The Relevance of Xylem Network Structure for Plant Hydraulic Efficiency and Safety

Total Page:16

File Type:pdf, Size:1020Kb

The Relevance of Xylem Network Structure for Plant Hydraulic Efficiency and Safety ARTICLE IN PRESS Journal of Theoretical Biology 247 (2007) 788–803 www.elsevier.com/locate/yjtbi The relevance of xylem network structure for plant hydraulic efficiency and safety Lasse Loepfea, Jordi Martinez-Vilaltaa,Ã, Josep Pin˜ola, Maurizio Mencuccinib aCenter for Ecological Research and Forestry Applications (CREAF), Autonomous University of Barcelona, E-08193 Bellaterra, Spain bSchool of GeoSciences, University of Edinburgh, Edinburgh, UK Received 21 December 2006; received in revised form 21 March 2007; accepted 29 March 2007 Available online 1 April 2007 Abstract The xylem is one of the two long distance transport tissues in plants, providing a low resistance pathway for water movement from roots to leaves. Its properties determine how much water can be transported and transpired and, at the same time, the plant’s vulnerability to transport dysfunctions (the formation and propagation of emboli) associated to important stress factors, such as droughts and frost. Both maximum transport efficiency and safety against embolism have classically been attributed to the properties of individual conduits or of the pit membrane connecting them. But this approach overlooks the fact that the conduits of the xylem constitute a network. The topology of this network is likely to affect its overall transport properties, as well as the propagation of embolism through the xylem, since, according to the air-seeding hypothesis, drought-induced embolism propagates as a contact process (i.e., between neighbouring conduits). Here we present a model of the xylem that takes into account its system-level properties, including the connectivity of the xylem network. With the tools of graph theory and assuming steady state and Darcy’s flow we calculated the hydraulic conductivity of idealized wood segments at different water potentials. A Monte Carlo approach was adopted, varying the anatomical and topological properties of the segments within biologically reasonable ranges, based on data available from the literature. Our results showed that maximum hydraulic conductivity and vulnerability to embolism increase with the connectivity of the xylem network. This can be explained by the fact that connectivity determines the fraction of all the potential paths or conduits actually available for water transport and spread of embolism. It is concluded that the xylem can no longer be interpreted as the mere sum of its conduits, because the spatial arrangement of those conduits in the xylem network influences the main functional properties of this tissue. This brings new arguments into the long-standing discussion on the efficiency vs. safety trade-off in the plants’ xylem. r 2007 Elsevier Ltd. All rights reserved. Keywords: Xylem; Efficiency vs. safety trade-off; Connectivity; Drought resistance; Hydraulic conductivity; Water transport; Embolism; Network; Model 1. Introduction determine the overall transport efficiency of the xylem are its maximum hydraulic conductivity and its vulnerability to The main function of the xylem is to provide a low- cavitation. A high maximum conductivity lowers its resistance pathway for water transport within the soil– probability to become a bottleneck in the pathway between plant–atmosphere continuum (SPAC). According to the the soil and the leaves when plenty of water is available cohesion-tension theory water ascent in plants takes place and, therefore, a limiting factor to photosynthetic capacity in a metastable state under tension. This negative pressure and plant growth (Brodribb and Feild, 2000; Stiller et al., in the xylem makes it vulnerable to cavitation, i.e., the 2003). On the other hand, when water is scarce, the expansion of gas bubbles in the conduits (Tyree and resistance to cavitation (and embolism) is crucial. A Zimmermann, 2002). The two main properties that number of studies have shown that vulnerability to embolism is related to drought tolerance (Maherali et al., ÃCorresponding author. Tel.: +34 93 581 1920; fax: +34 93 581 41 51. E-mail addresses: [email protected] (L. Loepfe), Jordi.Martinez. 2004; Martinez-Vilalta et al., 2002a; Sperry et al., 2002). [email protected] (J. Martinez-Vilalta), [email protected] (J. Pin˜ol), Some experimental data suggest that these two goals [email protected] (M. Mencuccini). (high maximum conductivity and high resistance to 0022-5193/$ - see front matter r 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.jtbi.2007.03.036 ARTICLE IN PRESS L. Loepfe et al. / Journal of Theoretical Biology 247 (2007) 788–803 789 embolism) cannot be achieved independently, implying that network) has never been explicitly considered in studies of there is a trade-off between maximum hydraulic conductiv- xylem function. ity and safety in the xylem, at least when comparing tissues Many aspects of life show network structures. A great within the same individual (Hacke et al., 2000; Lo Gullo and number of studies have been conducted for social, Salleo, 1993; Mencuccini and Comstock, 