PP70CH15_Brodersen ARjats.cls March 30, 2019 11:23 Annual Review of Plant Biology Functional Status of Xylem Through Time Craig R. Brodersen,1 Adam B. Roddy,1 Jay W. Wason,2 and Andrew J. McElrone3,4 1School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06511, USA; email:
[email protected] 2School of Forest Resources, University of Maine, Orono, Maine 04469, USA 3US Department of Agriculture, Agricultural Research Service, Davis, California 95616, USA 4Department of Viticulture and Enology, University of California, Davis, California 95616, USA Annu. Rev. Plant Biol. 2019. 70:407–33 Keywords First published as a Review in Advance on cavitation, conductance, conductivity, embolism, sap flow, transpiration, March 1, 2019 xylem The Annual Review of Plant Biology is online at plant.annualreviews.org Abstract https://doi.org/10.1146/annurev-arplant-050718- Water transport in vascular plants represents a critical component of terres- 100455 trial water cycles and supplies the water needed for the exchange of CO2 in Access provided by Yale University - Libraries on 05/08/19. For personal use only. Annu. Rev. Plant Biol. 2019.70:407-433. Downloaded from www.annualreviews.org Copyright © 2019 by Annual Reviews. the atmosphere for photosynthesis. Yet,many fundamental principles of wa- All rights reserved ter transport are difficult to assess given the scale and location of plant xylem. Here we review the mechanistic principles that underpin long-distance wa- ter transport in vascular plants, with a focus on woody species. We also dis- cuss the recent development of noninvasive tools to study the functional status of xylem networks in planta.