edStates Office of EPA 520/1-87-028 Environmental Protection Radiation Programs December 1987 Agency Washington. D.C. 20460 ------~ 00..,LJµ.O!J-YO~O_p.L 9 _ STAR Radiation OEPA Low-Level and A . Radioactive Was es

Model Documentation PATH RAE-EPA

Methodology and Users Manual

) EP A 520 / 1-87-028 40 CFR Part 193 ( RAE 8706 / 1-6) Environmental Radiation Standards for Management and Land Disposal of Low-Level Radioactive Wastes 1·I

PATHRAE-EPA: A Low-Level Radioactive \'Jaste Environmental Transport and Risk Assessment Code

.METHODOLOGY AND USERS MANUAL

Developed by I I Vern Rogers Cheng Hung

r') ,.... December 1987

Prepared for U.S. Environmental Protection Agency Office of Radiation Programs Washington, DC 20460 l

Cheng Hung, Project Officer I DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, contractors, sub­ contractors, or their employees, makes any warranty, express or implied, nor assumes any legal liability or responsibility for any third party's use or the results of such use of any information, apparatus, product or process disclosed in this report, nor represents that its use by such third party would not infringe upon privately owned rights. PREFACE

This PATHRAE-EPA model documentation provides background information on the mathematical modeling used to generate the basic data for the Environmental Impact Statement (EIS) which is used to support EPA's rulemaking for generally applicable environmental standards for the management and disposal of low-level radioactive wastes. The model is used to assess the maximum annual dose to a critical population group (maximum CPG dose) resulting from the disposal of below regulatory concern (BRC) wastes. This model is considered a member of the I I PRESTO-EPA family of models. The model is expanded from the PRESTO-EPA-CPG and PRESTO-EPA-BRC models emphasizing two areas: ( l) the addition of specific radionucliae exposure pathways pertaining to onsite workers during disposal operation, to offsite personnel after site closure, and to reclaimers and inadvertent intruders after site closure; and (2) the simplification of the sophisticated dynamic submodels to a quasi-steady state submodels so that the computation time can be greatly reduced and enable the model to be excuted on a personal computer.

Interested persons may apply this model, using appropriate and applicable input data, for assessing the maximum CPG dose from an unregulated sanitary landfill site.

iii TABLE OF CONTENTS

LIST OF FIGURES ...... i V

LIST OF TABLES ...... V

EXECUTIVE SUMMARY • vi

1 INTRODUCTION 1-1 1.1 Basis for PATHRAE-EPA • • ••• 1-3 1.3 Outline of Documentation and Users Manual 1-5

2 PROBLEM DEFINITION 2-1 2.1 Program Description 2-1 2.1.1 Pathways • • • • • • • • 2-1 2.1.2 Dose Rate Calculations and Environmental Foodchain Analysis • • • • • • 2-4 2.1.3 Nuclide Inventory. • • • • • • • 2-6 2.1.4 Groundwater Pathways • • • • • • • • • • 2-6 2.2 Pathway Equations 2-7 2.3 Summary of Equations •• 2-25 2.4 Food Chain Calculations 2-26

3 APPLICATION INFORMATION ••• 3-1 3.1 Input Data and Program Organization 3-1 3.2 Program Options ••••••• 3-3 3.3 Input Data ••••••••••••• 3-10 3.3.1 Data File One - BRCDCF.DAT 3-12 3.3.2 Data File Two - ABCDEF.DAT 3-14 3.3.3 Data File Three - RQSITE.DAT 3-20 3.3.4 Data File Four - INVNTRY.DAT 3-22 3.3.5 Data File Five - UPTAKE.DAT. 3-23 3.4 Output Data ...... 3-26

4 SAMPLE PROBLEM 4-1 4.1 Problem Definition. • •• 4-1 4.2 Results • • • • • • •• 4-1 4.3 PATHRAE-EPA Computer Compatibility. 4-6

iv TABLE OF CONTENTS (Continued)

Page REFERENCES • • •· • • • • • • • • • • • • • • • • R-1

APPENDIX A -- SOURCE LISTING FOR PATHRAE-EPA CODE A-1

APPENDIX B -- DATA FILES AND OUTPUT FROM PATHRAE-EPA FOR SAMPLE PROBLEM. • • • • • • • • • • • • • • • • • • • . B-1

V LIST OF FIGURES

Figure No.

2-1 Major Pathways for PATHRAE-EPA •. 2-2 2-2 Representation of Area Source Term for Groundwater F1 ow • • • • • • • • • • • • • • • • • • • • • • 2-12

3-1 Input and Output Data Flow for PATHRAE-EPA. 3-2 3-2 PATHRAE-EPA Subroutine Hierarchy •• 3-4 3-3 Logic Flow of PATHRAE-EPA ••• 3-6

4-1 Representation of Sample Problem 4-2 -

vi LIST OF TABLES

Page Table No.

1-2 1-1 PRESTO-EPA Code Family ......

2-8 2-1 Doses and Their Components ••••••• ......

3-5 3-1 Descriptions of PATHRAE-EPA Subroutines ...... 3-11 3-2 Summary of PATHRAE Program Options •••• . . . . .

4-3 4-1 Site Parameters Used in Sample Problem .• . . . . . 4-4 4-2 Nuclide Inventory ...... 4-3 Facility Dose Rates for Various Times for Sample Problem •••••••••••.•••.•••. 4-5

v ii EXECUTIVE SUMMARY

The U.S. Environmental Protection Agency (EPA) is responsible for

developing a generally applicable standard for the land disposal of

low-level radioactive waste (LLW). The standard will support the U.S.

Nuclear Regulatory Co111T1ission and the U.S. Department of Energy in

developing a national radioactive waste management system. Technical

support for the standard includes an estimation of the environmental

impacts from the disposal of LLW in a wide variety of facilities ranging

from a standard sanitary landfill to a deep geologic repository.

