Comparison of Different Tests for Detecting Heteroscedasticity in Datasets

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of Different Tests for Detecting Heteroscedasticity in Datasets Anale. Seria Informatică. Vol. XVIII fasc. 2 – 2020 Annals. Computer Science Series. 18th Tome 2nd Fasc. – 2020 COMPARISON OF DIFFERENT TESTS FOR DETECTING HETEROSCEDASTICITY IN DATASETS Obabire Akinleye A.1, Agboola, Julius O.1, Ajao Isaac O.1 and Adegbilero-Iwari Oluwaseun E.2 1 Department of Mathematics & Statistics, The Federal Polytechnic, Ado-Ekiti, Nigeria 2 Department of Community Medicine, Afe Babalola University, Ado-Ekiti, Nigeria Corresponding author: [email protected], [email protected], 3 [email protected], [email protected] ABSTRACT: Heteroscedasticity occurs mostly because naturally decreases. Also, as income grows, one has of beneath mistakes in variable, incorrect data choices on how to dispose the income, consequently, transformation, incorrect functional form, omission of 휎2 is more likely to increase with the income. Also, important variables, non-detailed model, outliers and a company with a large profit will give more skewness in the distribution of one or more independent dividends to their shareholders than a company that variables in the model. All analysis were carried out in R statistical package using Imtest, zoo and package.base. was newly established. In a situation where data 2 Five heteroscedasticity tests were selected, which are collecting technique improves, 휎푖 is more likely to Park test, Glejser test, Breusch-Pagan test, White test and decrease. In the same sense, banks with good Goldfeld test, and used on simulated datasets ranging equipment for processing data are less prone to from 20,30,40,50,60,70,80,90 and 100 sample sizes make error when processing the monthly statement respectively at different level of heteroscedasticity (that is of account of their customers than banks that does at low level when sigma = 0.5, mild level when sigma = not have good facilities. Heteroscedasticity can also 1.0 and high level when sigma = 2.0). Also, the come to play due to outliers. Outliers are significance criterion alpha = 0.05. However, each test observations that are much different in a population. was repeated 1000 times and the percentage of rejection was computed over 1000 trials. For Glejser test, the It can either be too large or small in relation to the average empirical type I error rate for the test reject more observation in such sample. It can also be as a result than expected while Goldfeld has the least power value. of violation of the assumption that regression model Therefore, Glejser test has the highest capacity to detect is correctly specified. Not only that, it can be as a heteroscedasticity in most especially on simulated result of skewness in the distribution of one or more datasets. regressors included in the model. Skewness is when KEYWORDS: Park test, Glejser test, Breusch-Pagan test, a distribution is right skewed. Heteroscedasticity White test, Goldfeld test may be as a result of incorrect data transformation and incorrect functional form. Heteroscedasticity is 1. INTRODUCTION not a property that is necessarily restricted to cross sectional data or time series data where there occurs One of the assumptions of classical linear regression an external shock or change in circumstances that model states that the disturbances 푢푖 featuring in created uncertainty about y [7]. Cross sectional data the population regression function are of the same involves data that deal with members of a population variance; meaning that they are homoscedatic. In at a particular time. Here, members may be of other words, the variance of residuals should not different types, size, and completion while time increase with fitted values of response variable series data are similar in order of magnitude [6]. (SelvaPrabhakara, 2016). When this assumption More often than not, heteroscedasticity arises when fails, its consequence is what is termed some variables that are important are omitted from heteroscedasticity which can be expressed as: the model or superfluous of variables in a model 2 2 퐸(푢푖 ) = 휎 i= 1, 2 …n (model specification error). There are several reasons why we can have variability in the variance of 푢푖. The study on error 1.1 Model specification learning models shows that as people learn over Applied econometrics is based on understanding time, their errors rates reduce drastically such that intuition and skill. Users of economic data must be 2 휎푖 is expected to decrease. Practically, as one able to give model that other people can rely on [10]. increases his or her number of typing hours, the rate Assumption of Classical Linear Regression Model of errors committed decreases while the variance states that the regression model used in the analysis 78 Anale. Seria Informatică. Vol. XVIII fasc. 2 – 2020 Annals. Computer Science Series. 