1997; Martinez- information and technological networks. But there are Vilalta et al., 2002b; Pockman and Sperry, 2000; Tyree et al., also many aspects of biology that show a network 1994). However, the principles underlying this trade-off are structure. Good examples are metabolic pathways, gene still poorly understood. expression or neural networks. In all of them network The conductivity (K) of the xylem was classically estimated topology affects its function, and there is no reason to by adding up the conductivities of the conduits found in a think that this should not be the case for the xylem. cross-section of wood, using the Hagen–Poiseuille equation Although all these networks are very different in appear- to calculate the conductivity of each conduit. This calcula- ance, they all share some very fundamental properties (see tion consistently overestimates the conductances measured Albert and Barabasi, 2002 or Newman, 2003 for reviews). experimentally on wood segments. The discrepancy (about Graph theory is often used to study complex networks, the 20–70% of measured K) is universally attributed to the average degree (or connectivity) being the single most resistance of inter-conduit pit pores (Chiu and Ewers, 1993; employed parameter to describe network topology. Lancashire and Ennos, 2002; Tyree and Zimmermann, 2002 In the xylem, connectivity (/kS) corresponds to the and literature cited therein), as sap has to cross a porous average number of different neighbour conduits to which a membrane to flow from one conduit to the next. The overall conduit is connected. For instance, the capacity of a hydraulic resistance is thus considered to be the sum of conduit to transport water will be limited by its own lumen resistance and inter-conduit resistance in series. Based resistance only if there is no constraint to its water supply on this assumption, it is possible to estimate inter-conduit elsewhere in the network. Like a motorway without any resistance by substracting the calculated lumen resistance access roads would be empty—never mind how many lanes (using the Hagen–Poiseuille equation) from the resistance it has, a xylem conduit will not conduct sap if it is not measured experimentally. By doing that, Sperry et al. (2005) connected to a conducting cluster that connects roots to concluded that inter-conduit resistance and lumen resistance leaves. Following this logic, it seems reasonable to expect are co-limiting, i.e., each is responsible for about half of the that the more conduits a conduit is connected to (i.e., total resistance of a wood segment. But Schulte et al. (1987) the greater its connectivity), the higher will be the flow showed that even after dissolving the porous membrane of through it. the inter-conduit connections, the measured conductivity was According to the air seeding hypothesis, embolism still 30% lower than the conductivity predicted by the propagates from an air-filled conduit to a functional one Hagen–Poiseuille equation. through the porous membrane that connects them, On the other hand, drought-induced embolism is depending on the diameter of the largest pore in the believed to spread between conduits as a function of the connection. The first condition for a conduit to be maximum size of the pores in the inter-conduit membrane embolised is that it is connected to an air-filled conduit. connecting them (air-seeding hypothesis; Zimmermann, This suggests that a conduit will be more vulnerable to 1983). Pit pore size has often been estimated from embolism the more connections it has, since more vulnerability curves making direct use of the capillarity connected conduits will be more likely to be connected to equation (e.g., Sperry and Tyree, 1990) and a direct an already air-filled conduit. At the tissue level we would relationship between air-seeding pressure and pit pore size expect that high connectivity would facilitate the spread of has been measured (Jarbeau et al., 1995). However, Choat emboli and therefore increase the vulnerability to drought et al. (2003) could not establish any direct correspondence induced embolism. between pit pore size and vulnerability to embolism, as Here we use graph theory to build a model of the xylem pores large enough to fit the predicted values could not be that explicitly takes into account its network structure. The detected. This suggests that this relationship is at least not model simulates water transport in a wood segment of a as straightforward as previously thought and that pit-pore vascular plant under laboratory conditions. Our aim was to dimensions may not be the only characteristics that study the influence of connectivity on the hydraulic determine the spread of embolism in the xylem. properties of the xylem. Specifically, our hypotheses were: Structurally, the xylem is a network of interconnected (1) Connectivity co-limits hydraulic conductivity together conduits (Cruiziat et al., 2002; Tyree and Zimmermann with conduit size and inter-conduit resistance, and (2) 2002). This structure has been known for decades (Braun vulnerability to embolism increases with the connectivity of 1959; Burggraaf, 1972; Zimmermann, 1971) and showed the xylem network.