As an aid in developing the standard, a family of computer codes, entitled PRESTO-EPA-POP, PRESTO-EPA-DEEP, PRESTO-EPA-CPG, PRESTO-EPA-BRC

and PATHRAE-EPA has been developed under EPA direction. The EPA uses the

PRESTO-EPA code family to compare the potential health impacts of a broad number of LLW disposal alternatives to evaluate and support its decisions for the LLW standard.

This report documents the PATHRAE-EPA computer code used to calculate

maximum annual doses to a critical population group (CPG). These doses may

result from the disposal of candidate "below regulatory concern" (BRC)

radioactive wastes at municipal dumps and sanitary landfills located in

three representative and diverse hydrological, climatic, and demographic settings.

The PATHRAE-EPA code was developed by Rogers and Associates

Engineering Corporation under EPA direction. The model for the code is based upon analytical solutions of the transport equation and both

viii radiation doses and health effects can be projected for any time period during or following the end of BRC waste disposal operations.

PATHRAE-EPA is a multiple transport pathway, annual dose assessment computer code. The code may be executed on a variety of computers including advanced personal computers (e.g., IBM-AT or IBM-XT). The multiple pathways modeled for radioactive nuclide transport include contaminated groundwater transport to rivers or wells, surface water contamination by erosion of contaminated soil, contamination of soil and water due to disposal facility overflow, atmospheric transport of airborne nuclides and inhalation by humans. Inhalation doses may be calculated to workers engaged in disposal operations and to an off-site population during operation and after site closure. Maximum annual doses to inadvertent intruders and residents at the site following site closure may be calculated. Annual doses may result from internal exposures due to i nha lat ion or ingestion of contaminated materials or from external exposures arising from nuclides on or below the ground surface.

The Environmental Protection Agency wishes to warn potential users that, like any complex computer code, the PATHRAE-EPA code can be misused. Misuse could consist of using the code to examine a site where one or more critical modeling assumptions are invalid, or where values for significant input parameters are chosen that do not accurately reflect variables such as radionuclide inventory, site meteorology, surface and subsurface hydrology and geology, and future population demographics. Certain release and transport scenarios, such as major changes in meteorology or mining, are not considered in the PATHRAE-EPA model and code and significant changes to the existing code and the input data may be required to consider

i x such scenarios. The PATHRAE-EPA and PRESTO-EPA codes were developed to assess and compare alternative methods for managing and disposing of LLW at generic sites for general scenarios.

X 1. INTRODUCTION

The U.S. Environmental Protection Agency (EPA) is responsible for

developing a generally applicable standard for the disposal of low-level

radioactive waste ( LLW) to support the U.S. Nuclear Regulatory Corrrnission

and the U.S. Department of Energy in developing a national radioactive

waste management system. Techni ca 1 support for the standard inc 1 udes an

estimation of the environmental impacts from the disposal of LLW in a wide

variety of facilities, ranging from a standard sanitary landfill to a deep

geologic repository.

As an aid in developing the standard, a family of computer codes,

entitled PRESTO-EPA-P OP, PRESTO-EPA-DEEP, PRESTO-EPA-CPG, PRESTO-EPA-BRC

and PATHRAE-EPA has been developed under EPA direction. The PRESTO-EPA-POP

code was the first code deve 1oped and served as the basis for the other

PRESTO-EPA codes. The model is expanded and modified from the

PRESTO-EPA-CPG and PRESTO-EPA-BRC models emphasizing two areas: (1) the .. addition of exposure pathways pertaining to ans ite workers and to inadvertent intruders; and (2) the simplification of the sophisticated

dynamic submodels to a quasi-steady state submodels which enables the model

to be excuted on a personal computer. The EPA uses the PRESTO-EPA code

family to compare the potential health impacts of a broad number of LLW

disposal alternatives to evaluate and support its decisions for the LLW

standard. Table 1-1 provides a brief description of each of the EPA codes.

These codes, and how the EPA uses them, have been described in detail

(Hu83, Ga84, Ro84a). Information on obtaining complete documentation and

user's manuals for the PRESTO-EPA family of codes ( EPA85a through EPA85g,

Mey81, Mey84) is available from the EPA.

1-1 TABLE 1-1 PRESTO-EPA CODE FAMILY

PRESTO-EPA Code Purpose

PRESTO-EPA-POP Estimates cumulative population health effects to local and regional basin populations from land disposal of LLW by shallow methods; long-term analyses are modeled (generally 10,000 years). PRESTO-EPA-DEEP Estimates cumulative population health effects to local and regional basin populations from land disposal of LLW by deep methods. PRESTO-EPA-CPG Estimates maximum annual whole-body dose to a critical population group from land disposal of LLW by shallow or deep methods; dose in maximum year is determined. PRESTO-EPA-BRC Estimates cumulative population health effects to local r and regional basin populations from less restrictive disposal of BRC wastes by sanitary landfill and incineration methods. PATHRAE-EPA Estimates annual whole-body doses to a critical population group from less restrictive disposal of BRC wastes by sanitary landfill and incineration methods.

1-2 -M'f.! ,• .. ...

1.1 BASIS FOR PATHRAE-EPA

The deve 1opment of the standard for 1ow-1 eve 1 waste ( LLW) and be 1 ow

regulatory concern. (BRC) waste disposal by EPA has led to the development

of the performance assessment code PATHRAE-EPA . The PATHRAE-EPA code was

developed by Rogers and Associates Engineering Corporation under EPA

direction. The model for PATHRAE-EPA is based upon analytical solutions

(Bu80) of the transport equation and both annual radiation doses and health

effects can be projected for any time period during or following the end of BRC disposal operations.