18th Tome 2nd Fasc. – 2020 2 2 2 is correctly specified. Other problem called model 퐸(푢푖 ) = 휎 푋푖 specification error or model specification bias is Graphical methods or Park and Glesjer approaches encountered. reveal that, if it is true that the variance of 푢푖 is Users of economic data must have the following in proportional to the square of the explanatory their mindset: variable 푋푗 the original model can be transformed as a. able to have a standard to choose a model for follow: empirical analysis, b. recognize the model specification error types 퐸(푌푖) = 훽1 + 훽2푋푖 2.0 that can be encountered in practice, Divide the original model by 푋푖 c. have in mind the result of specification error, 푌푖 훽1 푢푖 = + 훽2 + 2.1 d. how to discover specification error or 푋푖 푋푖 푋푖 recognize tools that can be used, 1 = 훽1 + 훽2 + 푣푖 2.2 e. discover the cure and good effect that can be 푋푖 used in detecting specification error, Where 푣푖 is the transformed disturbance term, equal f. know how to judge the strength of competing to 푢푖/푋푖. Now it is easy to verify that: models. 푢 2 1 퐸(푣 2) = 퐸 ( 푖) = 퐸(푢 2) 2.3 푖 푋 푋 2 푖 1.2 How to identify heteroscedasticity 푖 푖 = 휎2 (by using 퐸(푢 2) = 휎2푋2) 2.4 The residual from linear regression are 푖 푖 e = 푌 − 푌̂ = 푌 − 푋훽̂ It should be noted that in the regression which is used in place of unobservable errors 휀 [3]. transformation, the intercept term 훽2 is the slope Residual are used to detect the behaviour of variance coefficient in the original equation and the slope coefficient 훽1 is the intercept term in the original with datasets. Residual plots, where residuals 휀푖 are plotted on the y-axis against the dependent variable model. Therefore, to get to the original model we shall have to multiply the estimated equation 2.0 by 푦̂푖 on the x axis are the most commonly used tool [2]. But when heteroscedasticity is present, most Xi. especially when the variance is proportional to a Pattern 2: power of the mean, the residuals will appear in form The error variance is proportional to Xi. The square of a fan shape. root transformation This may not be the best method for detecting 2 2 퐸(푢푖 ) = 휎 푋푖 2.5 heteroscedasticity as it difficult to interpret, It is believed that the variance of 푢 , instead of being particularly when the positive and negative residuals 푖 proportional to the squared X , is proportional to X do not exhibit the same general pattern [3]. Cook i i itself, then the original model can be transformed as: and Weisberg suggested that plotting the square 푌 훽 푢 2 푖 1 푖 residuals, 푒 to account for this. Then, a wedge = + 훽2√푋푖 + 2.6 푖 √푋푖 √푋푖 √푋푖 shape bounded below by 0 would indicate 1 = 훽1 + 훽2√푋푖 + 푣푖 2.7 heteroscedasticity. √푋푖 However, as [2] pointed out, squaring residuals that Where 푣 = 푢 /√푋 and where Xi>0 are large in magnitude creates scaling problems; 푖 푖 푖 resulting to a plot where patterns in the rest of the Having given pattern 2, one can readily verify that residuals are difficult to see. They instead advocate 2 2 for plotting the absolute residuals. This way, we do 퐸(푣푖 ) = 휎 , a homogeneous situation. However, not need to identify positive and negative patterns, one may proceed to apply Ordinary Least Square to and do not need to worry about scaling issues. A equation 2.3 to regressing 푌푖/√푋푖 on 1/√푋푖 on wedge shape of the absolute residual also indicates 1/√푋푖and √푋푖. heteroscedasticity where the variance increase with It is worthy of note that an important feature of the the mean. This is the plotting method that is used transformed model that states there no intercept for identifying heteroscedasticity in the study. term. However, regression-through-the-origin model to estimate 훽1 and 훽2 have to be used. Having run 2. COMMON HETEROSCEDASTICITY through equation 2.3, one can get back to the PATTERNS original model simply by multiplying equation 2.3 by 푋 . There exists some likely assumptions about √ 푖 heteroscedasticity, they include: Pattern 3: Pattern 1: The error variance is proportional to the square of 2 The error variance is proportional to 푋푖 , i.e the mean value of Y. 79 Anale. Seria Informatică. Vol. XVIII fasc. 2 – 2020 Annals. Computer Science Series. 18th Tome 2nd Fasc. – 2020 2 2 2 퐸(푢푖 ) = 휎 [퐸(푌푖)] 2.8 3. HETEROSCEDASTICTY TESTS Equation 2.4 asserts that the variance of 푢푖 is proportional to the square of the expected value of Park Test: Y. Park test made an assumption in his work that Therefore, variance of the error term is proportional to the 퐸(푌 ) = 훽 + 훽 푋 2.9 square of the independent variable [8]. 푖 1 2 푖 It also validates the graphical method by suggesting Now, if the original equation is transformed as that 휎2 serves the purpose of the explanatory follows: 푖 2 2 훽 푣푖 푌푖 훽1 푋푖 푢푖 variable 푋푖.