Recommended publications
  • Mating System and Population Genetic Structure of an Androdioecious Tree, Fraxinus Lanuginosa Koidz
    Heredity (2002) 88, 296–301 2002 Nature Publishing Group All rights reserved 0018-067X/02 $25.00 www.nature.com/hdy Mating system and population genetic structure of an androdioecious tree, Fraxinus lanuginosa Koidz. (Oleaceae) in northern Japan K Ishida1 and Tsutom Hiura2 1Kansai Research Center, Forestry and Forest Products Research Institute, Momoyama, Fushimi, Kyoto 612–0855, Japan; 2Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Tomakomai 053–0035, Japan Models for the maintenance of androdioecy have suggested life stage (Fa) were not significantly different from zero at five = = that selfing of hermaphrodites decreases the frequency of loci (Fa 0.056 to 0.101, q 0.11 to 0.61), and the Fa values males in a population (the ‘male frequency’). To test this were lower than the Fj values in several of the plots where hypothesis, we used electrophoretic allozyme methods to both values were measured. These results indicate that study the mating system and population genetics of an and- inbreeding depression substantially decreases the pro- rodioecious tree, Fraxinus lanuginosa, which exhibits large portion of selfed progeny in partially self-fertilising subpopul- variations in male frequency among subpopulations in cen- ations. A theoretical model for the maintenance of andro- tral Hokkaido (northern Japan). We estimated the outcross- dioecy showed expected male frequencies significantly ing rates by using seeds assayed at three polymorphic loci, lower than the observed values in plots with high male fre- = and found that the multilocus outcrossing rate (tm) increased quency (q 0.59 to 0.61), although the differences between = with increasing male frequency (q)(tm 0.69 to 0.99, the expected and observed values of male frequencies were = q 0.11 to 0.59).
    [Show full text]
  • Visualizing Wood Anatomy in Three Dimensions with High-Resolution X-Ray Micro-Tomography (Μ CT) – a Review –
    408 IAWAIAWA Journal Journal 34 (4), 34 2013: (4), 2013 408–424 VISUALIZING WOOD ANATOMY IN THREE DIMENSIONS with high-resolution X-ray micro-tomography (µ CT) – A REvIEW – Craig R. Brodersen Horticultural Sciences Department, Citrus Research & Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A. E-mail: [email protected] ABsTracT High-resolution X-ray micro-tomography (μCT) has emerged as one of the most promising new tools available to wood anatomists to study the three-dimensional organization of xylem networks. This non-destructive method faithfully repro- duces the spatial relationships between the different cell types and allows the user to explore wood anatomy in new and innovative ways. With μCT imaging, the sample can be visualized in any plane and is not limited to a single section or exposed plane. Conventional CT software aids in the visualization of wood structures, and newly developed custom software can be used to rapidly automate the data extraction process, thereby accelerating the rate at which samples can be analyzed for research. In this review the origins of xylem reconstructions using traditional methods are discussed, as well as the current applications of μCT in plant biology and an overview of pertinent technical considerations associated with this technique. μCT imaging offers a new perspective on wood anatomy and highlights the importance of the relationships between wood structure and function. Keywords: Synchrotron, 3D, tomography, wood anatomy, visualization, μCT. INTrOducTiON Over the past 10–15 years high resolution X-ray micro-computed tomography (μCT) has seen a surge in popularity as a tool for producing three-dimensional (3D) visualiza- tions of plant tissue.