The PATHRAE-EPA code may be used to provide estimates of the magnitude

of health effects which could potentially occur if certain radioactive

wastes were classified as BRC and disposed of in a sanitary landfill or

municipal dump. PATHRAE-EPA has been used to calculate maximum annual

effective whole body dose equivalents (doses)* to a critical population

group (CPG) due to the disposal of candidate BRC wastes at municipal dumps

and sanitary landfills located in three representative and diverse

hydrogeologic, climatic, and demographic settings (EPA84). Maximum annual

doses are calculated to workers during disposal operations, to off-site

personnel after site closure, and to reclaimers and inadvertent intruders

after site closure. A detailed description of the candidate BRC waste

streams, the disposal facility characterizations and the resulting doses

calculated by PATHRAE-EPA is given in the references (Ga84, EPA84).

The principal advantage of PATHRAE-EPA is its simplicity of operation

and presentation while still allowing a comprehensive set of nuclides and

* Throughout this report the term "dose" refers to the effective whole body dose equivalent.

1-3 pathways to be analyzed. PATHRAE-EPA can be installed and operated on a variety of computer systems including advanced personal computers such as the IBM-AT or IBM-XT. Site performance for radioactive waste disposal can be readily investigated with relatively few parameters needed to define the problem. Important parameters that limit site performance are also readily identified. For example, key site parameters are found generally to include:

• Depth to the aquifer

• Aquifer distance to accessible location • Aquifer velocity • Facility size • racility operating time • Precipitation • Soil retardation characteristics • Depth of emplacement of waste • Cover thickness and permeability

Of the many ways in which exposures to radiation from radioactive waste may occur, some have not been included in PATHRAE-EPA because they are either not restricting or are highly improbable. Only those reasonably probable pathways which are most significant and potentially restricting have been treated in the PATHRAE-EPA code. This does not mean that these exposure events will occur. Rather, it is the intent of the PATHRAE-EPA code to model a consistent set of events in such a manner as to estimate a range of probable impacts. The resulting range can be used as a basis for decision making among a variety of diverse alternatives.

1-4 The PATHRAE-EPA methodology models both off site and on site pathways through which humans may come in contact with radioactivity from the waste. The off site pathways include groundwater transport to a river and to a well, surface (wind or water) erosion, disposal facility overflow, and atmospheric transport. The on site pathways of concern arise principally from worker doses during operations and from post closure site reclamation or intruder activities such as living and growing edible vegetation on site and drilling wells for irrigation or drinking water.

For each of the pathways which have been included in PATHRAE-EPA, the dose from each nuclide is calculated as a function of time. Each of these doses is then summed to give the total effective dose for that pathway. The dose to the critical population group ( CPG) from a 11 pathways is then computed, assuming the entire nuclide inventory is accessible through each pathway. In addition to dose information, nuclide concentrations in river water are calculated for the river, erosion, and bathtub pathways, while well water concentrations are given for the well pathway.

1.3 OUTLINE OF DOCUMENTATION AND USERS MANUAL

This report contains the documentation necessary to understand and use the PATHRAE-EPA code. It is intended for those familiar with the operation of computer systems and who will be conducting PATHRAE-EPA type analyses. A basic familiarity with the pathway approach used in the PRESTO-EPA family of codes is also presumed (EPA87a-EPA87f).

In this chapter the background and use of the PATHRAE-EPA code are briefly described. A summary of the equations, calculational methods, and

1-5 general methodology used in PATHRAE-EPA is presented in Chapter 2 as wel l as a description of the program options that are available. Chapter 3 contains detailed card image input instructions which will allow the used to understand and construct the necessary data files to execute and fully utilize the capabilities of PATHRAE-EPA. Also a brief description of the code output is given. Finally, in Chapter 4 a sample problem is discussed and input data sets for running the problem are given. A source listing of PATHRAE-EPA given in Appendix A and a listing of the output for the sample problem is given in Appendix B•

. n

1-6 2. PROBLEM DEFINITION

2.1 PROGRAM DESCRIPTION

The PATHRAE-EPA code has features which make it applicable to a wide range of nuclear waste disposal analyses. These features are briefly identified below.

2.1.1 Pathways

Up to ten pathways by which radioactivity may reach humans can be considered. As shown in Figure 2-1, the pathways are:

1. Groundwater migration with discharge to a river. This pathway consists of downward migration of waste components by advection or as a result of dissolution in percolating precipitation. The waste components move downward through the unsaturated zone to an aquifer beneath the disposal site. In the aquifer the waste components are transported by advection and dispersion to an outcrop location where the aquifer discharges to a surface stream. 2. Groundwater migration with discharge to a we 11 • Groundwater transport to a well is similar to the pathway described above except that the contaminated aquifer water is withdrawn from a well. 3. Surface erosion of the cover material and waste and subsequent contamination of surface water. Erosion and movement to a surface stream involves the gradual removal of the cover over the disposed waste by erosion and, eventually, the slow removal of the waste itself. The time required for erosion of the total cover ' I depth is calculated. Then erosion operates on the waste I materials by removing a given amount (specific depth) from I the top of the waste each year. A conservative assumption is made that the eroded waste components enter the surface stream in the same year they erode from the waste site. ' I I 4. Saturation of waste and facility overflow {bathtub effect). . I This pathway calculates the doses generated when a I waste site becomes saturated with water and the contaminated water subsequently overflows the waste trench and enters a stream.

2-1 GROUNDWATER TO A RIVER GROUNDWATER TO A WELL OFFSITE ---~ SURFACE EROSION FACILITY OVERFLOW EXPOSURE ATMOSPHERIC TRANS PORT EVENTS DUST INHALATION FOOD CONSUMPTION ONSITE EXTERNAL GAMMA BIOINTRUSION RADIOACTIVE GAS INHALATION

RAE-102227

FIGURE 2-1. MAJOR PATH~~AYS FOR PATHRAE-EPA.