Recommended publications
  • 05 36534Nys130620 31
    Monte Carlos study on Power Rates of Some Heteroscedasticity detection Methods in Linear Regression Model with multicollinearity problem O.O. Alabi, Kayode Ayinde, O. E. Babalola, and H.A. Bello Department of Statistics, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria Corresponding Author: O. O. Alabi, [email protected] Abstract: This paper examined the power rate exhibit by some heteroscedasticity detection methods in a linear regression model with multicollinearity problem. Violation of unequal error variance assumption in any linear regression model leads to the problem of heteroscedasticity, while violation of the assumption of non linear dependency between the exogenous variables leads to multicollinearity problem. Whenever these two problems exist one would faced with estimation and hypothesis problem. in order to overcome these hurdles, one needs to determine the best method of heteroscedasticity detection in other to avoid taking a wrong decision under hypothesis testing. This then leads us to the way and manner to determine the best heteroscedasticity detection method in a linear regression model with multicollinearity problem via power rate. In practices, variance of error terms are unequal and unknown in nature, but there is need to determine the presence or absence of this problem that do exist in unknown error term as a preliminary diagnosis on the set of data we are to analyze or perform hypothesis testing on. Although, there are several forms of heteroscedasticity and several detection methods of heteroscedasticity, but for any researcher to arrive at a reasonable and correct decision, best and consistent performed methods of heteroscedasticity detection under any forms or structured of heteroscedasticity must be determined.
    [Show full text]
  • Business Economics Paper No. : 8, Fundamentals of Econometrics Module No. : 15, Heteroscedasticity Detection
    ____________________________________________________________________________________________________ Subject Business Economics Paper 8, Fundamentals of Econometrics Module No and Title 15, Heteroscedasticity- Detection Module Tag BSE_P8_M15 BUSINESS PAPER NO. : 8, FUNDAMENTALS OF ECONOMETRICS ECONOMICS MODULE NO. : 15, HETEROSCEDASTICITY DETECTION ____________________________________________________________________________________________________ TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Different diagnostic tools to identify the problem of heteroscedasticity 4. Informal methods to identify the problem of heteroscedasticity 4.1 Checking Nature of the problem 4.2 Graphical inspection of residuals 5. Formal methods to identify the problem of heteroscedasticity 5.1 Park Test 5.2 Glejser test 5.3 White's test 5.4 Spearman's rank correlation test 5.5 Goldfeld-Quandt test 5.6 Breusch- Pagan test 6. Summary BUSINESS PAPER NO. : 8, FUNDAMENTALS OF ECONOMETRICS ECONOMICS MODULE NO. : 15, HETEROSCEDASTICITY DETECTION ____________________________________________________________________________________________________ 1.Learning Outcomes After studying this module, you shall be able to understand Different diagnostic tools to detect the problem of heteroscedasticity Informal methods to identify the problem of heteroscedasticity Formal methods to identify the problem of heteroscedasticity 2. Introduction So far in the previous module we have seen that heteroscedasticity is a violation of one of the assumptions of the classical
    [Show full text]
  • Graduate Econometrics Review
