Deep Sea Drilling Project Initial Reports Volume 75
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Long-Term Evolution of the Congo Deep-Sea Fan: a Basin-Wide View of the Interaction Between a Giant Submarine Fan and a Mature Passive Margin (Zaiango Project)
The Congo deep-sea fan: how far and for how long? A basin-wide view of the interaction between a giant submarine fan and a mature passive margin Zahie Anka 1,*, Michel Séranne 2,**, Michel Lopez 2, Magdalena Scheck-Wenderoth 1, Bruno Savoye 3,†. 1. GFZ German Research Centre for Geosciences. Telegrafenberg, 14473 Potsdam, Germany. 2. CNRS-Université Montpellier II. cc 060, Geosciences Montpellier. 34095 Montpellier, France. 3. IFREMER, Geosciences Marines, BP 70 — 29280 Plouzané, France. (*) [email protected] (**) [email protected] (†) deceased 1.- Introduction The Congo deep-sea fan is one of the largest submarine fan systems in the world and one of the most important depocentre in the eastern south Atlantic. The present-day fan extends over 1000 km offshore the Congo-Angola continental margin and it is sourced by the Congo River, whose continental drainage area is the second largest in the world (3.7 106 km²) (Droz et al., 1996) (Fig.1). There is a direct connexion between the river’s drainage basin and the deep basin through an impressive submarine canyon, which cuts down about 950 m at the shelf-break and more than 1300 m at 100 km offshore the coastline (Babonneau et al., 2002). Hence, the direct transfer of terrigenous material onto the abyssal plain takes place through the canyon, by-passing the shelf and upper slope. The submarine fan covers a surface of about 300,000 km² and contains at least 0.7 Mkm³ of Tertiary sediments (Anka and Séranne, 2004; Droz et al., 2003; Savoye et al., 2000). -
SÉRANNE, M., and ANKA, Z., 2005
ARTICLE IN PRESS Journal of African Earth Sciences xxx (2005) xxx–xxx www.elsevier.com/locate/jafrearsci South Atlantic continental margins of Africa: A comparison of the tectonic vs climate interplay on the evolution of equatorial west Africa and SW Africa margins Michel Se´ranne *, Zahie Anka UMR 5573 Dynamique de la Lithosphe`re, CNRS/Universite´ Montpellier 2, 34095 Montpellier cedex 05, France Received 5 February 2005; accepted 18 July 2005 Abstract Africa displays a variety of continental margin structures, tectonic styles and sedimentary records. The comparative review of two representative segments: the equatorial western Africa and the SW Africa margins, helps in analysing the main controlling factors on the development of these margins. Early Cretaceous active rifting south of the Walvis Ridge resulted in the formation of the SW Africa volcanic margin that displays thick and wide intermediate igneous crust, adjacent to a thick unstretched continental crust. The non-vol- canic mode of rifting north of the Walvis ridge, led to the formation of the equatorial western Africa margin, characterised by a wide zone of crustal stretching and thinning, and thick, extensive, syn-rift basins. Contrasting lithologies of the early post-rift (salt vs shale) determined the style of gravitational deformation, whilst periods of activity of the decollements were controlled by sedimentation rates. Regressive erosion across the prominent shoulder uplift of SW Africa accounts for high clastic sedimentation rate during Late Creta- ceous to Eocene, while dominant carbonate production on equatorial western Africa shelf suggests very little erosion of a low hinterland. The early Oligocene long-term climate change had contrasted response in both margins. -
Large Igneous Provinces: a Driver of Global Environmental and Biotic Changes, Geophysical Monograph 255, First Edition