2-2 5. Food rown on the waste site. 1his pathway describes the consumption of food grown on reclaimed farm land and accounts for potential exposure of individuals to waste materials through the human food chain. A basic assumption i n this pathway is that reclamation activities are required to cause exposure to waste materials-. The means for dis tu rbi ng the waste materials include drilling wells through the waste and excavating a basement for a house. The waste excavated by these activities is uniformly mixed with uncontaminated surface soil down to a specified depth. The soil mixture is then used to grow edible crops and forage for milk and meat producing animals. Individuals are assumed to get some fraction of their food needs from contaminated crops, meat, and milk. The total waste inventory at the site decreases with time to account for loss of contaminants by leaching to the groundwater pathways. 6. Biointrusion into the waste. This pathway is similar to the food pathway described above, but involves the consumption of crops whose roots C have penetrated into previously undisturbed subsurface waste materials. The crops are presumed to absorb waste constituents through root uptake after which the crops are directly consumed by humans. The difference between this pathway and the reclaimer farm pathway is that no excavation of waste material occurs. 7. Direct gamma exposure. This exposure pathway calculates the external radiation dose to an individual standing directly over a waste site. The cover material over the waste is allowed to erode at a specified rate so the degree of shi e 1ding provided by the cover may decrease in time. For this pathway the conservative assumption is made that no loss of contaminants occurs by leaching to the groundwater pathways. The time dependence of the source term is described solely by radioactive decay. 8. Inhalation of radioactive dust on-site. This pathway traces the effects of inhaling contaminated dust that is suspended during the excavation of a basement or well by a reclaimer and/or during the disposal operation by a operator.

9 Inhalation of radon gas and radon daughters on-site. This pathway ca 1cul ates the effects on a reel aimer of inhaling radon and radon daughters while inside a structure built over the waste. 10. Inhalation of radioactive articulates off-site (from an on-site incinerator, trench fire, or dust resus ension • his pathway uses a aus s i an plume technique to trace the effects of site derived airborne contaminants on a representative off-site population.

2-3 2.1.2 Dose Rate Calculations and Environmental Foodchain Analysis

The annual doses are calculated at up to ten different times after site closure using factors contained in the input data. The equivalent whole body dose conversion factors for the sample problem given in Appendix B were obtained from PRESTO-EPA-CPG calculations using the DARTAB subroutines and RADRISK data file (Du80). The user may input other dose conversion factors if desired.

Complete environmental foodchain analysis is performed using the EPA methodology contained in the PRESTO-EPA codes (EPA87a-EPA87e). The foodchain calculations consider direct consumption of contaminated water, use of the water for animal consumption and irrigation of vegetation, consumption of the vegetation by humans and animals, and human consumption of contaminated milk and meat from the animals. The foodchain calculations also consider vegetation grown directly in contaminated soil, with

' r consumption of the vegetation by humans and animals. The foodchain calculations include transfer factors to vegetation and animals as well as consumption rates for water, vegetation, meat, and milk. For convenience, the routines performing the foodchain calculations calculate equivalent uptake factors for use in similar model runs, such that the foodchain analysis need not be repeated each time.

The equivalent total uptake factors quantify, on a nuclide specific basis, the annual nuclide uptake by an individual from all potential sources. For inhalation, it is just the breathing rate. For ingestion, it is the total equivalent annual drinking water consumption in liters that would give the same annual nuclide uptake as would occur from the consumption of contaminated vegetation, meat, milk, seafood, and drinking

2-4 water. Since soil-to-plant transfer factors, and other related factors may be nuclide-dependent, the equivalent total uptake factors are nuclide­ dependent.

As an example, suppose an individual uses contaminated well water for drinking, irrigating a vegetable garden, and watering a milk cow. If the individual consumes some of the vegetables and milk on a regular basis then the routes by which nuclides are ingested by humans are:

• water - human • water - vegetables - human

t water - cow - milk - human

The uptake factor for each nuclide would then be the equivalent amount of water the individual would have to drink in order to ingest the same quantity of the nuclide as is ingested via the three pathways listed above. In this example the uptake factor depends on the amount of drinking water consumed by the individual and by the cow, and on the amounts of vegetables and mi 1k consumed. Thus, the specific pathways by which contaminants are ingested and the quantities of contaminated foods ingested are built into the uptake factors.

For the pathways involving food grown over the waste site the uptake factors have a similar meaning. In this case, the uptake factor for a particular nuclide is the equivalent amount of waste material (kg/yr) an individual would have to directly consume in order to ingest the same amount of that nuclide as he ingests by eating contaminated foods .

2-5 2.1.3 Nuclide Inventory

The nuclide inventory for PATHRAE-EPA can contain up to 75 nuclides. This can be expanded easily by increasing the limits of appropriate parameters in the DIMENSION and COMMON statements. The inventory can either be specified at all of the designated times or calculated from an initial inventory. In addition, the decay of the nuclide inventory and the ingrowth of daughters can be calculated for the ope rational and post operational periods.

2.1.4 Groundwater Pathways

The transport of nuclides in the groundwater system can be calculated with or without longitudinal and transverse dispersion terms. The ingrowth of daughter nuclides during transport in the groundwater system can be included using any of seven three- or four-member decay chains. The decay chains are:

1. Cm-244 - Pu-24O - U-236 2. Pu-24O - U-236 - Th-232 3. Am-243 - Pu-239 - U-235 4. Pu-241 - Am-241 - Np-237 5. Pu-238 - U-234 - Th-23O- Ra-226 6. Pu-242 - U-238 - U-234 7. U-238 - Th-23O - Ra-226

Some of these chains are approximate representations of longer chains. For example, decay chain five is calculated assuming all of the Pu-238 decays to U-234 in a ti me period that is short compared to the nuclide transit time in the aquifer.