    Graduate Econometrics Review Paul J. Healy [email protected] April 13, 2005 ii Contents Contents iii Preface ix Introduction xi I Probability 1 1 Probability Theory 3 1.1 Counting ............................... 3 1.1.1 Ordering & Replacement .................. 3 1.2 The Probability Space ........................ 4 1.2.1 Set-Theoretic Tools ..................... 5 1.2.2 Sigma-algebras ........................ 6 1.2.3 Measure Spaces & Probability Spaces ........... 9 1.2.4 The Probability Measure P ................. 10 1.2.5 The Probability Space (­; §; P) ............... 11 1.2.6 Random Variables & Induced Probability Measures .... 13 1.3 Conditional Probability & Independence .............. 15 1.3.1 Conditional Probability ................... 15 1.3.2 Warner's Method ....................... 16 1.3.3 Independence ......................... 17 1.3.4 Philosophical Remarks .................... 18 1.4 Important Probability Tools ..................... 19 1.4.1 Probability Distributions .................. 22 1.4.2 The Expectation Operator .................. 23 1.4.3 Variance and Coviariance .................. 25 2 Probability Distributions 27 2.1 Density & Mass Functions ...................... 27 2.1.1 Moments & MGFs ...................... 27 2.1.2 A Side Note on Di®erentiating Under and Integral .... 28 2.2 Commonly Used Distributions .................... 29 iii iv CONTENTS 2.2.1 Discrete Distributions .................... 29 2.2.2 Continuous Distributions .................. 30 2.2.3 Useful Approximations .................... 31 3 Working With Multiple Random Variables 33 3.1 Random Vectors ........................... 33 3.2 Distributions of Multiple Variables ................. 33 3.2.1 Joint and Marginal Distributions .............. 33 3.2.2 Conditional Distributions and Independence ........ 34 3.2.3 The Bivariate Normal Distribution ............. 35 3.2.4 Useful Distribution Identities ................ 38 3.3 Transformations (Functions of Random Variables) ........ 39 3.3.1 Single Variable Transformations .............
    [Show full text]
  • Regression: an Introduction to Econometrics
    Regression: An Introduction to Econometrics Overview The goal in the econometric work is to help us move from the qualitative analysis in the theoretical work favored in the textbooks to the quantitative world in which policy makers operate. The focus in this work is the quantification of relationships. For example, in microeconomics one of the central concepts was demand. It is one half of the supply-demand model that economists use to explain prices, whether it is the price of stock, the exchange rate, wages, or the price of bananas. One of the fundamental rules of economics is the downward sloping demand curve - an increase in price will result in lower demand. Knowing this, would you be in a position to decide on a pricing strategy for your product? For example, armed with the knowledge that demand is negatively related to price, do you have enough information to decide whether a price increase or decrease will raise sales revenue? You may recall from a discussion in an intro econ course that the answer depends upon the elasticity of demand, a measure of how responsive demand is to price changes. But how do we get the elasticity of demand? In your earlier work you were just given the number and asked how this would influence your choices, while here you will be asked to figure out what the elasticity figure is. It is here things become interesting, where we must move from the deterministic world of algebra and calculus to the probabilistic world of statistics. To make this move, a working knowledge of econometrics, a fancy name for applied statistics, is extremely valuable.
