Geochemical Study of the Tundra Landscapes in the Yenisey Delta and Gulf Area

Total Page:16

File Type:pdf, Size:1020Kb

Geochemical Study of the Tundra Landscapes in the Yenisey Delta and Gulf Area Permafrost, Phillips, Springman & Arenson (eds) © 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 Geochemical study of the tundra landscapes in the Yenisey delta and gulf area E.M. Korobova V.I. Vernadsky Insitute of Geochemistry and Analytical Chemistry, Moscow, Russia N.G. Ukraintseva & V.V. Surkov Moscow State University, Moscow, Russia J.B. Brown Norwegian Radiation Protection Authority, Osteras, Norway ABSTRACT: Geochemical studies were conducted at four study sites in the Yenisey Estuary characterised by landscape cross-sections of the flood plain and adjacent watershed. Natural waters and soils formed on the originally frozen marine sediments, outcropping on landslide slopes, showed pronounced salinity and alkalinity. The variation in total salinity and ion composition of the sampled waters and the water-exchangeable soil sorption complex sup- ported earlier data on freeze-thaw transformation of soils and ground waters. Stream flows, transporting waters enriched in iron and manganese from the flood plain swamps to the Yenisey River, could also be induced by freez- ing processes. Trace element distributions in soils may indicate atmospheric contamination of the southern tundra site by distant human sources, e.g. the 200 km distant Norilsk Cu-Ni Complex. A comparison of concentrations and distributions of chemical elements in soil and vegetation at different distances from the Kara Sea was made. 1 INTRODUCTION Tundra landscapes are noted for their high sensitivity to anthropogenic impact owing to several factors includ- ing the presence of severe natural conditions, freeze weathering and a low rate of plant growth and regener- ation. The Lower Yenisey collects the global, regional (due to river transport) and local contamination from a vast drainage area. Concentrations of lead, copper and zinc in snow cover in the lower reaches of the Yenisey River are 3–5 times higher than those observed in the Yamal Peninsula and 10–15 times higher than those in the Canadian Arctic (Solomatin et al. 1989). The main objective of the present study was to inves- tigate the active layer of the Yenisey coastal plain and to Figure 1. Location of the study sites. estimate possible contamination of the terrestrial environment in the Yenisey estuarine zone. This paper river-eroded and reworked deposits. The area was describes field observations and provides results from covered by a thick (300–450 m) low-temperature ϽϪ preliminary hydrochemical and trace element analyses. permafrost ( 7°C) discontinued under the river channel (Ershov 1989). The mean annual temperature is Ϫ11.5°C, the monthly temperature amplitude 2 STUDY AREA AND METHODS reaches 38°C (at Vorontsovo). The prevailing wind direction changed from S, SE in January to NE in July The study took place in the middle of August 2001 in which suggests that contamination of the area from the period of close to maximum thaw depth. The four the local continental sources would potentially occur elaborated sites characterized the flood plain and the mainly in the winter. A thin active layer and a short Taimyr coastal zone and were representative of typical period of water exchange and cryogene concentration (middle subzone) and southern tundra areas. The sites of soil solution (Anisimova 1981) could contribute to were located within the delta, inlet and gulf sections contaminant conservation in local biogeochemical of the Yenisey estuary (Fig. 1). cycles. The influence of marine sources on element Watershed areas were formed from Pleistocene composition and water chemistry was expected to be marine sediments 2–5 to 100–170 m thick covering more pronounced on Cape Shaitansky. Each site was Palaeozoic trapp formation while flood plain areas characterized by landscape cross-sections of the