2 Radiometric Constraints on the Timing, Tempo, and Effects of Large Igneous Province Emplacement Jennifer Kasbohm1, Blair Schoene1, and Seth Burgess2 ABSTRACT There is an apparent temporal correlation between large igneous province (LIP) emplacement and global envi- ronmental crises, including mass extinctions. Advances in the precision and accuracy of geochronology in the past decade have significantly improved estimates of the timing and duration of LIP emplacement, mass extinc- tion events, and global climate perturbations, and in general have supported a temporal link between them. In this chapter, we review available geochronology of LIPs and of global extinction or climate events. We begin with an overview of the methodological advances permitting improved precision and accuracy in LIP geochro- nology. We then review the characteristics and geochronology of 12 LIP/event couplets from the past 700 Ma of Earth history, comparing the relative timing of magmatism and global change, and assessing the chronologic support for LIPs playing a causal role in Earth’s climatic and biotic crises. We find that (1) improved geochronol- ogy in the last decade has shown that nearly all well-dated LIPs erupted in < 1 Ma, irrespective of tectonic set- ting; (2) for well-dated LIPs with correspondingly well-dated mass extinctions, the LIPs began several hundred ka prior to a relatively short duration extinction event; and (3) for LIPs with a convincing temporal connection to mass extinctions, there seems to be no single characteristic that makes a LIP deadly. Despite much progress, higher precision geochronology of both eruptive and intrusive LIP events and better chronologies from extinc- tion and climate proxy records will be required to further understand how these catastrophic volcanic events have changed the course of our planet’s surface evolution. -
Sea Experience in Developing Countries
Chapter 6 SEA EXPERIENCE IN DEVELOPING COUNTRIES Increasingly, developing countries are experimenting with SEA and some have SEA-type approaches and elements in place already. There is also considerable experience with using a variety of strategic planning processes that display many of the characteristics of SEA (para SEA). We focus first on SEA in southern Africa where a dedicated regional workshop on SEA was organised to feed into this review (SAIEA 2003a), followed by sections covering francophone Africa, the rest of sub-Saharan Africa, Latin America, Asia and elsewhere. But our survey of this field represents no more than a preliminary reconnaissance. Selected examples of SEA and para SEA illustrate some of the indigenous approaches that have been adopted. These are less common than SEAs promoted and funded by development assistance agencies (which are reviewed in Chapter 4). In most cases where formal SEA has been undertaken in developing countries, the basic aim and approach has mirrored that in the north – namely to identify the environmental consequences (and associated social and economic effects) of existing, new or revised policies, plans and programmes. These represent only a small number of the broad family of SEA approaches. But they are a highly visible sub-set of the large suite of informal or para-SEAs which form part of development policy-making, land use planning or resource management. No strict boundaries can be drawn for this latter area of application. Only the more evident SEA type elements and approaches are introduced in this chapter. Nevertheless, they indicate the scope and diversity of the extended SEA family in developing countries, where political and economic realities constrain what can be done. -
Hafnium and Neodymium Isotopes in Surface Waters of the Eastern Atlantic Ocean: Implications for Sources and Inputs of Trace Metals to the Ocean
Available online at www.sciencedirect.com Geochimica et Cosmochimica Acta 74 (2010) 540–557 www.elsevier.com/locate/gca Hafnium and neodymium isotopes in surface waters of the eastern Atlantic Ocean: Implications for sources and inputs of trace metals to the ocean J. Rickli a,*, M. Frank b, A.R. Baker c, S. Aciego a, G. de Souza a, R.B. Georg d, A.N. Halliday d a ETH Zurich, Institute for Isotope Geochemistry and Mineral Resources, Clausiusstrasse 25, CH-8092 Zurich, Switzerland b IFM-GEOMAR, Leibniz Institute of Marine Sciences, 24148 Kiel, Germany c School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK d Department of Earth Sciences, University of Oxford, Parks Road, Oxford OX1 3PR, UK Received 14 January 2009; accepted in revised form 30 September 2009; available online 7 October 2009 Abstract We present hafnium (Hf) and neodymium (Nd) isotopic compositions and concentrations in surface waters of the eastern Atlantic Ocean between the coast of Spain and South-Africa. These