    [Show full text]
  • Regression Project
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Papers in Economics 40 JOURNAL FOR ECONOMIC EDUCATORS, 10(1), SUMMER 2010 UNDERGRADUATE RESEARCH Public Transportation Ridership Levels Christopher R. Swimmer and Christopher C. Klein1 Abstract This article uses linear regression analysis to examine the determinants of public transportation ridership in over 100 U. S. cities in 2007. The primary determinant of ridership appears to be availability of public transportation service. In fact, the relationship is nearly one to one: a 1% increase in availability is associated with a 1% increase in ridership. The relative unimportance of price may be an indicator of the heavy subsidization of fares in most cities, leaving availability as the more effective policy tool to encourage use of public transport. Key Words: identification, public transportation, ridership. JEL Classifications: A22, C81, H42 Introduction What makes one city more apt to use public transportation relative to another? This is an important issue that has been studied by others in various ways. Glaeser et al. (2008), find that the availability of public transportation is a major explanatory factor in urban poverty. Glaeser and Shapiro find evidence that car cities, where a large percentage of people drive themselves to work, grew at the expense of public transportation cities as the percentage of cities’ population taking public transportation declined between 1980 and 2000. Murray et al. (1998), conclude that the performance of a public transport system is determined largely by the proximity of public transport stops to the regional population. Initially, the data were gathered for the top 136 metropolitan statistical areas in the U.S.
    [Show full text]
  • Inary Least Squares Regression with Raw Cost – OLS Log Transformed Cost – GLM Model (Gamma Regression)
    Econometrics Course: Cost as the Dependent Variable (II) Paul G. Barnett, PhD April 10, 2019 POLL QUESTION #1 Which method(s) have you used to evaluate health care costs? (answer all that apply) – None yet – Rank test (non-parametric method) – Ordinary Least Squares regression with raw cost – OLS log transformed cost – GLM model (gamma regression) 2 Health care costs difficult to analyze – Skewed by rare but extremely high cost events – Zero cost incurred by enrollees who don’t use care – No negative values – Variance can vary with independent variable 3 Limitation of Ordinary Least Squares (OLS) OLS with raw cost – non-normal dependent variable can generate biased parameters – can predict negative costs OLS with log transformation of cost – Log cost is normally distributed, can use in OLS – Predicted cost is affected by re-transformation bias – Can’t take log of zero – Assumes variance of errors is constant 4 Topics for today’s course What is heteroscedasticity, and what should be done about it? What should be done when there are many zero values? How to test differences in groups with no assumptions about distribution? How to determine which model is best? 5 Topics for today’s course What is heteroscedasticity and what should be done about it? What should be done when there are many zero values? How to test differences in groups with no assumptions about distribution? How to determine which model is best? 6 What is heteroscedasticity? Heteroscedasticity – Variance depends on x (or on predicted y) – For example, the variation
    [Show full text]
  • Classical Linear Regression Model: Assumptions and Diagnostic Tests
    Classical Linear Regression Model: Assumptions and Diagnostic Tests Yan Zeng Version 1.1, last updated on 10/05/2016 Abstract Summary of statistical tests for the Classical Linear Regression Model (CLRM), based on Brooks [1], Greene [5][6], Pedace [8], and Zeileis [10]. Contents 1 The Classical Linear Regression Model (CLRM) 3 2 Hypothesis Testing: The t-test and The F-test 4 3 Violation of Assumptions: Multicollinearity 5 3.1 Detection of multicollinearity .................................... 5 3.2 Consequence of ignoring near multicollinearity .......................... 6 3.3 Dealing with multicollinearity .................................... 6 4 Violation of Assumptions: Heteroscedasticity 7 4.1 Detection of heteroscedasticity ................................... 7 4.1.1 The Goldfeld-Quandt test .................................. 7 4.1.2 The White’s general test ................................... 7 4.1.3 The Breusch-Pagan test ................................... 8 4.1.4 The Park test ......................................... 8 4.2 Consequences of using OLS in the presence of heteroscedasticity ................ 8 4.3 Dealing with heteroscedasticity ................................... 8 4.3.1 The generalised least squares method ........................... 8 4.3.2 Transformation ........................................ 8 4.3.3 The White-corrected standard errors ............................ 9 5 Violation of Assumptions: Autocorrelation 9 5.1 Detection of autocorrelation ..................................... 9 5.1.1 Graphical test .......................................
