Enzymatic Site-Selectivity Enabled by Structure-Guided Directed Evolution

Total Page:16

File Type:pdf, Size:1020Kb

Enzymatic Site-Selectivity Enabled by Structure-Guided Directed Evolution ChemComm View Article Online FEATURE ARTICLE View Journal | View Issue Enzymatic site-selectivity enabled by structure- guided directed evolution Cite this: Chem. Commun., 2017, 53,3916 Jian-bo Wang,ab Guangyue Liab and Manfred T. Reetz*ab Biocatalytic site-selective (regioselective) organic transformations have been practiced for decades, but the traditional limitations of enzymes regarding narrow substrate acceptance and the often observed Received 15th January 2017, insufficient degree of selectivity have persisted until recently. With the advent of directed evolution, it is Accepted 3rd March 2017 possible to engineer site-selectivity to suit the needs of organic chemists. This review features recent DOI: 10.1039/c7cc00368d progress in this exciting research area, selected examples involving P450 monooxygenases, halogenases and Baeyer–Villiger monooxygenases being featured for illustrative purposes. The complementary nature rsc.li/chemcomm of enzymes and man-made catalysts is emphasized. to be reported. Sometimes selectivity is possible only by resorting Creative Commons Attribution 3.0 Unported Licence. Introduction to protective group technology,1 but this requires additional steps. Site-selectivity and regioselectivity are terms that are often used Indeed, as Gilbert Stork once said, ‘‘The best protective group is interchangeably in synthetic organic chemistry. It means that a no protective group,’’ but this is generally not possible when using given reagent or catalyst induces a reaction selectively at one man-made reagents or catalysts. Introducing and removing out of several possible positions in a compound. If the trans- protective groups site-selectively is in itself a fundamentally formation is unselective, a mixture of products will arise, important task.1,2 The requirements as defined by the concepts generally either constitutional isomers, enantiomers or diaster- of atom-economy,3a step-economy3b and redox-economy3c under- eomers, depending upon the particular system. Since selectivity score the persisting challenges. This article is licensed under a stands at the heart of modern organic chemistry, numerous Enzymes catalyze natural transformations generally with selective reagents and catalysts have been developed and continue exquisite selectivity, including site-selectivity. Inspired by these well-known characteristics, chemists have long sought to harness wild type (WT) enzymes in isolated form, as lysates Open Access Article. Published on 15 March 2017. Downloaded 10/2/2021 7:31:28 AM. a Department of Chemistry, Philipps-University Marburg, Hans-Meerwein Strasse 4, or as whole cells (strains) for catalyzing selective reactions of 35032, Marburg, Germany 4,5 b Max-Plank-Institut fu¨r Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mu¨lheim, non-natural substrates. As in the case of synthetic reagents 1–3 Germany. E-mail: [email protected] and catalysts, the ecological and economical aspects of Jian-bo Wang obtained his Guangyue Li studied protein bachelor’s degree from NanKai engineering at the Institute of University in 2004, then he Plant Protection, Chinese Academy pursued his doctoral research of Agricultural Sciences (Laboratory in Shanghai Institute Organic of Prof. Dewen Qiu), obtaining his Chemistry (SIOC) from 2005, master degree in 2010. He then and graduated in 2010. After he joined the group of Prof. Dunming worked in SIOC for about one Zhu at the Tianjin Institute of and a half years, he went to Industrial Biotechnology, Chinese Emory University, USA, to gain Academy of Sciences, obtaining a postdoctoral experience. After he doctoral degree in 2014 in the area finished his research in USA in of enzyme engineering. Currently he Jian-bo Wang 2014, he joined in Prof. M. T. Guangyue Li is a postdoctoral fellow in the group Reetz’s group as a postdoctoral of M. T. Reetz focusing on directed fellow and now working in the field of biocatalysis, enzyme evolution of epoxide hydrolase, alcohol dehydrogenase, Baeyer–Villiger directed evolution and protein engineering. monooxygenases and monoamine oxidase. 