flood were characterised by accumulation of weathered, plain area and the adjacent watershed areas of the 601 Taimyr Peninsula. Field studies included leveling, 400–500 g/m2 in short willow thickets, and reached description of the soil and vegetation cover, and sam- maximum values in tall shrub thickets that consider- pling of the watershed and flood plain plots. The struc- ably exceeded the phytomass levels of the watershed ture and texture of soil depth profiles were described areas. In typical tundra sub-zones, sites the overground in detail and sampled at study plots selected to pro- phytomass ranged from 36 to 820 g/m2. Maximum val- vide a range in conditions of river deposition and ues corresponded to the areas overgrown by shrubs atmospheric contamination. Soil profiles were sam- represented mainly by willow that supported the ear- pled continuously with regard to the generic soil hori- lier data (Ukraintseva et al. 2000). zons. Vegetation was sampled at 1–3m2 plots located The mean thaw depth on the watershed equaled over the soil profiles. Surface and ground water 51.6 Ϯ 9.2 cm under moss cover and 76.7 Ϯ 13.5 samples were collected at selected points of the cross- under lichen and grass cover confirming the presence section to characterize water migration parameters. of lower soil temperatures under thick moss cover The chemical composition of water samples was (Table 1). The gravimetric moisture content in peaty Ϫ determined with the help of potentiometry (NO3 , Cl, layers was highly variable (74–280%, 63.4 Ϯ 40.4%, 3Ϫ Ϫ Ϫ PO4 ), ion-selective electrodes (NO3 , Cl ), titri- n ϭ 30) and in general higher than the levels associa- Ϫ 2Ϫ metry (HCO3 ), nephelometry (SO4 ), photometry ted with loamy (40.8 Ϯ 22.5%, n ϭ 59) and sandy ones ϩ 3Ϫ (NH4 , PO4 ) techniques and AES-ICP (cations). (17.4 Ϯ 9.9%, n ϭ 21). Volumetric values ranged Accuracy of determination was 2–10%. The main from 19–58% based on average moisture contents for ions in filtered soil water extraction were determined each plot (Table 1) also reaching maximum values in by standard chemical methods of soil analysis peaty layers of flood plain depressions. (Arinushkina 1961). Air dried and homogenized soil and plant samples were analysed with the help of XRF 3.3 Water and soil water extraction salinity and spectrometers ORTEC-TEFA and SPARK-1. composition 3 RESULTS AND DISCUSSION 3.3.1 Water samples Salinity of the collected water samples varied from 3.1 General features of the studied sites 0.049 to 1.75 g/l and was in general higher at the flood plain plots compared to the watershed plots. The max- The landscape topographical sequence studied at imum value was found in water, collected on outcrop- ping marine sediments (SK1-7) characterized by the Cape Shaitansky area included a narrow coastal zone ϩ 2ϩ Ϫ ϫ enhanced concentrations of Na Mg , HCO3 and with a sheared earth fragment sized 5 8 m, a land- 2Ϫ slide fissured slope shearing surface 20 m wide, and SO4 . High colority values presumably indicated a gently convex hill top sloping north-eastward to both a higher soluble organic and mineral colloidal content (Table 2). a swamp in an ancient river channel. A landscape cross- Ϫ section near set. Vorontsovo was characterised by HCO3 dominated among anions (47–97 eq%) in all samples. However the samples from the gulf and inlet a 570 m wide and 3 m high (on average) right-side flood- – plain area, an adjacent slope and a watershed tundra sites (SK, VR) were noted for somewhat enhanced Cl portion (15–30 eq%) compared to the delta zone section. On Tysyara Island, the transect consisted of the ϩ two fragments 350 m and 80 m long situated on the (1.5–14 eq%). Na prevailed in waters formed on medium-level and high-level flood plain area respec- the landslide-exposed marine clay (85 eq%) and in the tively. A landscape transect near set. Karaul crossed northernmost thinly-thawed soil and water of the inner flood plain depressions (SK1-25, VR1-11a, 36–40 eq%) a low- and medium-level flood plain 600 m wide, a nar- 2ϩ row gently sloping terrace on a debris cone, a slope and while Ca portion was the highest in the river and ox- the present watershed area (based on an ancient marine bow lake water (63 and 54 eq%). In most of the ground water samples Ca2ϩ quota were almost equal to those of terrace) sloping to a lake depression. Actual thaw depth 2ϩ ϩ ranged on the average from 30–50 cm on tops to Mg (35–49 eq%) and in Na – enriched waters mag- 80–90 cm on slopes and lowered on the flood plain. nesium-ion contents exceeded those of calcium. 