    [Show full text]
  • A Study on the Violation of Homoskedasticity Assumption in Linear Regression Models االنحذار الخطي ت التباي
    Al- Azhar University – Gaza Faculty of Economics and Administrative sciences Department of Applied Statistics A Study on the Violation of Homoskedasticity Assumption in Linear Regression Models دراسة حول انتهاك فرضية ثبات التباين في نمارج اﻻنحذار الخطي Prepared by Mohammed Marwan T Barbakh Supervised by Dr. Samir Khaled Safi Associate Professor of Statistics A thesis submitted in partial fulfillment of requirements for the degree of Master of Applied Statistics June -2012 I To my parents To my grandmother To my wife To my sons, daughter To my brothers and sisters II Acknowledgements I would like to thank so much in the beginning Allah and then Al-Azhar University of Gaza for offering me to get the Master Degree, and my thank to my professors, my colleagues at the Department of Applied Statistics. I am grateful to my supervisor Dr. Samir Safi for his guidance and efforts with me during this study. Also, I would like to thank Dr.Abdalla El-Habil and Dr. Hazem El- Sheikh Ahmed for their useful suggestions and discussions. My sincere gratitude to my family, especially my parents for their love and support and to my wife. I am also thankful to all my friends for their kind advice, and encouragement. Finally, I pray to Allah to accept this work. III Abstract The purpose of this study was Regression analysis is used in many areas such as economic, social, financial and others. Regression model describes the relationship between the dependent variable and one or more of the independent variables. This study aims to present one of the most important problem that affects the accuracy of standard error of the parameters estimates of the linear regression models , such problem is called non-constant variance (Heteroskedasticity).
    [Show full text]
  • Syllabus SBNM 5220 Econometrics North Park University Course Credit: 2 Semester Hours
    Syllabus SBNM 5220 Econometrics North Park University Course Credit: 2 semester hours Course Instructor Dr. Lee Sundholm Professor of Economics School of Business and Nonprofit Management (SBNM) North Park University Contact Information North Park University Office: School of Business and Nonprofit Management (SBNM) 5043 N. Spaulding Ave. Chicago, Illinois 60625 773-244-5715 (office) 773-610-2410 (cell) e-mail: [email protected] Office Hours: 3:30 5:00 MW Required Text: Damodar N. Gujarati and Dawn C. Porter, Essentials of Econometrics, Fourth edition, McGraw-Hill, New York, 2010. ISBN: 978-0- 07-337584-7. The primary objective of the text “is to provide a user-friendly introduction to econometric theory and techniques. The book is designed to help students understand econometric techniques through extensive examples, careful explanations, and a wide variety of problem material.” Catalog Description 5220 Econometrics (2 sh) This course combines mathematical methods with economic and business models in order to develop and provide empirical content for these models. This approach is appropriately applied in the solution of practical problems. In addition, these methods allow for a more precise analysis of relevant economic and business issues. Accurate and measurable analysis is the basis of the formulation of appropriate policy. Such policy may take the form of setting macroeconomic or microeconomic goals, or in the development and application of strategic objectives of business firms. Econometric methods and applications provide a significant basis for making more reliable economic and business decisions. Prerequisite: SBNM 5200, 5212, or consent of the instructor. Course Introduction This course serves as an introduction to econometric methods.
    [Show full text]
  • The Heteroskedasticity Tests Implementation for Linear Regression Model Using MATLAB
    https://doi.org/10.31449/inf.v42i4.1862 Informatica 42 (2018) 545–553 545 The Heteroskedasticity Tests Implementation for Linear Regression Model Using MATLAB Lуudmyla Malyarets, Katerina Kovaleva, Irina Lebedeva, Ievgeniia Misiura and Oleksandr Dorokhov Simon Kuznets Kharkiv National University of Economics, Nauky Avenue, 9-A, Kharkiv, Ukraine, 61166 E-mail: [email protected] http://www.hneu.edu.ua/ Keywords: regression model, homoskedasticity, testing for heteroskedasticity, software environment MATLAB Received: September 23, 2017 The article discusses the problem of heteroskedasticity, which can arise in the process of calculating econometric models of large dimension and ways to overcome it. Heteroskedasticity distorts the value of the true standard deviation of the prediction errors. This can be accompanied by both an increase and a decrease in the confidence interval. We gave the principles of implementing the most common tests that are used to detect heteroskedasticity in constructing linear regression models, and compared their sensitivity. One of the achievements of this paper is that real empirical data are used to test for heteroskedasticity. The aim of the article is to propose a MATLAB implementation of many tests used for checking the heteroskedasticity in multifactor regression models. To this purpose we modified few open algorithms of the implementation of known tests on heteroskedasticity. Experimental studies for validation the proposed programs were carried out for various linear regression models. The models used for comparison are models of the Department of Higher Mathematics and Mathematical Methods in Economy of Simon Kuznets Kharkiv National University of Economics and econometric models which were published recently by leading journals.