3916 | Chem. Commun., 2017, 53, 3916--3928 This journal is © The Royal Society of Chemistry 2017 View Article Online Feature Article ChemComm Scheme 2 Chemoenzymatic synthesis of cortisol (5) by Upjohn.9 Scheme 1 Regioselective oxidation of cholic acid (1).8 6 (as an entry to cortisol) by Woodward and coworkers at about enzyme catalysis in organic chemistry have been addressed. the same time.11 Several reviews focus on the use of enzymes in the production 7 Perhaps even more impressive is the biocatalytic one-pot of pharmaceuticals. conversion of 5-aminolevulinic acid (6) into compound 7 in One of many practical examples of enzymes as catalysts in 20% overall yield, a known precursor of vitamin B12 (8), organic chemistry concerns the regioselective oxidation of catalyzed by a mixture of 12 enzymes (Scheme 3).12 The cascade cholic acid (1) with sole formation of the 12-keto product 2, 8 sequence involves regio- and stereoselective C-methylation, catalyzed by 12a-hydroxysteroid dehydrogenase (12aHSDH), a oxidation, reduction, ring contraction, decarboxylation and specific alcohol dehydrogenase (ADH) (Scheme 1). Notice that finally [1,5]-sigmatropic rearrangement. This stands in contrast the oxidation occurs at the sterically most hindered site, a to the purely chemical synthesis of vitamin B12 by Woodward, result that is not possible using chemical reagents or catalysts Eschenmoser and coworkers, a monumental feat which, of without applying protective group methodology. Indeed, this course, had many spinoffs that are of substantial benefit to transformation was also achieved by chemical means, albeit in synthetic organic chemistry.13 Neither approach is exploited four steps, three involving protection/deprotection and one 8 in the industrial vitamin B12 production, which in reality is requiring stoichiometric amounts of CrO3 as the oxidant. Creative Commons Attribution 3.0 Unported Licence. accomplished by the biocatalytic process of fermentation, a Another early example of the complementarity of man-made fascinating accomplishment in its own right.14 catalysts/reagents and enzymes was reported in the chemo- When considering site-selectivity (regioselectivity) in general, enzymatic synthesis of the important therapeutic compound essentially all of the enzyme types can be considered, including cortisol (5) starting from readily available progesterone (3)by hydrolases, reductases, oxidases, transferases, lyases, isomerases several pharmaceutical companies in the early 1950s, including and ligases, all in a variety of different kinds of reactions. Many of Upjohn, Schering, Pfizer and Merck. In the Upjohn industrial these have been exploited by academic and industrial researchers process, an Aspergillus niger strain was used for oxidatively hydroxy- for the purpose of ensuring site-selectivity. For example, an lating the desired C11-position regioselectively with formation 9 important area is enzyme-catalyzed regioselective protection This article is licensed under a of the C11-a-alcohol 4. This was the wrong diastereomer in an and deprotection of such functional moieties as:2,15 otherwise impressive site-selective CH-activating process. At the Alcohol groups (e.g., in carbohydrates, poly-hydroxylated time the nature of the actual enzyme was not known, but it was alkaloids and steroids, nucleosides) most likely a cytochrome P450 monooxygenase (CYP), enzymes that Open Access Article. Published on 15 March 2017. Downloaded 10/2/2021 7:31:28 AM. 10 Thiol groups (e.g., in peptides) have since been used in many selective oxidation reactions. Amino groups (e.g., in polyhydroxylated alkaloids, amino- Subsequent steps included chemical manipulation of the sidechain saccharides, b-lactam derivatives) at the C17-position and inversion of configuration at position Hundreds of cases have been reported, one example being C11 (Scheme 2). The chemoenzymatic process was a practical the site-selective deprotection of the fully O-acylated glucose alternative to the 40-step purely chemical synthesis of cortisone derivative 9 with formation of either 10, catalyzed by porcine Manfred T. Reetz is a synthetic organic chemist who proposed and developed the concept of directed evolution of stereo- selective enzymes as catalysts in organic chemistry and bio- technology. Following two decades as Director at the Max-Planck- Institut fu¨r Kohlenforschung in Mu¨lheim/Germany, he accepted in 2011 an emeritus position as Hans-Meerwein-Research Prof- Manfred T. Reetz essor at Philipps-University in Scheme 3 The Scott-synthesis of intermediate 7 as a precursor of Marburg/Germany. vitamin B12 (8).12 This journal is © The Royal Society of Chemistry 2017 Chem. Commun., 2017, 53, 3916--3928 | 3917 View Article Online ChemComm Feature Article Scheme 5 Systematization of saturation mutagenesis at sites lining the binding pocket of an enzyme (CASTing), a given site A, B, C, D, etc. comprising 1, 2, 3 or more residues.23,25 Scheme 4 Site-selective deprotection of fully O-acylated glucose as a pocket of a lipase in kinetic resolution,24 systematization of this function of the enzyme (PPL: porcine pancreas lipase;16a RTE: esterase concept led to the technique of Combinatorial Active-Site 16b from Rhodosporium toruloides). Saturation Test (CAST) (Scheme 5).25 Thus, CAST is a convenient acronym for a process published earlier, readily distinguishing it from focused saturation mutagenesis at remote sites for other pancrease lipase (PPL),16a