2-6 In most circumstances decay chain seven has the most significant impact on human nuclide doses and the other six chains can be ignored. However, the user should bear in mind that this is not always the case. The initial nuclide inventory should be carefully examined to assess the impo rtance of the other chains.

When any of the decay chains are activated, PATHRAE-EPA requires that each nuclide in the chain be listed in the initial inventory. If it is desired to model a situation where a particular member of a decay chain is not present initially, the inventory for that nuclide should be input as a very small number, but not zero.

2.2 PATHWAY EQUATIONS

The equations used to calculate the doses for each of the ten pathways are presented in this section. References are given to aid the reader in understanding the assumptions on which the equations are based and, where appropriate, some discussion is given of the important features of the equations. In general, the equations can be grouped into three components representing the waste form or rel ease rate, the transport pathway and environmental uptake. For simplicity, the results of the environmental foodchain analysis are represented in the equations by the symbol, U, called the equivalent uptake factor. Table 2-1 expresses the dose equations in terms of these three components.

Pathway One - Groundwater To A River

The annual whole body equivalent dose due to groundwater migration with discharge to a river is calculated from the following equation.

2-7 , 9 2 7

TABLE 2-1 DOSES ANO THEIR COMPONENTS

PATHWAY DOSE WASTE FORM PATHWAY COMPONENT ENVIRONMENTAL COMPONENT UPTAKE COMPONENT f U1 (OF) 1. Groundwater Q>.. L O Q>.. L fo ~(OF) qw qw

Qx. L f U2(DF) 2. Well Water 0 Qx.L fo U2 (OF) qw qw

Q fe fctil U1 (OF) 3. Sheet Erosion Qfe f d1l ~(OF) qw qw

Q f e f d il U1 ( OF ) 4. Overflow Qfe f dil ~(OF) qw qw

_g_ 5. Food Grown By Q fd fa U3(DF) fd ~(OF) N V I Reel aimer V s ds 00 Q fdb fg U3(DF) _g_ 6. Biointrusion fdb ~(OF) Vas V ds

_g_R R f _g_ 7. Direct Ganrna c w exp(8760)(0FG)* Re Rw f exp ( 8760 )( OFG) A 11\/w A

_g_ 8. Dust Inhalation Q fd dd fexp U;(DF) fd dd fexp U; (OF) V clw V dw

9. Radon Q E ~ tanh(bwTw)(e-bcTc) U;(DF) ~ YMlw tanh(bwTw)e-bcTc Ui(DF) Inhalation H>..rV F V H>..rF

Qfy X 10. Atmospheric %r ff f v ( ~, ) Ui ( OF ) r fr(-) U1(DF) Transport -v- Q' 0 = Q>-.LfoU1(0F) (2-1) qw

where 0 = annual whole body equivalent dose (mrem/yr) Q = inventory of the radioactive nuclide available in a given year (pCi) qw = flow rate of the river (m3/yr)

fo = fraction of inventory arriving at the river at time t from transport through the aquifer >-.L = fraction of each nuclide leached from the inventory in a year (yr-1) U1 = annual equivalent uptake by an individual (m 3/yr) OF = dose conversion factor (mrem/pCi)

The components of the equation are:

Release Rate= Q>-.L

Transport Pathway= f 0 Environmental Uptake= ~(OF) qw

The term f can be calculated for dispersive groundwater transport O ~ using two methods. For the first case a constant fraction leach model is used to obtain a non-dispersive solution, which is modified by the Hung

Correction Factor (Hu86) to obtain a dispersive solution form for f 0 given

by:

o for t 2. t 1 - to

fo= ~::~ { 1-exp ~•L(t-(t1-to))]f for t1 - to< t < t1

(2-2) :::~ exp [-•L (t-tl ~ [1-exp ( ->-Lto)] for t1 ~ t

2-9 where

t = calendar time (yr) to = RL/va t1 = R(L+xr)lva (yr)

Xr = distance of groundwater flow from nearest edge of burial pits to the river (m)

Va = interstitial horizontal aquifer velocity (m/yr) Fh = Hung's correction factor for dispersion

L = 1ength of waste site in direction parallel to aquifer fl ow (m) d R = retardation factor= 1 + - Kd, p Kd = sorption coefficient in the aquifer (m3/kg) d = aquifer density ( kg/m3) p = aquifer porosity

The term Fh is applicable to a time integration of the release and is given by (Hu86):

(2-3) where

Da = l ongitudi na l dispersivity (m) vd = R>-Da (m/yr)

>-. = radioactive decay constant for given nuclide (yr-1)

For dispersive groundwater transport a band release leaching model is used and f 0 is given by (Ro82):

N

fo = .!_ E [Fj(t) - Fj(t-1/>-.L)] (2-4) N j=l

2-10 where Fj(t) = 0.5 U(t) [erfc (z-) + exp(dj) erfc (z+)] erf(z) = error function of z erfc(z) = complementary error function of z u(t) = unit step function z+ = '\t'dj [ l±t / ( Rtw j ) ] 2\/t/(Rtwj)

d· = distance from sector center to access location, divided by J the dispersivity

= water travel time from sector center to access location (yr)

N = number of spatial integration mesh points over waste source

The numerical integration referred to above is a means by which the point source analytical solution for dispersive transport can be extended to approximate an area source. As shown in Figure 2-2, the disposal facility of length Lis divided into N sectors of equal length. A point source of the appropriate magnitude is placed at the center of each sector. - The distance, dj, is proportional to the distance from the center of

sector j to the access location. The point source analytical solutions are then summed over all sectors to approximate an area source.