data are complemented by Hf and Nd isotopic and con- centration data, as well as rare earth element (REE) concentrations, in Saharan dust. Hafnium concentrations range between a maximum of 0.52 pmol/kg in the area of the Canary Islands and a minimum value of 0.08 pmol/kg in the southern Angola Basin. Neodymium concentrations also show a local maximum in the area of the Canary Islands (26 pmol/kg) but are even higher between ~20°N and ~4°N reaching maximum concentrations of 35 pmol/kg. These elevated concentrations provide evidence of inputs from weathering of the Canary Islands and from the partial dissolution of dust from the Sahara/Sahel region. -
Deep Sea Drilling Project Initial Reports Volume 40
28. LEG 40 RESULTS IN RELATION TO CONTINENTAL SHELF AND ONSHORE GEOLOGY William G. Siesser, Department of Geology, University of Cape Town, Rondebosch, South Africa INTRODUCTION tion of basins; instead a sediment wedge has prograded seaward in a deltaic fashion (Scrutton and Dingle, This study compares and contrasts the sedimentary 1974). However, there is some suggestion that history of the onshore coastal region and the continen- marginal-fracture zones striking perpendicular to the tal shelf along the west coast of South Africa, South coast have acted as lines of differential subsidence, thus West Africa, and Angola with that of the outer con- exercising some control over the movement of tinental margin of those countries (Figure 1), as shown sediments parallel to the coast (Scrutton and Dingle, by Leg 40 drilling. 1974). This situation is in contrast to the Cuanza Basin of Geologic Setting: Mesozoic and Tertiary Sedimentation Angola, where sedimentation has been controlled by a Southern Africa underwent its last orogenic phase marginal basement plateau, a number of basement during the Triassic, raising up the Cape Fold Belt. highs, and salt structures (Scrutton and Dingle, 1974). Although no further orogenies occurred, southern Africa remained a high continental mass throughout Onshore the Mesozoic and Cenozoic owing to repeated epeiro- Only two Cretaceous exposures have been reported genic uplift. Epeirogenesis had a characteristic and between Cape Agulhas and the Kunene River. The repeated pattern: maximum uplift occurred in a zone southernmost is a deposit of nonmarine clayey sands near the coastal margin (somewhat seaward of what is (with calcareous concretions) containing bones of the now the Great Escarpment), resulting in a steep dinosaur Kangnasaurus coetzeei, calcified and silicified seaward tilting on the outer side and a gentler inland wood, and streaks of lignite (Rogers, 1915). -
Deep Sea Drilling Project Initial Reports Volume 47 Part 2
INDEX Acaeniotyle umbilicata Zone, 668 Background and objectives, Site 398, 26 Acoustic Bacterial, sulfate reduction, 733 anisotropy, 59, 585 activity, 44 basement, 86, 639 Base-of-slope province, 374 impedance, computation of, 625, Site 398, 63 Basement, 639 pseudologs, 623 Basins and Site 398, correlation between regional, 647 stratigraphy, 91, 639 Bedoulian group, 290 Site 398, 761 Bejaouaennsis Zone (MCi 23), 292 unit 3, nature of, 86 Belemnites, 55, 297 velocity, 585 Benthic, foraminifers, 729 Age of opening of North Atlantic, 28 assemblages, 293 Agglutinated foraminifers, 290, 294, 691 residual, 290, 293, 295 residual, 292 Betic system, 658 Algerianus Zone (Mci 21), foraminifers, 291 Biogenic activity, indexes of organic matter, 419 Alkalinity, 578 minerals, Lower Cretaceous sediments, 686 Alteration indexes, 543 Biostratigraphy, 69 Ammonites, 56, 75, 290, 297 Cenozoic foraminifers, 69, 255 Douvilleiceras mammilatum Zone, 362 Lower Cretaceous, 688 Euhoplites lautus Zone, 362 nannofossils, 327 loricatus Zone, 362 Bioturbation: See Burrows Hoplites dentatus Zone, 362 evidence for, 258 Lower Cretaceous, 361 Bitumen content, Hole 397 sediments, 543 systematic descriptions, 362 Black shale deposition, 30, 55, 56, 405, 437, 665, 667 Amorphous kerogen, 550 719 Ampere Bank, 659 analysis of, 472 Angola Basin, 575, 735 organic matter in, 719 Angular unconformity, 56, 93 Block-faulting, 93 Anistropy, degree of cementation, relationship to, 585 Bottom currents, 375, 380 Anomaly /, 639 temperatures, 511 MO, 639 water, formation of, Antarctic, -