Recommended publications
  • Elimination Reactions E1, E2, E1cb and Ei
    Elimination Reactions Dr. H. Ghosh Surendranath College, Kol-9 ________________________________________________ E1, E2, E1cB and Ei (pyrolytic syn eliminations); formation of alkenes and alkynes; mechanisms (with evidence), reactivity, regioselectivity (Saytzeff/Hofmann) and stereoselectivity; comparison between substitution and elimination. Substitution Reactions Elimination Reactions Elimination happens when the nucleophile attacks hydrogen instead of carbon Strong Base favor Elimination Bulky Nucleophile/Base favor Elimination High Temperature favors Elimination We know- This equation says that a reaction in which ΔS is positive is more thermodynamically favorable at higher temperature. Eliminations should therefore be favoured at high temperature Keep in Mind---- Mechanism Classification E1 Mechanism- Elimination Unimolecular E1 describes an elimination reaction (E) in which the rate-determining step is unimolecular (1) and does not involve the base. The leaving group leaves in this step, and the proton is removed in a separate second step E2 Mechanism- Elimination Bimolecular E2 describes an elimination (E) that has a bimolecular (2) rate-determining step that must involve the base. Loss of the leaving group is simultaneous with removal of the proton by the base Bulky t-butoxide—ideal for promoting E2 as it’s both bulky and a strong base (pKaH = 18). Other Organic Base used in Elimination Reaction These two bases are amidines—delocalization of one nitrogen’s lone pair on to the other, and the resulting stabilization of the protonated amidinium ion, E1 can occur only with substrates that can ionize to give relatively stable carbocations—tertiary, allylic or benzylic alkyl halides, for example. E1-Elimination Reaction not possible here The role of the leaving group Since the leaving group is involved in the rate-determining step of both E1 and E2, in general, any good leaving group will lead to a fast elimination.
    [Show full text]
  • Electrochemistry and Photoredox Catalysis: a Comparative Evaluation in Organic Synthesis
    molecules Review Electrochemistry and Photoredox Catalysis: A Comparative Evaluation in Organic Synthesis Rik H. Verschueren and Wim M. De Borggraeve * Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F, box 2404, 3001 Leuven, Belgium; [email protected] * Correspondence: [email protected]; Tel.: +32-16-32-7693 Received: 30 March 2019; Accepted: 23 May 2019; Published: 5 June 2019 Abstract: This review provides an overview of synthetic transformations that have been performed by both electro- and photoredox catalysis. Both toolboxes are evaluated and compared in their ability to enable said transformations. Analogies and distinctions are formulated to obtain a better understanding in both research areas. This knowledge can be used to conceptualize new methodological strategies for either of both approaches starting from the other. It was attempted to extract key components that can be used as guidelines to refine, complement and innovate these two disciplines of organic synthesis. Keywords: electrosynthesis; electrocatalysis; photocatalysis; photochemistry; electron transfer; redox catalysis; radical chemistry; organic synthesis; green chemistry 1. Introduction Both electrochemistry as well as photoredox catalysis have gone through a recent renaissance, bringing forth a whole range of both improved and new transformations previously thought impossible. In their growth, inspiration was found in older established radical chemistry, as well as from cross-pollination between the two toolboxes. In scientific discussion, photoredox catalysis and electrochemistry are often mentioned alongside each other. Nonetheless, no review has attempted a comparative evaluation of both fields in organic synthesis. Both research areas use electrons as reagents to generate open-shell radical intermediates. Because of the similar modes of action, many transformations have been translated from electrochemical to photoredox methodology and vice versa.