When any of the decay chains are calculated in PATHRAE-EPA it is possible to get negative arguments for the square root function. This is due to the boundary conditions imposed on the solution. The problem arises only when the dispersivity is large and it affects only the calculation of concentrations for daughter nucl ides in the decay chains. Like most dispersive transport solutions, the equations used in PATHRAE-EPA are, strictly speaking, only valid for low dispersivities. So, when the argument of a square root is 1ess than zero, PATHRAE-EPA decreases the

2-11 ..,,_. ______L ------•~,

N N-1 • • •WASTE NODES••• 3 2 1 I I I I I I I I I I I I ' t ,, 1 w t - I I .. CONTAM INATED ZONE RAE-100983A

AQUIFER FLOW

FIGURE 2-2. REPRESENTATION OF AREA SOURCE TERM FOR GROUNDWATER FLOW.

2-12 dispersivity by a factor of ten for the remainder of that decay chain calculation. After each chain calculation the dispersi vity is restored to This procedure does not significantly alter the its original value. nuclide concentrations because the parent nuclides in the chains are not affected.

Pathway Two - Groundwater To A Well

Groundwater migration with discharge to a well is calculated from

D = QX.LfoUz(OF) (2-5) qw

where by an total uptake of well water U2 = annual equivjlent individual (m /yr)

The aquifer dilution water flow rate qw is given. in this case. by:

(2-6) qw = W L v a P

where W = width of waste pit perpendicular to aquifer flow (m)

L = Thickness of aquifer (m)

P = Porosity of the aquifer

Theoretically a stratified flow. having the leachate bn top of the oncoming groundwater. will develop at the downstream end of a disposal site. Figure 2-2. However~ in the case of a low yield aquifer normally occurring at a disposal site, a significant draw-down of the groundwater table will develop in the vicinity of the well. Therefore, the streamlines of the flow will be compressed and result in near-complete mixing at the well.

2-13 In addition to modeling the effects of longitudinal dispersion in the aquifer, the well pathway can account for any transverse dispersion that may occur. This reduces the conservatism when calculating nuclide doses for the well pathway. When modeling transverse dispersion the term f 0 in Equation 2-5 is modified by an additional multiplicative term, ft, given by:

2 ft = l erf[(Yw + w1 wil_ .!.. erfr(Yw - W/2~ ( 2-7) 2 2Y5;t J 2 t 2v'Dy t J where

Yw = distance to well from center of waste area in the direction perpendicular to the aquifer flow (m)

Dy = transverse dispersion coefficient (m2/yr}

For the limiting case in which Dy goes to zero ft becomes equal to one. Therefore, the effects of transverse dispersion can be ignored by choosing Dy equal to zero.

The groundwater pathways to the river and the well can also acconmodate transport in the verti ca 1 unsaturated zone between the waste and the aquifer. This is accomplished in the same manner as in the PRESTO-EPA-POP code (EPA87a). The vertical water velocity and retardation are given by:

Vv = P/(psS) (2-8) ds R = 1 + -- Kd Ps S where

2-14 Ps = effective soil porosity

S = fraction of saturation

ds = bulk density of soil (g/cm3)

The term Scan either be input or calculated from the expression:

(2-9) where

Sr = residual saturation fraction

SNO = soil index

Kh = vertical zone saturated hydraulic conductivity (m/yr)

P = annual percolation (m/yr)

Pathway Three - Sheet Erosion and Transport To A River

In this pathway, the model calculates the doses due to surface transport of radionuclides and deposition in a river. The radionuclides originate either from operational spillage or from sheet erosion of the trench cover and waste. The dose for sheet erosion of cover material and waste and its subsequent deposition in a nearby river is given by:

D = Qfefdil U1(DF) (2-10) qw where

fe = fraction ·of waste eroded each year

= fraction of solids entering river that originated in waste trenches (calculated by the code)

2-15 The parameter fe is calculated from the surface erosion rate, Er, which is an input variable, according to the relation fe = Er/Tw, where Tw is the waste thickness (m) and Er is expressed in m/yr.

In the initial year of the simulation it is assumed that surface runoff mobilizes radionuclides spilled during facility operations. These contaminants are subsequently deposited in a nearby river. The dose for this initial year of the erosion pathway is calculated using the same approach as that in the PRESTO-EPA codes (EPA85a-EPA85e) and is given by:

D = Q fspl U1 (DF) (2-11) qw(rp/dact + Kd ds + p) where

fspl = surface spillage fraction

dact = active depth of soil in the surface-contaminated region (m)

rp = annual runoff of precipitation (m)

Pathway Four - Disposal Facility Overflow

When precipitation and geologic conditions allow, the waste disposal facility may become filled with water and overflow across the ground surface. This "bathtub effect" is calculated as a modification to the erosion pathway. PATHRAE-EPA calculates the dose resulting from the bathtub effect by replacing the erosion rate Er with the expression:

(2-12) where

dw = waste density (gm/cm3)

tf = time at which trench overflow begins (yr)

2-16 Pathway Five - Food Grown On Site

The equation for the dose from ingestion of food grown over the disposal site i s:

(2-13) where

fct = dilution factor representing the dilution of waste in the soil

fg = fraction of individual's diet consisting of food grown over the disposal site

U3 = total equivalent uptake factor for food (kg/yr)

V = volume of waste (m3)

Equation 2-13 assumes that at some future time a reclaimer moves onto the waste disposal site and builds a house. By excavating a basement for the house and by dri 11 i ng a we 11 on the property, some of the waste material is brought to the surface and is uniformly mixed with the surface soil to some depth (Tg). A representation of the parameters used to calculate fd is shown in Figure 2-4. Using these assumptions, the factor fd representing the dilution of waste in the surface soil is given by:

(2-14) where

fm = dilution of waste in the trench before reclaimer activities occur

Tm = depth of maximum mechanical disturbance (m)

Tc = thickness of cover (m)

2-17 Tg = depth t o wh i ch contaminant s are mi xed with surface soil (m)

Tw = thickness of the waste (m)

Al = 1ot area (m2)

Ah = house area ( m2)

Aw = cross sectional a rec of we 11 s d ri 11 ed (m2)

The first term in the brackets of Equation 2-14 is the component due to the excavation of a basement. The second term is the well dri 11 i ng component. A complete derivation of Equation 2-14 is given by Rogers (Ro82).