3.3.2 Soil water extractions 3.2 Vegetation biomass and its role in the soil Water extractions were made for different depths and water retention and thaw depth generic horizons. Salinity levels, an order of magni- tude higher, and enhanced pH values were found in The density of growing vegetation on study plots in the water extractions from the soil developed on the young southern tundra sub-zone of the Yenisey Delta, ranged landslide shearing surface (SK1-10, 0.10–0.21%, from 20 to 190 g/m2 (100 g/m2 on average) for the pH ϭ 7.88–8.48) relative to the other sites and plots grassy communities, attained levels of approximately including the nearby watershed (Table 1). The total 602 Table 1. General field and preliminary laboratory information on the studied sites and plots. Sampling Volumetric plots Sampling Soil, parent Max thaw water 1Mean 1 indices location Landscapes Habs, m material depth, cm cont., % pHw salinity, % Typical tundra subzone, Yenisey Gulf, Cape Shaitansky SK-1-15 72°04Ј608 N Hill tops and slopes, 26.6 Peaty gley on clay 43* Ϯ 12.2** 33.6 Ϯ 18.4 6.65 Ϯ 0.2 0.01 Ϯ 0.001 82°21Ј595 E herbsրlichen/moss tundra eluvium n ϭ 11*** n ϭ 7nϭ 4nϭ 4 SK-1-10 72°04Ј573 N Slope, young landslide, 7.2 Outcropping marine clay 86 Ϯ 18.2 18.6 Ϯ 16.3 7.9 Ϯ 0.55 0.17 Ϯ 0.044 82°21Ј490 E grasses communities with buried peat horizon n ϭ 12 n ϭ 7nϭ 5nϭ 5 SK-1-25 72°04Ј824 N Flood plain, moss/sedge 4.7 Peat gley on sandy and 29.0 54.6 Ϯ 16.6 4.49 Ϯ 0.1 0.033 Ϯ 0.02 82°21Ј650 E marsh loamy alluvium with n ϭ 3nϭ 5nϭ 4nϭ 5 buried peat layers Typical tundra subzone, Yenisey Inlet, set.
Recommended publications
  • Regional Maps of Locations Mentioned in Global Review of The
    Regional Maps of Locations Mentioned in Global Review of the Conservation Status of Monodontid Stocks These maps provide the locations of the geographic features mentioned in the Global Review of the Conservation Status of Monodontid Stocks. Figure 1. Locations associated with beluga stocks of the Okhotsk Sea (beluga stocks 1-5). Numbered locations are: (1) Amur River, (2) Ul- bansky Bay, (3) Tugursky Bay, (4) Udskaya Bay, (5) Nikolaya Bay, (6) Ulban River, (7) Big Shantar Island, (8) Uda River, (9) Torom River. Figure 2. Locations associated with beluga stocks of the Bering Sea and Gulf of Alaska (beluga stocks 6-9). Numbered locations are: (1) Anadyr River Estuary, (2) Anadyr River, (3) Anadyr City, (4) Kresta Bay, (5) Cape Navarin, (6) Yakutat Bay, (7) Knik Arm, (8) Turnagain Arm, (9) Anchorage, (10) Nushagak Bay, (11) Kvichak Bay, (12) Yukon River, (13) Kuskokwim River, (14) Saint Matthew Island, (15) Round Island, (16) St. Lawrence Island. Figure 3. Locations associated with beluga stocks of the Chukchi and Beaufort Seas, Canadian Arctic and West Greenland (beluga stocks 10-12 and 19). Numbered locations are: (1) St. Lawrence Island, (2) Kotzebue Sound, (3) Kasegaluk Lagoon, (4) Point Lay, (5) Wain- wright, (6) Mackenzie River, (7) Somerset Island, (8) Radstock Bay, (9) Maxwell Bay, (10) Croker Bay, (11) Devon Island, (12) Cunning- ham Inlet, (13) Creswell Bay, (14) Mary River Mine, (15) Elwin Bay, (16) Coningham Bay, (17) Prince of Wales Island, (18) Qeqertarsuat- siaat, (19) Nuuk, (20) Maniitsoq, (21) Godthåb Fjord, (22) Uummannaq, (23) Upernavik. Figure 4. Locations associated with beluga stocks of subarctic eastern Canada, Hudson Bay, Ungava Bay, Cumberland Sound and St.