    [Show full text]
  • Reactions of Alkenes and Alkynes
    05 Reactions of Alkenes and Alkynes Polyethylene is the most widely used plastic, making up items such as packing foam, plastic bottles, and plastic utensils (top: © Jon Larson/iStockphoto; middle: GNL Media/Digital Vision/Getty Images, Inc.; bottom: © Lakhesis/iStockphoto). Inset: A model of ethylene. KEY QUESTIONS 5.1 What Are the Characteristic Reactions of Alkenes? 5.8 How Can Alkynes Be Reduced to Alkenes and 5.2 What Is a Reaction Mechanism? Alkanes? 5.3 What Are the Mechanisms of Electrophilic Additions HOW TO to Alkenes? 5.1 How to Draw Mechanisms 5.4 What Are Carbocation Rearrangements? 5.5 What Is Hydroboration–Oxidation of an Alkene? CHEMICAL CONNECTIONS 5.6 How Can an Alkene Be Reduced to an Alkane? 5A Catalytic Cracking and the Importance of Alkenes 5.7 How Can an Acetylide Anion Be Used to Create a New Carbon–Carbon Bond? IN THIS CHAPTER, we begin our systematic study of organic reactions and their mecha- nisms. Reaction mechanisms are step-by-step descriptions of how reactions proceed and are one of the most important unifying concepts in organic chemistry. We use the reactions of alkenes as the vehicle to introduce this concept. 129 130 CHAPTER 5 Reactions of Alkenes and Alkynes 5.1 What Are the Characteristic Reactions of Alkenes? The most characteristic reaction of alkenes is addition to the carbon–carbon double bond in such a way that the pi bond is broken and, in its place, sigma bonds are formed to two new atoms or groups of atoms. Several examples of reactions at the carbon–carbon double bond are shown in Table 5.1, along with the descriptive name(s) associated with each.
    [Show full text]
  • Organic Chemistry-I (Nature of Bonding and Stereochemistry
    Subject Chemistry Paper No and Title 1; Organic Chemistry-I (Nature of bonding and Stereochemistry Module No and 25; Regioselectivity Title Module Tag CHE_P1_M25 CHEMISTRY Paper No. 1: Organic Chemistry-I (Nature of bonding and Stereochemistry Module no. 25: Regioselectiveity TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 2.1 Different Examples of Regioselective Reactions 2.1.1 Regioselectivity in Addition Reactions 2.1.2 Addition of HBr to Alkenes 2.1.3 Hydroboration Reaction and Addition of Hydrogen and Bromine to Alkenes 2.1.4 Baeyer Villiger Oxidation 2.1.5 Birch Reduction 2.1.6 Electrophilic Aromatic Substitution 2.1.7 Diels Alder Reaction 2.1.8 Friedal Crafts Reaction 2.1.9 Regioselectivity of Elimination 2.2 How to Determine the Regioselectivity? 3. Summary CHEMISTRY Paper No. 1: Organic Chemistry-I (Nature of bonding and Stereochemistry Module no. 25: Regioselectiveity 1. Learning Outcomes After studying this module, you shall be able to Know what is regioselectivity. Understand the basic difference between regioselectivity and chemoselectivity. Identify the regioselectivity in various reactions. Calculate the regioselectivity for a particular reaction. 2. Introduction 2. What is Regioselectivity? Regioselectivity is known as the preference chemical bond breaking or making in one direction of over all other possible directions. It is certainly applicable to positions which many reagents affect during the course of the reaction. An example to consider is which proton a strong base will abstract from an organic molecule, or where on a substituted benzene ring a further substituent will add. If there occurs a preponderance over which regioisomer will be formed, then that reaction can be termed as regioselective.
