrofuran Oscar Oyola-Rivera, a Jiayue He, b George W. Huber, b James A. Dumesic b and Nelson Cardona-Martínez *a We studied the production of levoglucosenone (LGO) via levoglucosan (LGA) dehydration using Brønsted solid acid catalysts in tetrahydrofuran (THF). The use of propylsulfonic acid functionalized silica catalysts increased the production of LGO by a factor of two compared to the use of homogeneous acid catalysts. We obtained LGO selectivities of up to 59% at 100% LGA conversion using solid Brønsted acid catalysts. Received 8th May 2019, Water produced during the reaction promotes the solvation of the acid proton reducing the activity and Accepted 10th July 2019 the LGO production. Using solid acid catalysts functionalized with propylsulfonic acid reduces this effect. DOI: 10.1039/c9gc01526d The hydrophilicity of the catalyst surface seems to have an effect on reducing the interaction of water rsc.li/greenchem with the acid site, improving the catalyst stability. 1. Introduction fast pyrolysis, at yields of up to 45%.18 The production of LGO has been mainly studied via acid-catalyzed pyrolysis of LGA – Lignocellulosic biomass is one of the most abundant carbon and cellulose using acid catalysts.11,15,19 21 Two routes have sources in the world and has the potential of becoming an been proposed for the acid-catalyzed conversion of LGA to important source for the renewable production of commodity LGO.
    [Show full text]
  • Evolving a New Efficient Mode of Fructose Utilization For
    fbioe-09-669093 May 22, 2021 Time: 22:55 # 1 ORIGINAL RESEARCH published: 28 May 2021 doi: 10.3389/fbioe.2021.669093 Evolving a New Efficient Mode of Fructose Utilization for Improved Bioproduction in Corynebacterium glutamicum Irene Krahn1, Daniel Bonder2, Lucía Torregrosa-Barragán2, Dominik Stoppel1, 1 3 1 3,4 Edited by: Jens P. Krause , Natalie Rosenfeldt , Tobias M. Meiswinkel , Gerd M. Seibold , Pablo Ivan Nikel, Volker F. Wendisch1 and Steffen N. Lindner1,2* Novo Nordisk Foundation Center 1 2 for Biosustainability (DTU Biosustain), Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany, Systems 3 Denmark and Synthetic Metabolism, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany, Institute of Biochemistry, University of Cologne, Cologne, Germany, 4 Department of Biotechnology and Biomedicine, Technical Reviewed by: University of Denmark, Lyngby, Denmark Stephan Noack, Julich-Forschungszentrum, Helmholtz-Verband Deutscher Fructose utilization in Corynebacterium glutamicum starts with its uptake and Forschungszentren (HZ), Germany concomitant phosphorylation via the phosphotransferase system (PTS) to yield Fabien Létisse, UMR 5504 Laboratoire d’Ingénierie intracellular fructose 1-phosphate, which enters glycolysis upon ATP-dependent des Systèmes Biologiques et des phosphorylation to fructose 1,6-bisphosphate by 1-phosphofructokinase. This is known Procédés (LISBP), France to result in a significantly reduced oxidative pentose phosphate pathway (oxPPP) flux *Correspondence: ∼ ∼ Steffen N. Lindner on fructose ( 10%) compared to glucose ( 60%). Consequently, the biosynthesis of [email protected] NADPH demanding products, e.g., L-lysine, by C. glutamicum is largely decreased when fructose is the only carbon source. Previous works reported that fructose Specialty section: This article was submitted to is partially utilized via the glucose-specific PTS presumably generating fructose 6- Synthetic Biology, phosphate.
    [Show full text]
  • Estimation of Free Methylpentoses in the Presence of Glycosidically Bound Sugar1
    ANALYTICAL BIOCHEMISTRY 14, 278-289 (1966) Estimation of Free Methylpentoses in the Presence of Glycosidically Bound Sugar1 A. K. BHATTACHARYYA AND D. AMINOFF From the Simpson Memorial Institute, The University of Michigan, Ann Arbor, Michigan Received August 3, 1965 In the course of our investigations on the immunochemistry and bio- synthesis of the human blood group substances, it became necessary to determine the amount of free fucose in the presence of the glycosidically bound sugar. Dische and Shettles (1) have described a specific spectro- photometric procedure for the determination of methylpentoses. This involved heating with concentrated sulfuric acid and the development of a specific color with cysteine hydrochloride. Modifications of the method have been described (2, 3) but in each case a strong acid is employed in the reagent. The heating with the acidic reagents releases methyl- pentose and converts it to the appropriate chromogen. Thus, these methods do not distinguish between free and bound methylpentoses. In- direct methods were therefore used to determine the rate of release of methylpentose under varying conditions of hydrolysis. One such method involved chromatographic separation of the sugars in the hydrolysis products followed by quantitative determination of the area correspond- ing to free fucose either by the cysteine-H&SO4 method (1) or by the Somogyi-Nelson procedure (4). Recovery of methylpentoses by these techniques was invariably low. This paper describes a procedure which involves the oxidation of methylpentoses with periodate. Only the free methylpentose will release acetaldehyde on oxidation with periodate and thus can be determined in the presence of the glycosidically bound compound.
    [Show full text]
  • Selective Fermentation of Potential Prebiotic Lactose-Derived Oligosaccharides By
    1 Selective fermentation of potential prebiotic lactose-derived oligosaccharides by 2 probiotic bacteria 3 4 Tomás García-Cayuela, Marina Díez-Municio, Miguel Herrero, M. Carmen Martínez- 5 Cuesta, Carmen Peláez, Teresa Requena*, F. Javier Moreno 6 7 Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI 8 (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain. 9 10 * Corresponding author: Tel.: +34 91 0017900; E-mail address: [email protected] 11 1 12 Abstract 13 The growth of potential probiotic strains from the genera Lactobacillus, 14 Bifidobacterium and Streptococcus was evaluated with the novel lactose-derived 15 trisaccharides 4’-galactosyl-kojibiose and lactulosucrose and the potential prebiotics 16 lactosucrose and kojibiose. The novel oligosaccharides were synthesized from 17 equimolar sucrose:lactose and sucrose:lactulose mixtures, respectively, by the use of a 18 Leuconostoc mesenteroides dextransucrase and purified by liquid chromatography. The 19 growth of the strains using the purified carbohydrates as the sole carbon source was 20 evaluated by recording the culture optical density and calculating maximum growth 21 rates and lag phase parameters. The results revealed an apparent bifidogenic effect of 22 lactulosucrose, being also a moderate substrate for streptococci and poorlybut badly 23 utilized by lactobacilli. In addition, 4’-galactosyl-kojibiose was selectively fermented by 24 Bifidobacterium breve, which was also the only tested bifidobacterial species able to 25 ferment kojibiose. The described fermentation properties of the specific probiotic strains 26 on the lactose-derived oligosaccharides would enable the design of prebiotics with a 27 high degree of selectivity. 28 29 Keywords: Prebiotic; Lactose-derived oligosaccharides; Probiotic; Bifidobacterium; 30 Lactobacillus; Streptococcus 31 2 32 1.
    [Show full text]