    [Show full text]
  • Functional Status of Xylem Through Time
    PP70CH15_Brodersen ARjats.cls March 30, 2019 11:23 Annual Review of Plant Biology Functional Status of Xylem Through Time Craig R. Brodersen,1 Adam B. Roddy,1 Jay W. Wason,2 and Andrew J. McElrone3,4 1School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06511, USA; email: [email protected] 2School of Forest Resources, University of Maine, Orono, Maine 04469, USA 3US Department of Agriculture, Agricultural Research Service, Davis, California 95616, USA 4Department of Viticulture and Enology, University of California, Davis, California 95616, USA Annu. Rev. Plant Biol. 2019. 70:407–33 Keywords First published as a Review in Advance on cavitation, conductance, conductivity, embolism, sap flow, transpiration, March 1, 2019 xylem The Annual Review of Plant Biology is online at plant.annualreviews.org Abstract https://doi.org/10.1146/annurev-arplant-050718- Water transport in vascular plants represents a critical component of terres- 100455 trial water cycles and supplies the water needed for the exchange of CO2 in Access provided by Yale University - Libraries on 05/08/19. For personal use only. Annu. Rev. Plant Biol. 2019.70:407-433. Downloaded from www.annualreviews.org Copyright © 2019 by Annual Reviews. the atmosphere for photosynthesis. Yet,many fundamental principles of wa- All rights reserved ter transport are difficult to assess given the scale and location of plant xylem. Here we review the mechanistic principles that underpin long-distance wa- ter transport in vascular plants, with a focus on woody species. We also dis- cuss the recent development of noninvasive tools to study the functional status of xylem networks in planta.
    [Show full text]
  • Comparative Flowering Ecology of Fraxinus Excelsior, Acer
    Comparative flowering ecology of Fraxinus excelsior, Acer platanoides, Acer pseudoplatanus and Tilia cordata in the canopy of Leipzig’s floodplain forest Der Fakultät für Biowissenschaften, Pharmazie und Psychologie der Universität Leipzig eingereichte D I S S E R T A T I O N zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt von Diplom Biologe Ophir Tal geboren am 24.7.1972 in Tel Aviv, Israel Leipzig, den 22.6.06. 1 To Shira 3 Abstract How do gender separation and the transition to wind pollination happen in temperate trees? What does the reproductive ecology in the crowns of temperate forest trees look like? These connected questions intrigued researchers before and since Darwin but it is only in the last years that a direct study of the latter question has been enabled. A research crane was used to study the flowering ecology of Fraxinus excelsior, Acer platanoides, Acer pseudoplatanus and Tilia cordata in Leipzig’s floodplain forest. These species originate from hermaphrodite insect pollinated plant families and exhibit different grades of gender separation and different stages between insect and wind pollination. As they are typical elements of temperate deciduous forests, an ecological comparison of their flowering ecology may shed new light on the evolution of gender separation and wind pollination in this habitat. Using the crane, gender distribution, flowering phenology in relation to microclimate, pollination levels (including pollen tubes in the styles) and fruit set were studied in ca. 200 trees over 2-4 years. Main results are a new appreciation of the sexual system of Fraxinus excelsior as dioecy, of Tilia cordata as andromonoecy and a detailed description of the intricacies of the heterodichogamous sexual system of Acer pseudoplatanus.