    [Show full text]
  • [4 + 2] Annulation and Enyne Cross Metathesis
    Communication pubs.acs.org/JACS Gold-Catalyzed Intermolecular Reactions of Propiolic Acids with Alkenes: [4 + 2] Annulation and Enyne Cross Metathesis † † † ‡ ‡ ‡ Hyun-Suk Yeom, Jaeyoung Koo, Hyun-Sub Park, Yi Wang, Yong Liang, Zhi-Xiang Yu,*, † and Seunghoon Shin*, † Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea ‡ Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry, Peking University, Beijing 100871, China *S Supporting Information Scheme 1. Propiolic Acid as a Functional Equivalent of 1,4- ABSTRACT: A gold-catalyzed intermolecular reaction of C,O-Dipole or Biscarbene propiolic acids with alkenes led to a [4 + 2] annulation or enyne cross metathesis. The [4 + 2] annulation proceeds with net cis-addition with respect to alkenes and provides an expedient route to α,β-unsaturated δ-lactones, for which preliminary asymmetric reactions were also demonstrated. For 1,2-disubstituted alkenes, unprecedented enyne cross metathesis occurred to give 1,3-dienes in a completely stereospecific fashion. DFT calculations and experiments indicated that the cyclobutene derivatives are not viable We commenced our study using propiolic acid (4a) and intermediates and that the steric interactions during 10 concerted σ-bond rearrangements are responsible for the styrene derivatives as substrates. After extensive optimization, observed unique stereospecificity. we found that treating styrene 3a with 4a
    [Show full text]
  • Regioselectivity in the [2 + 2] Cyclo-Addition Reaction of Triplet Carbonyl Compounds to Substituted Alkenes
    J. Chem. Sci., Vol. 117, No. 5, September 2005, pp. 561–571. © Indian Academy of Sciences. Regioselectivity in the [2 + 2] cyclo-addition reaction of triplet carbonyl compounds to substituted alkenes (Paterno–Büchi reaction): A spin-polarized conceptual DFT approach B PINTÉR,1 F DE PROFT,2 T VESZPRÉMI1 and P GEERLINGS2,* 1Inorganic Chemistry Department, Budapest University of Technology and Economics (BUTE), Szent Gellért tér 4, H-1521, Budapest, Hungary 2Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Faculteit, Wetenschappen, Pleinlaan 2, 1050 Brussels, Belgium e-mail: [email protected] Abstract. Regioselectivity of the photochemical [2 + 2] cyclo-addition of triplet carbonyl compounds with a series of ground state electron-rich and electron-poor alkenes, the Paterno–Büchi reaction, is studied. Activation barriers for the first step of the triplet reaction are computed in the case of the O-attack. Next, the observed regioselectivity is explained using a series of DFT-based reactivity indices. In the first step, we use the local softness and the local HSAB principle within a softness matching approach, and explain the relative activation barriers of the addition step. In the final step, the regioselectivity is assessed within the framework of spin-polarized conceptual density functional theory, considering response functions of the system’s external potential v, number of electrons N and spin number Ns, being the difference between the number of a and b electrons in the spin-polarized system. Although the concept of local spin philicity, in- troduced recently within this theory, appears less suited to predict the regioselectivity in this reaction, the correct regioselectivity emerges from considering an interaction between the largest values of the generalized Fukui functions fss on both interacting molecules.
    [Show full text]
  • Application of Enzymes in Regioselective and Stereoselective Organic Reactions
    catalysts Review Application of Enzymes in Regioselective and Stereoselective Organic Reactions Ruipu Mu 1,*, Zhaoshuai Wang 2,3,* , Max C. Wamsley 1, Colbee N. Duke 1, Payton H. Lii 1, Sarah E. Epley 1, London C. Todd 1 and Patty J. Roberts 1 1 Department of Chemistry, Centenary College of Louisiana, Shreveport, LA 71104, USA; [email protected] (M.C.W.); [email protected] (C.N.D.); [email protected] (P.H.L.); [email protected] (S.E.E.); [email protected] (L.C.T.); [email protected] (P.J.R.) 2 Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA 3 Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA * Correspondence: [email protected] (R.M.); [email protected] (Z.W.) Received: 22 June 2020; Accepted: 21 July 2020; Published: 24 July 2020 Abstract: Nowadays, biocatalysts have received much more attention in chemistry regarding their potential to enable high efficiency, high yield, and eco-friendly processes for a myriad of applications. Nature’s vast repository of catalysts has inspired synthetic chemists. Furthermore, the revolutionary technologies in bioengineering have provided the fast discovery and evolution of enzymes that empower chemical synthesis. This article attempts to deliver a comprehensive overview of the last two decades of investigation into enzymatic reactions and highlights the effective performance progress of bio-enzymes exploited in organic synthesis. Based on the types of enzymatic reactions and enzyme commission (E.C.) numbers, the enzymes discussed in the article are classified into oxidoreductases, transferases, hydrolases, and lyases.