Pathway Six - Biointrus i on

Biointrusion into the undisturbed waste is calculated in the program with Equation 2-13. It is assumed that plant roots penetrate into the waste and the p1 ants are 1ater consumed by humans . The main difference between this pathway and Pathway Five is that fd is replaced by fdb which is computed differently. For this pathway:

f Tw m- for Tr~ Tc +Tw Tr f db = fm (1 - TC) for < Tr

= plant root depth (m)

Pathway Seven - Direct Gamma

The dose from direct ga1T1Tia exposure to an intruder is calculated from:

2-18 D - Q B(mcTc) exp(-mcTc)[l + 3v'7r_ B(l\iTw) exp (-mwTw)] fexp (8760)(DFG) Amwtw 4Eg (2-15)

where

B(mT) = 1 + (mT) 1•5/Eg = buildup factor

'11w = gamma attenuation constant of the waste (1/m) gamma attenuation constant of the cover (1/m)

fexp = fraction of the year the i ndi vi dual is exposed to given pathway

A = plane area of the waste, the waste is assumed to be a circular horizontal plane with the exposed individual standing at the center (m2)

Eg = weighted average gamma energy emitted by nuclide (MeV)

DFG = infinite ground plane dose conversion factor (mrem/hr per pCi /m2 )

C The function B(mT) in Equation 2-15 is the garrma radiation buildup factor which is used to account for the effects of garrma scattering in the waste and in the cover. It is an empirical relation based on gamma scattering data at energies from 0.25 MeV to 1.0 MeV (Mo67). The term in brackets in Equation 2-15 accounts for self-shielding and buildup in the .. waste of gamma rays.

The weighted average gamma energy is computed by taking the average of all gamma energies emitted by a particular nuclide, each energy weighted

by its probability of occurrence. For example, if decay of a nuclide produces a 1 MeV gamma ray 20 percent of the time, a 2 MeV gamma 80 percent of the time and a 2.1 MeV gamma 100 percent of the time, then the weighted average gamma energy would be: ' I: .,. I I

2-19 = (0.2 x 1 Me V + 0. 8 x 2 MeV + 1.0 x 2.1 MeV) = 1.95 MeV Eg (0.2 + 0.8 + 1.0)

For the sample prob l em i n Chapter 4, the gamma energy for Cs-137 was calcul ated f rom t he Ba-13 7m gamma rays.

The infi nite ground plane dose conversion factor is discussed in the references (NRC77). For the sample problem, DFG was obtained from PRESTO-EPA ru s.

There are three alternatives available when calculating direct gamma doses using PATHRAE-EPA. The first alternative allows the calculation of the gamma dose from the undisturbed buried waste. The second alternative assumes that plant roots penetrate the waste and transport some nuclides to the surface. Each year the plants die and deposit their absorbed nuclides a,. on the ground surface so there is continual transport of nuclides and deposition on the ground surface. The gamma dose is calculated from the nuclides deposited on the surface as well as the nuclides remaining in the original burial trenches. The third alternative assumes that a reclaimer builds a house and digs a well on the site as described for Pathway Five. This brings some of the waste materi a 1 to the surface where it is mixed with the existing soil. The gamma dose is calculated from the waste on the surface and from the waste that remains underground. The three options in Pathway Seven are selected by the value of the PATHRAE-EPA variable !GAMMA which can have the value 0, 1, or 2.

Pathway Eight - On-Site Dust Inhalation

In this pathway, doses are calculated for a reclaimer excavating a disposal trench some time after site closure. Alternatively, doses to site

2-20 workers can be calculated for i nha lation of suspended particulates during disposal operations. The dose for the inhalation of resuspended, contaminated dust by an inadvertent intruder is given by:

(2-16)

where

fd = dilution factor representing the dilution of waste in the soil

dd = dust loading in the air breathed (kg/m3)

dw = waste density (kg/m3)

Ui = volume of air breathed in a year (m3/yr) I

For the inadvertent intruder scenario, the assumptions for this I I pathway are similar to those for Pathway Five. That is, a reclaimer builds I a house and drills a well over the waste site. The dose arises as a result of inhalation of contaminated dust during the excavation of the house's I basement and the drilling of the well. As in Pathway Five, the dilution factor, fd, is calculated using Equation 2-14. With· a slight reinterpretation of the input values, Equation 2-16 is also used to calculate inhalation doses to disposal site workers.