High Seas Deep-Sea Fishing Grounds in the South East Atlantic Ocean 51
50 Worldwide review of bottom fisheries in the high seas MAP 1 High seas deep-sea fishing grounds in the South East Atlantic Ocean 51 South East Atlantic Ocean FAO Statistical Area 47 (and a portion of 34) GEOGRAPHIC DESCRIPTION OF THE REGION Angola, Namibia and South Africa are the three countries bordering the South East Atlantic Region (FAO Statistical Area 47) along the African coast. This region extends from the Central Atlantic in the north at 6°S to the Southern Ocean in the south at 50°S. The western limit of the South East Atlantic is the 20°W meridian, which means that the southern Mid-Atlantic Ridge is within the region, at around 15°W, and extends over the entire region from north to south. Other important bottom topographic features in this region are the Walvis Ridge and the Valdivia Bank, joining the exclusive economic zone (EEZ) of Tristan da Cunha on the northern part of the Namibian continental shelf at around 18°S, and in the southern part, the Meteor Rise and the Agulhas Ridge. These are the areas largely targeted in the deep-sea bottom fisheries in the region, together with associated or isolated seamounts areas such as Ewing and Molloy Seamounts, Vema Seamount and those in SEAFO Subdivision A1 (SEAFO, 2007a). It is important to note that in the South East Atlantic, the continental shelf along the coasts does not extend beyond the EEZs of the coastal states. MANAGEMENT REGIME APPLICABLE TO DEEP-SEA BOTTOM FISHERIES IN THE HIGH SEAS Regional Fisheries Management Organization/Arrangement The South East Atlantic Fisheries Organisation (SEAFO) was established in 2003 with the entry into force of the Convention on the conservation and management of fisheries resources in the South East Atlantic Ocean. -
Sea Experience in Developing Countries
Chapter 6 SEA EXPERIENCE IN DEVELOPING COUNTRIES Increasingly, developing countries are experimenting with SEA and some have SEA-type approaches and elements in place. There is also considerable experience of using a variety of strategic planning processes which display many of the characteristics of SEA (para SEA). We focus first on SEA in southern Africa where a dedicated regional workshop on SEA was organised to feed into this review (SAIEA 2003a), followed by sections covering francophone Africa, the rest of sub-Saharan Africa, Latin America, Asia and elsewhere. Selected examples of SEA and para SEA illustrate some of the indigenous approaches that have been adopted. These are less common than SEAs promoted and funded by development assistance agencies (which are reviewed in Chapter 4). In most cases where formal SEA has been undertaken in developing countries, the basic aim and approach has mirrored that in the north – namely to identify the environmental consequences (and associated social and economic effects) of existing, new or revised policies, plans and programmes. 6.1 SEA in Southern Africa1 EIA is now used extensively in most countries in southern Africa. However, many of the governments tend to be ad hoc in their planning and, as a result, EIA is often regarded as an ‘add on’ process “that gets done ‘later on’, after the government, board of directors or other body has decided that the intended initiative is viable and thus worthy of detailed planning” (Tarr, 2003). In recent years, there has been rapid progress in the formulation of policies, legislation and guidelines for EIA (SAIEA 2003b). -
Formation and Collapse of the Kalahari Duricrust ['African Surface
Formation and Collapse of the Kalahari Duricrust [‘African Surface’] Across the Congo Basin, 10 with Implications for Changes in Rates of Cenozoic Off-Shore Sedimentation Bastien Linol, Maarten J. de Wit, Francois Guillocheau, Michiel C.J. de Wit, Zahie Anka, and Jean-Paul Colin{ 10.1 Introduction margins, and to the east by the East African Rift System (EARS). Their relatively flat interior is covered by an exten- The Congo Basin (CB) of central Africa lies at about 400 m sive Upper Cretaceous-Cenozoic succession of sand dunes, above mean sea level (amsl), and is linked to the south, pan-lacustrine sediments and alluviums with hard-caps across a central African drainage