    [Show full text]
  • Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis Christopher K
    Review pubs.acs.org/CR Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis Christopher K. Prier, Danica A. Rankic, and David W. C. MacMillan* Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States References 5360 1. INTRODUCTION CONTENTS A fundamental aim in the field of catalysis is the development 1. Introduction 5322 of new modes of small molecule activation. One approach 2+ toward the catalytic activation of organic molecules that has 2. Photochemistry of Ru(bpy)3 5323 3. Net Reductive Reactions 5324 received much attention recently is visible light photoredox 3.1. Reduction of Electron-Poor Olefins 5324 catalysis. In a general sense, this approach relies on the ability of 3.2. Reductive Dehalogenation 5326 metal complexes and organic dyes to engage in single-electron- 3.3. Reductive Cleavage of Sulfonium and transfer (SET) processes with organic substrates upon Sulfonyl Groups 5328 photoexcitation with visible light. 3.4. Nitrogen Functional Group Reductions 5329 Many of the most commonly employed visible light 3.5. Radical Cyclizations 5330 photocatalysts are polypyridyl complexes of ruthenium and iridium, and are typified by the complex tris(2,2′-bipyridine) 3.6. Reductive Epoxide and Aziridine Opening 5331 2+ 3.7. Reduction-Labile Protecting Groups 5331 ruthenium(II), or Ru(bpy)3 (Figure 1). These complexes 4. Net Oxidative Reactions 5332 4.1. Functional Group Oxidations 5332 4.2. Oxidative Removal of the PMB Group 5334 4.3. Oxidative Biaryl Coupling 5335 4.4. Oxidative Generation of Iminium Ions 5335 4.5. Azomethine Ylide [3 + 2] Cycloadditions 5338 4.6.
    [Show full text]
  • Regioselective Suzuki Couplings of Non -Symmetric Dibromobenzenes: Alkenes As Regiochemical Control Elements
    Organic & Biomolecular Chemistry Regioselective Suzuki Couplings of Non -Symmetric Dibromobenzenes: Alkenes as Regiochemical Control Elements Journal: Organic & Biomolecular Chemistry Manuscript ID: OB-COM-04-2015-000717 Article Type: Communication Date Submitted by the Author: 10-Apr-2015 Complete List of Authors: Zhao, Peng; Oregon State University, Chemistry Young, Marshall; Oregon State University, Chemistry Beaudry, Chris; Oregon State University, Chemistry Page 1 of 4 Organic & Biomolecular Chemistry Journal Name RSC Publishing COMMUNICATION Regioselective Suzuki Couplings of Non-Symmetric Dibromobenzenes: Alkenes as Regiochemical Control Cite this: DOI: 10.1039/x0xx00000x Elements * Received 00th January 2012, Peng Zhao, Marshall D. Young and Christopher M. Beaudry Accepted 00th January 2012 DOI: 10.1039/x0xx00000x www.rsc.org/ The regiochemical outcome of Suzuki couplings of non- symmetric dibromobenzenes is investigated. Selectivities are dependent on the proximity of the bromine atom to alkene substituents, not on steric or electronic effects. Extension to a one-pot three-component Suzuki reaction leads to efficient terphenyl syntheses. The Suzuki cross-coupling has emerged as a mainstay of organic synthesis, and it is especially useful for the construction of Csp 2–Csp 2 bonds. The traditional application of the Suzuki reaction is the coupling of a halide with a boron reagent (Scheme 1, eq. 1). 1 Substantial efforts have expanded the Suzuki reaction, and they include many examples of chemoselective couplings that exploit the reactivity differences of the halogens (eq. 2) 2. In addition to benzene systems, such chemoselective Suzuki reactions are also known in polycyclic aromatic molecules such as quinolines3, napthalenes 4, and indoles.5 Additionally there are many examples of tandem couplings of polyhalides (eq.