    [Show full text]
  • Ecological and Geographical Features of Ontogenesis of Holocene Soils of Kamianets-Podilskyi Fortress
    SHS Web of Conferences 100, 05006 (2021) https://doi.org/10.1051/shsconf/202110005006 ISCSAI 2021 Ecological and Geographical Features of Ontogenesis of Holocene Soils of Kamianets-Podilskyi Fortress Roman Malyk1*, Andriy Kyrylchuk1, Zinovy Pankiv1, and Ihor Kasiyanyk2 1Ivan Franko National University of Lviv, 79000, University str. 1, Lviv, Ukraine 2Ivan Ogienko National University of Kamianets-Podilskyi, 32301, Ogienko str. 61, Kamianets-Podilskyi, Ukraine Abstract. The article analyzes the degree of study of the genetic features of Holocene soils of beligerative complexes. A detailed description of natural and anthropogenic conditions and factors determining the geography, genesis and ecological condition of modern and buried soils of beligerative structures of Kamianets-Podilskyi Fortress is given. Considerable attention is paid to the problem of ontogenesis of the dominant natural and anthropogenic soils within the study area, represented by urborendzins and constructional soils. The morphogenetic features of these soils have been studied. The soils of the beligerative complex are represented by naturally anthropogenic soils – urborendzins and constructional soils. They are polygenetic with complex phylogeny and their genesis includes at least two onogenesis. For a long time soils have been evolving naturally in form of typical rendzin, but have undergone quantitative and qualitative changes due to intensive anthropogenic activity. The genetic profile of soils is characterized by significant variability of morphological traits, the presence of eluvium of soil- forming rocks in the entire soil layer. the studied Holocene soils (modern and buried) are an integral part of the historical and cultural lands and need protection, as they contain information about the evolution of the territory and ways of its use.
    [Show full text]
  • 34. Information Sheet on Ramsar Wetlands Categories Approved by Recommendation 4.7 of the Conference of the Contracting Parties
    34. Information Sheet on Ramsar Wetlands Categories approved by Recommendation 4.7 of the Conference of the Contracting Parties. NOTE: It is important that you read the accompanying Explanatory Note and Guidelines document before completing this form. 1. Date this sheet was FOR OFFICE USE ONLY. completed/updated: DD MM YY September 1997 Designation date Site Reference Number 2. Country: Russian Federation 3. Name of wetland: Brekhovsky Islands in the Yenisei estuary 4. Geographical coordinates: 70°30'N, 82°45'E 5. Altitude: floodplain and islands: < 10 m; 6. Area: c. 1,400,000 ha bedrock coast: up to 118 m a.s.l. 7. Overview: An estuarine wetland complex, incorporating a network of rivers, streams, channels and lakes, as well as islands, floodplains and terraces covered with tundra vegetation. The area is internationally important for breeding, staging and moulting birds, in particular for red-breasted goose Branta ruficollis. 8. Wetland Type (please circle the applicable codes for wetland types as listed in Annex I of the Explanatory Note and Guidelines document.) marine-coastal: A • B • C • D • E • F • G • H • I • J • K inland: L • M • N • O • P • Q • R • Sp • Ss • Tp • Ts U • Va • Vt • W • Xf • Xp • Y • Zg • Zk man-made: 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 Please now rank these wetland types by listing them from the most to the least dominant: L,Ts,U,W,O,M . 9. Ramsar Criteria: (please circle the applicable criteria; see point 12, next page.) 1a • 1b • 1c • 1d │ 2a • 2b • 2c • 2d │ 3a • 3b • 3c │ 4a • 4b Please specify the most significant criterion applicable to the site: 1c 10.