    [Show full text]
  • Polly Hill Arboretum Plant Collection Inventory March 14, 2011 *See
    Polly Hill Arboretum Plant Collection Inventory March 14, 2011 Accession # Name COMMON_NAME Received As Location* Source 2006-21*C Abies concolor White Fir Plant LMB WEST Fragosa Landscape 93-017*A Abies concolor White Fir Seedling ARB-CTR Wavecrest Nursery 93-017*C Abies concolor White Fir Seedling WFW,N1/2 Wavecrest Nursery 2003-135*A Abies fargesii Farges Fir Plant N Morris Arboretum 92-023-02*B Abies firma Japanese Fir Seed CR5 American Conifer Soc. 82-097*A Abies holophylla Manchurian Fir Seedling NORTHFLDW Morris Arboretum 73-095*A Abies koreana Korean Fir Plant CR4 US Dept. of Agriculture 73-095*B Abies koreana Korean Fir Plant ARB-W US Dept. of Agriculture 97-020*A Abies koreana Korean Fir Rooted Cutting CR2 Jane Platt 2004-289*A Abies koreana 'Silberlocke' Korean Fir Plant CR1 Maggie Sibert 59-040-01*A Abies lasiocarpa 'Martha's Vineyard' Arizona Fir Seed ARB-E Longwood Gardens 59-040-01*B Abies lasiocarpa 'Martha's Vineyard' Arizona Fir Seed WFN,S.SIDE Longwood Gardens 64-024*E Abies lasiocarpa var. arizonica Subalpine Fir Seedling NORTHFLDE C. E. Heit 2006-275*A Abies mariesii Maries Fir Seedling LNNE6 Morris Arboretum 2004-226*A Abies nephrolepis Khingan Fir Plant CR4 Morris Arboretum 2009-34*B Abies nordmanniana Nordmann Fir Plant LNNE8 Morris Arboretum 62-019*A Abies nordmanniana Nordmann Fir Graft CR3 Hess Nursery 62-019*B Abies nordmanniana Nordmann Fir Graft ARB-CTR Hess Nursery 62-019*C Abies nordmanniana Nordmann Fir Graft CR3 Hess Nursery 62-028*A Abies nordmanniana Nordmann Fir Plant ARB-W Critchfield Tree Fm 95-029*A Abies nordmanniana Nordmann Fir Seedling NORTHFLDN Polly Hill Arboretum 86-046*A Abies nordmanniana ssp.
    [Show full text]
  • School of Doctoral Studies in Biological Sciences
    School of Doctoral Studies in Biological Sciences University of South Bohemia in České Budějovice Faculty of Science Specificity of insect-plant associations and their role in the formation of plant defenses and speciation Ph.D. Thesis RNDr. Martin Volf Supervisor: Prof. RNDr. Vojtěch Novotný, CSc. Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice, CZ Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, CZ České Budějovice 2016 This thesis should be cited as: Volf, M., 2016: Specificity of insect-plant associations and their role in the formation of plant defenses and speciation. Ph.D. Thesis Series, No. 9. University of South Bohemia, Faculty of Science, School of Doctoral Studies in Biological Sciences, České Budějovice, Czech Republic, 183 pp. Annotation The aim of this dissertation is to investigate what role insect-plant interactions play in the formation of host-plant defenses and in the diversification of both groups. We show that various groups of herbivore respond differently to host-plant defenses. Therefore plant defenses diversify into suites of complementary traits, as individual traits fail to provide protection against specialized herbivores. Further, we identify what levels of host-phylogeny shape the food- web structure of insect herbivores. We show that specialized herbivores are affected mainly by the terminal parts of the host- phylogeny. In contrast, more polyphagous guilds are affected mainly by the mid-levels of the host phylogeny because the effects of terminal or deeper phylogeny seem to be surpassed by other factors in more generalist insect species. In the last chapter, we show how specialized insect-plant interactions generated by tight insect-plant coevolution can influence the speciation in plants over environmental gradients.
    [Show full text]
  • Version Februar 2016 Masterplan Botanische Gärten Der Universität
    Version Februar 2016 Masterplan Botanische Gärten der Universität Bonn 2011—2018 Masterplan 2.0 – 2016 Präambel Nach der Leitungsübernahme und im Vorlauf zum 200-jährigen Gartenjubiläum erfolgt eine Generalplanung für den Zeitraum 2011 - 2018. Die Entwicklung einer kohärenten Gesamtstrategie ist die Basis einer gerichteten, inhaltlichen und ästhetischen Weiterentwicklung der Gärten. Diese Strategie umfasst die gestalterischen Planungen innerhalb der drei Gärten. Darüber hinaus werden die drei Gärten aber auch in eine Gesamtstrategie eingebettet, in der jedem Garten eigene und den anderen Gärten komplementäre Schwerpunkte zugewiesen werden. Der Masterplan ist die administrative, inhaltliche und gestalterische Umsetzung der Mission der Botanischen Gärten der Universität Bonn und dient der Weiterentwicklung der Gärten zu Sammlungen „für die Botanik in ihrem gesamten Umfange“. Als notwendige Basis für diese gärtnerische Entwicklung werden allgemeine Festlegungen zum Thema gute gärtnerische Praxis gemacht sowie eine Sammlungsstrategie formuliert. Der Masterplan gewährleistet Planungssicherheit und –effizienz und ist die Grundlage für die Priorisierung und Zeitplanung der Maßnahmen, den sinnvollen Einsatz der finanziellen Mittel sowie für die Erstellung der detaillierten und ausformulierten Umsetzungsdokumente für die individuellen Gartenbereiche. Die Festlegungen des Masterplanes sind als allgemeine Richtlinien zu verstehen. Die Details der Umsetzung werden von Gartenleitung vor, während und nach der Umsetzung an die jeweiligen Gegebenheiten