divide, to the high interior (duricrusts) of calcrete, silcrete and ferricrete, collectively Kalahari Plateau (KP) at ca. 1,100 m amsl (Fig. 10.1). The named the Kalahari Group (SACS, 1980). This succession CB and KP are flanked by distinct marginal escarpments reaches a maximum thickness of about 500 m, but across along the South Atlantic and southwest Indian Ocean southern and central Africa is generally less than 100 m thick, representing one of the world’s most extensive, long- lived condensed stratigraphic sequences. The Kalahari Group directly overlies Precambrian base- ment of the Kalahari and Central African Shields (Fig. 10.1b), late Paleozoic to mid-Mesozoic sequences of {Author was deceased at the time of publication. the Karoo Supergroup including Lower Jurassic flood basalts in southern Africa, dated at 178–183 Ma (the B. Linol (*) AEON-ESSRI (African Earth Observatory Network – Earth Stormberg Group; Jourdan et al. -
Geophysical Study of the Easternmost Walvis Ridge, South Atlantic:Deep
More free publications from Archimer Art. No 305 Contribution COB No254 Geophysical study of the easternmost Walvis Ridge, South Atlantic: Deep structure J. GOSLIN Institut de Physique du Globe de Paris, Laboratoire de Géophysique Marine, 4 Avenue de Neptune, 941 00, St. Maur-des-Fossés, France J. C. SIBUET Centre Océanologique de Bretagne, B.P. 337, 29273, Brest, France ABSTRACT proposed that the landward termination of ously been described (for example, Houtz the Walvis Ridge consists of two basaltic and others, 1968). The seismic source A seismic-refraction study of the basement ridges enclosiner a 2-km-thick aboard RiV Jean Charcot was the Flexotir sedimentary structure of the South West sedimentary basin and probYably continuing (Grau, 1969). All profiles were shot with a African continental shelf was carried out eastward beneath the sedimentam cover of shooting interval of 30 sec (that is, about between lat 17"s and 24"s using expendable the continental shelf. We suggésted that every 100 m). None of the profiles was re- sonobuoys. Striking differences exist both sediment coming from the south had par- versed. The analog signal from the in the topography and sedimentary struc- tially filled the central basin and that the sonobuoys was recorded on a variable-area ture between the shelf north and south of ridge had acted as a dam to any further film recorder and on magnetic tape, which the Walvis Ridge. South of the ridge, as far northward transport of sediment, thus ex- allowed replays of tape through appro- as lat 23"S, the shelf consists of a prograded plaining the contrast in sediment cover be- priate filters when necessary (Figs. -
Back Matter (PDF)
Index Page numbers in bold refer to tables; those in italic refer to figures Abidjan Basin 102, 117, 124, 126-7,242,259 shales 26, 68-70, 142, 153-66, 296-300, 314, 407 Abrolhos massif 133-4, 138-9 South African Margin 153-66, 296 Acarafi Basin 134,141 tectonics 63-72, 104-24, 135,141-4, 303-18,441 aeolian sediments 1, 57, 8%90, 92, 105, 142 Aptian Salt Basin 8,107-116, 181-8,192-4,294-300 Namibia 159-60, 325, 347-62, 367 79 Aptian-Albian 70-2, 307-8 Southern African Margin 159-60 Aqua Salada Fauna 267-79 Afar 87, 94 Araguaia River 32-3 Afro-Brazilian Depression 133-49 Araripe Basin 56-8, 64-71,134-5 Agadir Basin 215,223 Argentine 1-8, 293-6, 338,388 agglutinated foraminfera 203,205,209-15, 218 Argilles Vertes 25-7 Cabinda 267-79 Ascension Fracture Zone 79-80, 135,140, 304-5 Agulhas Bank 405,421 asymmetric grabens 33, 61-7, 71-2, 404 Agulhas Current 327 asymmetric rifts 12, 23-7, 138-9, 144, 431 Agulhas-Falkland Transform Fault 102, 105,158,163, Rio Muni 305, 311 294-5 Atlantic Hinge Zone 8, 12-27, 36-7 Falklands 405-6, 409-11, 415-22, 435-6 Atlantic Margin 8, 41-53 Alagoas Hinge 15-17, 36, 80,158, 420 Atlantic Rift 53-72 and see break-up Albacora Field 6, 145-7 Austral Basin 163,293-6, 428,435-6 Albian 51,124-8,305-18, 441 Autseib Linement 382-401 break-up 71,105, 135, 141,243-61,295-300 Cabinda 268, 283-92, 468 back-arc 420-2 micrites 182-3, 190-4 Bahia Basin 135, 141,170-8 shales 142-8, 182-94, 223-39, 296-300 Barreirinhas Basin 102, 117, 126, 244 tectonics 70-2, 104-5, 108-24, 135-40 tectonics 59,134-5,137, 141,148 Albian-Cenomanian