    [Show full text]
  • Radioactivity in the Arctic Seas
    IAEA-TECDOC-1075 XA9949696 Radioactivity in the Arctic Seas Report for the International Arctic Seas Assessment Project (IASAP) ffl INTERNATIONAL ATOMIC ENERGY AGENCA / Y / 1JrrziZr^AA 30-16 The originating Section of this publication in the IAEA was: Radiometrics Section International Atomic Energy Agency Marine Environment Laboratory B.P. 800 MC 98012 Monaco Cedex RADIOACTIVITY IN THE ARCTIC SEAS IAEA, VIENNA, 1999 IAEA-TECDOC-1075 ISSN 1011-4289 ©IAEA, 1999 Printe IAEe th AustriAn y i d b a April 1999 FOREWORD From 199 o 1993t e Internationa6th l Atomic Energy Agency's Marine Environment Laboratory (IAEA-MEL s engage IAEA'e wa ) th n di s International Arctic Seas Assessment Project (IASAP whicn i ) h emphasi bees ha sn place criticaa n do l revie f environmentawo l conditions in the Arctic Seas. IAEA-MEe Th L programme, organize framewore th n dIASAi e th f ko P included: (i) an oceanographic and an ecological description of the Arctic Seas; provisioe th (ii )centra a f no l database facilitIASAe th r yfo P programm collectione th r efo , synthesi interpretatiod san datf nmarino n ao e radioactivit Arctie th n yi c Seas; (iii) participation in official expeditions to the Kara Sea organized by the joint Russian- Norwegian Experts Group (1992, 1993 and 1994), the Russian Academy of Sciences (1994), and the Naval Research Laboratory and Norwegian Defence Research Establishment (1995); (iv) assistance wit d n laboratorsiti han u y based radiometric measurement f curreno s t radionuclide concentrations in the Kara Sea; (v) organization of analytical quality assurance intercalibration exercises among the participating laboratories; (vi) computer modellin e potentiath f o g l dispersa f radionuclideo l s released froe mth dumped f assessmeno wast d associatee ean th f o t d radiological consequencee th f o s disposals on local, regional and global scales; (vii) in situ and laboratory based assessment of distribution coefficients (Kd) and concentration factor sArctie (CFth r c)fo environment.
    [Show full text]
  • An Idea of Multi-Functional Storage Reservoirs in Mountain Regions
    International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-396-400 ISSN: 2249-6645 An Idea of Multi-Functional Storage Reservoirs in Mountain Regions Jan Jaremski Rzeszow University of Technology, Rzeszow, Poland Abstract: The paper presents possibilities of construction of multi-functional reservoir in mountain regions, especially those with soft rocks. Construction of relatively small reservoir instead of big ones and taking the area configuration into account allows eliminating expensive embankments and insists to construction of cofferdams. The cofferdam can be formed of the occurring rock eluvium. Such idea was analyzed for the south of Poland. At present we can observe the climate changes accompanied by increase of the weather dynamics and unusual intensity of extreme phenomena. Mineralogical composition of rocks or their eluvia occurring in the considered area is usually not taken into account while forecasting of such phenomena. The proposed tests on determination of the eluvium areas especially susceptible to formation of mud avalanches in the mountains sites. Keywords: flysch eluvium, reservoir, rock eluvium , mud avalanches , swelling I. INTRODUCTION The climate variation has been observed recently. They are accompanied by increase of the weather dynamics and unusual intensity of extreme phenomena. Precipitations are very intense and they are accompanied by landslides and mud avalanches, or long-lasting droughts. A lack of suitable retention causes a fast flow of discharge water to the seas. Mineralogical composition of rocks or their eluvia occurring in the considered area is usually not taken into account while forecasting of such phenomena. Colloidal activity, a state of colloidal bonding and crystallization strongly influence formation of avalanches, strength of the mixtures and reversibility of their reactions with participation of clay minerals.