    [Show full text]
  • Fast and Accurate Prediction of the Regioselectivity of Electrophilic Aromatic Substitution Reactions† Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Fast and accurate prediction of the regioselectivity of electrophilic aromatic substitution reactions† Cite this: Chem. Sci.,2018,9, 660 Jimmy C. Kromann, a Jan H. Jensen, *a Monika Kruszyk,bc Mikkel Jessingb and Morten Jørgensen*b While computational prediction of chemical reactivity is possible it usually requires expert knowledge and there are relatively few computational tools that can be used by a bench chemist to help guide synthesis. The RegioSQM method for predicting the regioselectivity of electrophilic aromatic substitution reactions of heteroaromatic systems is presented in this paper. RegioSQM protonates all aromatic C–H carbon atoms and identifies those with the lowest free energies in chloroform using the PM3 semiempirical method as the most nucleophilic center. These positions are found to correlate qualitatively with the regiochemical outcome in a retrospective analysis of 96% of more than 525 literature examples of electrophilic aromatic halogenation reactions. The method is automated and requires only a SMILES string of the Received 23rd September 2017 molecule of interest, which can easily be generated using chemical drawing programs such as Creative Commons Attribution 3.0 Unported Licence. Accepted 10th November 2017 ChemDraw. The computational cost is 1–10 minutes per molecule depending on size, using relatively DOI: 10.1039/c7sc04156j modest computational resources and the method is freely available via a web server at http:// rsc.li/chemical-science www.regiosqm.org. RegioSQM should therefore be of practical use in the planning of organic synthesis. Introduction unmet need for synthetic chemists to be able to predict the regioselectivity of EAS reactions.
    [Show full text]
  • Elimination Reactions
    Elimination Reactions Elimination reactions discussed here are reactions that produce alkenes, usually from the loss of two particles, x-y, from a substrate. The nucleophilic substitution reactions discussed in another section are often accompanied by elimination reactions as competing reactions. Conditions can be met that make the elimination reaction the main reaction. Fluorine can be eliminated as fluoride but it is the least reactive of the halogens because of its strong C-F bond. Thus for halogens the rate of elimination is I>Br>Cl>F. Fluorine, because of its great electronegativity, can cause the beta hydrogen to become acidic. The mechanism of elimination form many fluorinated compounds involves a carbanion in the E1cb (Elimination first order carbanion) mechanism. Stereoselectiviy of elimination is not always observed. Elimination first order (E1) Secondary substrates give products from both substitution and elimination, by first rate limiting ionization of the substrate to produce a carbocation. The carbocation then can react with a nucleophile (SN1) or lose a beta hydrogen (E1) to form an alkene. Of course, carbocations can do other things such as rearrange to a more stable carbocation followed by substitution and elimination. The E1 mechanism is unlikely for fluorinated compounds because of the requirement to break the strong carbon-fluorine bond in the rate determining step. CH3 H Ph OCH3 Racemic mixture SN1 CH3 CH3OH H H CH3 Ph I Ph E1 R enantiomer a carbocation H CH2 Ph The elimination reactions requires removal of a beta hydrogen by a base. Thus increasing the base strength of the reaction medium increases the amount of elimination product.
    [Show full text]
  • Exploration of the Nazarov Cyclization Reaction by Mariam Zaky
    Exploration of the Nazarov Cyclization Reaction by Mariam Zaky Submitted in partial fulfillment of the requirements for the degree of Master of Science Dalhousie University Halifax, NS March 2016 ! Copyright by Mariam Zaky, 2016 ! ! ! ! Table of Contents List of Tables ................................................................................................................ iv List of Figures ................................................................................................................ v List of Schemes ............................................................................................................. vi Abstract ......................................................................................................................... ix List of Abbreviations and Symbols Used ...................................................................... x Acknowledgements .................................................................................................... xiii Chapter 1 - Introduction ................................................................................................. 1 1.1 The Classical Nazarov Reaction .................................................................... 1 1.1.2 Conformational Preference Influenced by "-Substituents ..................... 2 1.1.3 Polarized Nazarov reaction .................................................................... 2 1.2 The Interrupted Nazarov Reaction ................................................................. 3 1.2.1 Nazarov Reactions
    [Show full text]