    [Show full text]
  • Updated Contingency Plan for Emerald Ash Borer (Agrilus Planipennis)
    Updated Contingency Plan for Emerald Ash Borer (Agrilus planipennis) INTRODUCTION 1. Outbreaks of serious or significant pests require strategic-level plans, developed at a national level, describing the overall aim and high-level objectives to be achieved, and setting out the response strategy to either eradicate or contain the outbreaks. 2. The Plant Health Risk Group (PHRG) has commissioned, following identification by the Risk Register, pest-specific contingency plans for those pests that pose the greatest risk and require stakeholder consultation. This includes the emerald ash borer. The Forestry Commission is also prioritising plans that require updating including that for Agrilus planipennis (Emerald Ash Borer). 3. The purpose of these pest-specific contingency plans is to ensure rapid and effective responses to outbreaks of the pests or diseases described. 4. Contingency planning starts with the anticipation and assessment of potential threats, includes preparation and response, and finishes with recovery. Anticipation 5. Sourcing information and intelligence about the pest, including surveillance and horizon scanning. Assessment 6. Identifying concerns and the preparation of plans. 7. Setting outbreak objectives. Preparation 8. Ensuring staff and stakeholders are familiar with the pest. Response 9. Determining the requirements for either contain or eradicate including work to determine success. Recovery 10. Identifying when the response strategy has been effective, or when the response is not considered feasible, cost effective or beneficial. 2 | Emerald Ash Borer Contingency Plan | Nick Mainprize | 26/09/2017 11. The Defra Contingency Plan for Plant and Bee Health in England (February 2017) provides details of the teams and organisations involved in pest response in England, and their responsibilities and governance.
    [Show full text]
  • Forest Ecology by Van Der Valk.Pdf
    Forest Ecology A.G. Van der Valk Editor Forest Ecology Recent Advances in Plant Ecology Previously published in Plant Ecology Volume 201, Issue 1, 2009 123 Editor A.G. Van der Valk Iowa State University Department of Ecology, Evolution and Organismal Biology 141 Bessey Hall Ames IA 50011-1020 USA Cover illustration: Cover photo image: Courtesy of Photos.com All rights reserved. Library of Congress Control Number: 2009927489 DOI: 10.1007/978-90-481-2795-5 ISBN: 978-90-481-2794-8 e-ISBN: 978-90-481-2795-5 Printed on acid-free paper. © 2009 Springer Science+Business Media, B.V. No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. springer.com Contents Quantitative classification and carbon density of the forest vegetation in Lüliang Mountains of China X. Zhang, M. Wang & X. Liang . 1–9 Effects of introduced ungulates on forest understory communities in northern Patagonia are modified by timing and severity of stand mortality M.A. Relva, C.L. Westerholm & T. Kitzberger . 11–22 Tree species richness and composition 15 years after strip clear-cutting in the Peruvian Amazon X.J. Rondon, D.L. Gorchov & F. Cornejo . 23–37 Changing relationships between tree growth and climate in Northwest China Y. Zhang, M. Wilmking & X.
    [Show full text]
  • Ainu Ethnobiology
    Williams Ainu Ethnobiology In the last 20 years there has been an increasing focus on study of Ainu culture in Japan, the United States, and in Europe. is has resulted in a number of major exhibitions and publications such as “Ainu, Spirit of a Northern People” published in 1999 by the Ainu Ethnobiology Smithsonian and the University of Washington Press. While such e orts have greatly enhanced our general knowledge of the Ainu, they did not allow for a full understanding of the way in which the Ainu regarded and used plants and animals in their daily life. is study aims at expanding our knowledge of ethnobiology as a central component of Ainu culture. It is based in large part on an analysis of the work of Ainu, Japanese, and Western researchers working in the 19th, 20th, and 21st centuries. Ainu Ethnobiology Dai Williams was born in Lincoln, England in 1941. He received a BA in Geography and Anthropology from Oxford University in 1964 and a MA in Landscape Architecture from the University of Pennsylvania in 1969. He spent the majority of his career in city and regional planning. His cultural research began through museum involvement in the San Francisco Bay Area. Based in Kyoto from 1989, he began research on the production and use of textiles in 19th century rural Japan. His research on the Ainu began in 1997 but primarily took place in Hokkaido between 2005 and 2009. Fieldwork focused on several areas of Hokkaido, like the Saru River Basin and the Shiretoko Peninsula, which the Ainu once occupied.