    [Show full text]
  • Journal of Geochemical Exploration 164 (2016) 122–135
    Journal of Geochemical Exploration 164 (2016) 122–135 Contents lists available at ScienceDirect Journal of Geochemical Exploration journal homepage: www.elsevier.com/locate/jgeoexp Three-dimensional geochemical patterns of regolith over a concealed gold deposit revealed by overburden drilling in desert terrains of northwestern China Bimin Zhang a,b,c,⁎, Xueqiu Wang b,c, Qinghua Chi b,c, Wensheng Yao b,c,HanliangLiub,c, Xin Lin b,c a School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China b Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China c Key Laboratory for Geochemical Exploration Technology, MLR, Langfang 065000, China article info abstract Article history: Desert terrains are widespread in northwestern and northern China, and these areas present particular Received 22 December 2014 challenges for exploration. In recent years, partial extraction techniques have been proven to be effective in Revised 9 June 2015 the search for concealed deposits in arid desert terrains in some cases. However, we still lack an understanding Accepted 13 June 2015 of the dispersion patterns of ore-forming elements in regolith. In this study, air reverse circulation drillings Available online 19 June 2015 were used to create three-dimensional (3D) distribution patterns of elements in regolith over the Jinwozi gold deposit in China, which is covered by tens of metres of regolith, in order to trace the migration of elements Keywords: Geochemical patterns and to understand the dispersion
    [Show full text]
  • A Case Study on the Angara/Yenisey River System in the Siberian Region
    land Article Optical Spectral Tools for Diagnosing Water Media Quality: A Case Study on the Angara/Yenisey River System in the Siberian Region Costas A. Varotsos 1,2 , Vladimir F. Krapivin 3, Ferdenant A. Mkrtchyan 3 and Yong Xue 2,4,* 1 Department of Environmental Physics and Meteorology, University of Athens, 15784 Athens, Greece; [email protected] 2 School of Environment Science and Geoinformatics, China University of Mining and Technology, Xuzhou 221116, China 3 Kotelnikov Institute of Radioengineering and Electronics, Fryazino Branch, Russian Academy of Sciences, Fryazino, 141190 Moscow, Russia; [email protected] (V.F.K.); [email protected] (F.A.M.) 4 College of Science and Engineering, University of Derby, Derby DD22 3AW, UK * Correspondence: [email protected] Abstract: This paper presents the results of spectral optical measurements of hydrochemical char- acteristics in the Angara/Yenisei river system (AYRS) extending from Lake Baikal to the estuary of the Yenisei River. For the first time, such large-scale observations were made as part of a joint American-Russian expedition in July and August of 1995, when concentrations of radionuclides, heavy metals, and oil hydrocarbons were assessed. The results of this study were obtained as part of the Russian hydrochemical expedition in July and August, 2019. For in situ measurements and sampling at 14 sampling sites, three optical spectral instruments and appropriate software were used, including big data processing algorithms and an AYRS simulation model. The results show Citation: Varotsos, C.A.; Krapivin, V.F.; Mkrtchyan, F.A.; Xue, Y. Optical that the water quality in AYRS has improved slightly due to the reasonably reduced anthropogenic Spectral Tools for Diagnosing Water industrial impact.