    [Show full text]
  • Models for Health Care
    HEDG Working Paper 10/01 Models For Health Care Andrew M Jones January 2010 york.ac.uk/res/herc/hedgwp MODELS FOR HEALTH CARE ANDREW M. JONES University of York Abstract This chapter reviews the econometric methods that are used by health economists to model health care costs. These methods are used for prediction, projection and forecasting, in the context of risk adjustment, resource allocation, technology assessment and policy evaluation. The chapter reviews the literature on the comparative performance of the methods, especially in the context of forecasting individual health care costs, and concludes with an empirical case study. Acknowledgements: I gratefully acknowledge funding from the Economic and Social Research Council (ESRC) under the Large Grant Scheme, reference RES-060- 25-0045. I am especially grateful to Will Manning for his detailed reading and extensive comments and for advice and access to Stata code from Anirban Basu, Partha Deb, Donna Gilleskie, Edward Norton and Nigel Rice. Contents 1. Introduction 2. Linear regression models 2.1 Cost regressions 2.2 Regression on transformations of costs 3. Nonlinear regression models 3.1 Exponential conditional mean models 3.2 Poisson regression 3.3 Hazard models 4. Generalized linear models 4.1 Basic approach 4.2 Extended estimating equations 5. Other nonlinear models 5.1 Finite mixture models 5.2 The discrete conditional density estimator 6. Comparing model performance 6.1 Evidence from the literature 7. An empirical application 8. Further reading References 1. Introduction Health care costs pose particular challenges for econometric modelling. Individual- level data on medical expenditures or costs of treatment typically feature a spike at zero and a strongly skewed distribution with a heavy right-hand tail.
    [Show full text]
  • Are Amenities Important for the Migration of Highly Educated Workers? the Role of Built- Amenities in the Migration of Highly Educated Workers
    ARE AMENITIES IMPORTANT FOR THE MIGRATION OF HIGHLY EDUCATED WORKERS? THE ROLE OF BUILT- AMENITIES IN THE MIGRATION OF HIGHLY EDUCATED WORKERS MIJIN JOO Bachelor of Economics Chung-Ang University February, 1997 Master of Economics Chung-Ang University February, 1999 Master of Science in Urban Studies Cleveland State University August, 2000 Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN URBAN STUDIES AND PUBLIC AFFAIRS at the CLEVELAND STATE UNIVERSITY May, 2011 © COPYRIGHT BY MIJIN JOO 2011 Approval Page This dissertation has been approved for the COLLEGE OF URBAN STUDIES and the College of Graduate Studies by ______________________________________________ Dissertation Chairperson, Mark Rosentraub, Ph.D. ______________________________ Department and Date _____________________________________________ William M. Bowen, Ph.D. ______________________________ Department and Date ____________________________________________ Joel A. Elvery, Ph.D. ______________________________ Department and Date ____________________________________________ Jae-Wan Hur, Ph.D. ______________________________ Department and Date ACKNOWLEDGMENTS Sometimes, I think of destiny. We do not know what is going to happen in the future. When I made a decision to go to Cleveland, I thought that everything would be so great. Some of my friends asked me why I wanted to go to Cleveland. They mentioned about how difficult it was to study abroad. I thought that I was ready to take a risk and to go to a bigger world. However, it did not take long before I found that studying and living in Cleveland was more difficult than I thought it would be. I struggled with getting familiar with Cleveland. However, since I met my academic advisor, everything has changed.
    [Show full text]