    [Show full text]
  • Emerald Ash Borer (Agrilus Planipennis)
    Pest specific plant health response plan: Emerald Ash Borer (Agrilus planipennis) Updated February 2021 Emerald Ash Borer – Contingency Plan Contents 1. Introduction …………………………………………………………………………………………………. 3 2. Anticipation and assessment …… ….…………………………………………………………….. 4 3. Preparation ……………………….…………………………………….…………………………………. 5 4. Response …. …………………………………………………………………………………………………. 6 Official action following a presumptive diagnosis ………………………………………. 6 Strategic actions on suspicion ………. .………………….…………………………………. 6 Tactical actions on suspicion …………………….…………………………………………… 7 Confirming a new outbreak …………………………………………………………………. 7 Criteria for determining an outbreak ………. …………………………………………… 10 Official action to be taken following the confirmation of an outbreak ……… 11 Strategic actions on confirmation …. ……………………………………………………. 11 Incident management and communication …………………………………………. 11 Surveillance to delimit the outbreak ……………………………………………………. 12 Demarcated zones …… ……………………………………………………………….…………. 14 Management strategy ………………………………………………………………….………. 15 Pest management procedures ………. ………………………………………………….…. 17 Surveillance ………………………………………………………………………………….…. 17 Eradication ……………………………………………………………………………….……. 17 Slowing the spread and reducing impacts ………………………….……. 20 Disposal plan …………………………………………………………………………….….…… 23 Public outreach ……………………………………………………………………………….……. 24 Review measures in the case of prolonged official action ……… …….……. 25 5. Recovery ……………………………………………………………………………………………………….…. 26 6. Appendices ……. …………………………………………………………………………………………….….
    [Show full text]
  • The Red List of Fraxinus
    The Red List of Fraxinus Megan Barstow, Sara Oldfield, Murphy Westwood, Diana Jerome, Emily Beech & Malin Rivers Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK. © 2018 Botanic Gardens Conservation International BOTANIC GARDENS CONSERVATION INTERNATIONAL (BGCI) is the world’s ISBN-10: 1-905164-67-X largest plant conservation network, comprising more than 500 botanic gardens in over ISBN-13: 978-1-905164-67-7 100 countries, and provides the secretariat to the IUCN/SSC Global Tree Specialist Reproduction of any part of the publication for Group. BGCI was established in 1987 and is a registered charity with offices in the UK, educational, conservation and other non-profit US, China and Kenya. purposes is authorized without prior permission from the copyright holder, provided that the source is fully acknowledged. Reproduction for resale or other commercial purposes is prohibited without prior written permission from the copyright holder. Recommended citation: Barstow, M., Oldfield, S., Westwood, M., Jerome, D., Beech, E. and THE IUCN/SSC GLOBAL TREE SPECIALIST GROUP (GTSG) forms part of Rivers, M. (2018) The Red List of Fraxinus . BGCI. Richmond, UK. the Species Survival Commission’s network of over 7,000 volunteers working to stop the loss of plants, animals and their habitats. SSC is the largest of the six Commissions AUTHORS of IUCN – The International Union for Conservation of Nature. It serves as the main Megan Barstow is the Red List Conservation Assistant at BGCI source of advice to the Union and its members on the technical aspects of species conservation. The aims of the IUCN/SSC Global Tree Specialist Group are to promote Sara Oldfield is the co-chair of the IUCN/SSC Global and implement global red listing for trees and to act in an advisory capacity to the Tree Specialist Group Global Trees Campaign.
    [Show full text]