    [Show full text]
  • Pleistocene-Holocene Palaeoenvironmental
    Irina D. Streletskaya1*, Еvgeny А. Gusev3,4, Alexander A. Vasiliev2, Gleb E. Oblogov2, Anatoly N. Molodkov5 1Lomonosov Moscow State University, Department of Geography, 119991, Moscow, Leninskie Gory 1, Russia, e-mail: [email protected] *Corresponding author 2Earth Cryosphere Institute SB RAS, 625000, Tyumen, p/o box 1230, Russia; e-mail: [email protected], [email protected] 3VNIIOkeangeologia, 190121 St. Petersburg Angliyskii pr. 1, Russia; e-mail: [email protected] GEOGRAPHY 4St. Petersburg State University, 199034, St. Petersburg, Universitetskaya nab. 7–9, Russia 60 5Research Laboratory of Geochronology of the Quaternary Period, Institute of Geology, Tallinn Technical University, Estonia, 5, Ehitjate Street. 19086 Tallinn. Estonia; e-mail: [email protected] PLEISTOCENE-HOLOCENE PALAEOENVIRONMENTAL RECORDS FROM PERMAFROST SEQUENCES AT THE KARA SEA COAST (NW SIBERIA, RUSSIA) ABSTRACT. The Kara Sea coasts were INTRODUCTION studied using comprehensive stratigraphic Accumulation of Late Pleistocene sediments and geocryological methods. The paper in climatic conditions similar or colder than presents the new analytical studies of present ones, and wide distribution of ground ice and Quaternary deposits of polygonal ground ice exclude the presence Western Taymyr and presents the results of of large ice sheet in the north of West Siberia spore and pollen, foraminifera, grain-size, [Svendsen at al., 2004]. There is evidence of mineralogical, geochemical, oxygen isotopic, marine conditions in the lower Yenisey River and other analyses. Several stratigraphic- during the entire MIS5, which excludes the geocryological transects from Yenisey and glaciation around 90 kBP [Gusev and Molodkov, Gydan Bays enable us to refine the stratigraphy 2012]. Such contradictions in currently existing and palaeogeographical reconstruction of the models of development of northern West environments and freezing of Late Pleistocene- Siberia in the Middle-Late Pleistocene indicate Holocene sediments.
    [Show full text]
  • Sino-Russian Gas Connections and Impacts
    THE JAMES A. BAKER III INSTITUTE FOR PUBLIC POLICY OF RICE UNIVERSITY JAPANESE ENERGY SECURITY AND CHANGING GLOBAL ENERGY MARKETS: AN ANALYSIS OF NORTHEAST ASIAN ENERGY COOPERATION AND JAPAN’S EVOLVING LEADERSHIP ROLE IN THE REGION SINO-RUSSIAN GAS CONNECTIONS AND IMPACTS XIAOJIE XU PETROSTRATEGICSTUDIES BEIJING, CHINA PREPARED IN CONJUNCTION WITH AN ENERGY STUDY SPONSORED BY THE CENTER FOR INTERNATIONAL POLITICAL ECONOMY AND THE JAMES A. BAKER III INSTITUTE FOR PUBLIC POLICY RICE UNIVERSITY – MAY 2000 Sino-Russian Gas Connections and Impacts CONTENT INTRODUCTION CHANGING ENERGY PICTURE IN NORTHEAST ASIA 1. Energy Demands 2. New Hydrocarbon Sources SEARCHING FOR COOPERATION 1. Quests for Russian Resources - Japan - South Korea - North Korea and Mongolia - China 2. Sino-Russian Gas Cooperation - Gas import options and routes - E&P joint ventures in Russia - Extensive cooperation - Financial arrangements - Environmental protection - Governmental coordination - Risk management GEOPOLITICS 1. Geopolitical impacts 2. Geopolitical comparison CONCLUSIONS 1. Prospects 2. Strategic Choices ACKNOWLEDGEMENTS REFERENCE 2 Sino-Russian Gas Connections and Impacts INTRODUCTION Northeast Asia (N. E. Asia), a sub-region on the Eurasian continent, is strategically significant both geographically and economically. The region has a history of strife including the Russian occupation of Japanese northern islands, the separation of the Koreas as result of Korean War and the Japanese invasion of China during the World War II. Economic connections and political cooperation in this region was minimal during the entire Cold War. Energy producing countries did not export to key consumers in the region. Russian Siberia is bestowed with huge hydrocarbon resources and serves as a large non- OPEC producer competing with OPEC.
    [Show full text]
  • Annex: Soil Groups, Characteristics, Distribution and Ecosystem Services
    Status of the World’s Main Report Soil Resources Annex Soil groups, characteristics, distribution and ecosystem services © FAO | Giuseppe Bizzarri © FAO INTERGOVERNMENTAL TECHNICAL PANEL ON SOILS Disclaimer and copyright Recommended citation: FAO and ITPS. 2015. Status of the World’s Soil Resources (SWSR) – Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-109004-6 © FAO, 2015 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way.
    [Show full text]
  • Maintaining Arctic Cooperation with Russia Planning for Regional Change in the Far North
    Maintaining Arctic Cooperation with Russia Planning for Regional Change in the Far North Stephanie Pezard, Abbie Tingstad, Kristin Van Abel, Scott Stephenson C O R P O R A T I O N For more information on this publication, visit www.rand.org/t/RR1731 Library of Congress Cataloging-in-Publication Data is available for this publication. ISBN: 978-0-8330-9745-3 Published by the RAND Corporation, Santa Monica, Calif. © Copyright 2017 RAND Corporation R® is a registered trademark. Cover: NASA/Operation Ice Bridge. Limited Print and Electronic Distribution Rights This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited. Permission is given to duplicate this document for personal use only, as long as it is unaltered and complete. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial use. For information on reprint and linking permissions, please visit www.rand.org/pubs/permissions. The RAND Corporation is a research organization that develops solutions to public policy challenges to help make communities throughout the world safer and more secure, healthier and more prosperous. RAND is nonprofit, nonpartisan, and committed to the public interest. RAND’s publications do not necessarily reflect the opinions of its research clients and sponsors. Support RAND Make a tax-deductible charitable contribution at www.rand.org/giving/contribute www.rand.org Preface Despite a period of generally heightened tensions between Russia and the West, cooperation on Arctic affairs—particularly through the Arctic Council—has remained largely intact, with the exception of direct mil- itary-to-military cooperation in the region.
    [Show full text]
  • Relationship Between the Lithology of Active-Layer Materials and Mean Annual Ground Temperature in the Former Ussr
    RELATIONSHIP BETWEEN THE LITHOLOGY OF ACTIVE-LAYER MATERIALS AND MEAN ANNUAL GROUND TEMPERATURE IN THE FORMER USSR V.N. Konishchev Department of Cryolithology and Glaciology, Faculty of Geography, Moscow State University, Moscow 119899, Vorobyovy Gory, Russia. e-mail: [email protected] Abstract The accummulation of quartz particles within the 0.05-0.01 mm grain size fraction and of the feldspar parti- cles within the 0.1-0.05 mm fraction due to freeze-thaw was confirmed by experimental data and laboratory investigations of cryogenic soils. A cryogenic weathering index (CWI) is proposed to estimate the role of cryo- genic weathering in soil formation. The general zonality of the CWI has already been defined. This permits one to express more precisely the relation between CWI values and mean annual ground temperature. This is obtained for different geocryologi- cal conditions. Introduction the dimensions of the microfractures and defects that characterize the surface of mineral particles. Various types of stability coefficients, expressed as the Detailed study of cryogenic disintegration allows one ratio of stable to unstable minerals, are widely used as to differentiate globally the physical weathering palaeo-geographical indicators (e.g., Gaigalas et al., processes. The special index for cold regions which 1975). From the palaeo-geographical point of view, this characterizes the distribution of major rock-forming ratio reflects the general relation between the processes minerals over the granulometric spectrum is called the of physical and chemical weathering. cryogenic weathering index (CWI). Cryogenic weathering of polymictic source rocks and unconsolidated deposits is associated with strong QF11/ CWI = [1] physico-chemical disintegration of major rock-forming QF22/ minerals and the accumulation of the latter in definite granulometric fractions.
    [Show full text]