Pathway Nine - Inhalation of Radon in Structures

The dose from inhalation of radon and radon daughters in a structure built over the waste is calculated from:

(2-17) where

2-21 Q = inventory of Ra226 (pCi)

E = fraction of radon which can emanate upward from the waste

H = he i ght of rooms in structure built over the waste (cm)

Ar = air ventilation rate of the structure (air changes/sec)

A = decay constant of radon (1/sec)

!1 = thickness of earthen cover (m)

T2 = thickness of concrete floor in reclaimer house (cm)

Dw = radon diffusion coefficient of the waste (cm2/sec)

= radon diffusion coefficient of the cover (cm2/sec)

= radon diffusion coefficient of concrete floor {cm2/sec)

F = .!. [1 +Vaw/ac tanh(lOObwTw)J + 2

.!. [1 -Vaw/ac tanh(lOObwTw)J exp(-2(100 b1 T1 + b2 T2)) 2

2 ai = Pi Di [1 (1-k)m]2 ( i = w, 1, 2)

b1· = ~ ( i = w, 1, 2) Pi = porosity ( i = w, 1, 2)

= m·1 0.01 Mdi/Pi ( i = w, 1, 2) M = moisture content ( dry weight percent)

k = 0.26 pCi/m3 of radon in water per pCi/m3 in air

A description of the theoretical basis of Equation 2-17 is given in the references (Ro82, Ro84b). For most problems, ai can be set equal to unity with little loss of accuracy.

Pathway Ten - Atmospheric Transport of Contaminants

The dose from the inhalation of airborne contaminants from dust resuspension, incineration, or a trench fire is given by:

2-22 D = g_ r frfv (~) ui (OF ) (2 - 18 ) V Q' where r = dust resuspension rate or burn rate of incinerator or trench fire (m3/sec)

ff = deposition velocity for resuspended dust (m/sec) er fraction of the year the burning occurs for incinerator anj trench fire nuclide specific volatility factor for incineration or trench fire (fraction of nuclide released to atmosphere)

X = downwind atmospheric concentration (pCi/m3)

Q' = atmospheric source release rate (pCi/sec)

PATHRAE-EPA uses Gaussian plume (S168, EPA85a) expressions for X/Q':

X n ( 2 2 (2-19) - =ft -- fw - exp -h /2s 2 ) Q' 7f' SzU 27i"X

where fw = fraction of time wind blows in direction of interest of plume concentration in vertical Sz = standard deviation direction (m)

u = average wind speed (m/sec) n = number of sectors or wind directions (usually 16 sectors)

x = distance from source to receptor (m)

h = effective release height including momentum :and thermal plume rise effects (m)

Plume depletion effe~ts from deposition are represented by a reduced source

release rate calculated within the code (EPA87a). The actual release height is modified to account for momentum and thermal plume rise effects

by the following equation (S168):

2-23 1. 5 Vs Ds 1.6(3.?E-5 x2 OH)0.333 h = hs + + (2-20) u u where

hs = actual release height (m) Vs = stack gas velocity (m/sec) Ds = stack inside diameter (m) OH = heat emission rate from stack (cal/sec)

Equation 2-20 is valid as long as the distance to the receptor location is less than ten times the stack height. For greater distances the receptor distance, x, is replaced with 10 hs.

If some parameters are unknown or poorly characterized, a defau lt option, based on the location of the maximum plume concentration, is used. In this case:

X 2 -=-- (2-21) where

e = base of the natural logarithm (2.71828)

Equations 2-19 and 2-21 (S168) are expressions for point sources. For the trench fire scenario it is assumed that the fire involves a relatively small amount of waste (for example, the amount received by the facility in one day). For an incinerator the only source is a single incinerator stack. Since the extent of the source is small in these cases, the use of the point source expression is justified.

If an area source is desired it can be represented by the virtual point source approximation, where xis replaced by x!, given by (EPA84)

2-24 x' = X + 2.5137 y

where

y = width of the facility (m)

The Sz in Equation 2-19 is calculated in PATHRAE-EPA using Briggs' approximations (Sl68). This necessitates specifying one of the six Pasquill atmospheric stability classes. If no st ability class is specified in the input data set, the moderately stabh ~ Class Dis used. The stability class should be chosen to represent an annual average stability. The wind speed, u, is the annual average wind speed from the source to the V receptor.

2.3 SUMMARY OF EQUATIONS

Table 2-1 summarizes the dose equations for each of the ten pathways. The table also shows how the equations can be broken into groups of terms representing the waste form, the transport pathway, and nuclide uptake by humans. An examination of the components of the dose equations reveals the similiarities among the various pathways. In addition to providing a comparison of all the pathways, the table gives insight regarding the relative importance of certain environmental and facility parameters. By studying the relationships among key parameters the most effective means of limiting the doses can be more easily identified.

2-25 2.4 FOOD CHAIN CALCULATIONS

Mean concentrations of radionuclides in air, river water, and well water are calculated by the equations listed in Table 2-1. This section describes how radionuclides in those and other environmental media are used to calculate human intake/exposure of radionuclides using PRESTO-EPA foodchain analysis (EPA87a).

Radionuclides in water may impact humans by internal exposure, directly from use of drinking water or indirectly from use of irrigation water for crops. External doses may result from exposure to contaminated soil surfaces. Internal doses may result from inhalation of contaminated air or ingestion of contaminated water and food products, including drinking water, beef, milk, fish, and produce.

The deposition rate onto food surfaces or soil that is used in subsequent calculation of radionuclide content in the food chain, comes from spray irrigation and is:

Ir = Cw Wr (2-22) where

Ir = radionuclide application rate (pCi/m2 - hr) Cw = radionuclide concentration in irrigation water (pCi/1) Wr = irrigation rate (l/m2-hr)

The concentration in water, Cw, is either the well or river water, dependent upon the pathway under consideration.

2-26 ,...... _"('" ...... , ...... -- ~ ' -

The following equation estimates the concentration Cv of a given nuclide in and on vegetation at the l.ocation of deposition (except for tritium and carbon-14):

exp ( -x.th) (2-23) y v"'- ·~

where

Cv = radionuclide concentration in vegetation (pCi/kg)

fR = fraction of deposited activity retained on crops (unitless)

"'-e = removal rate constant for physical loss by weathering

tw = time period for irr igation (hr)

Yv = agricultural productivity yield (kg(wet weight)/m2)

= radionuclide concentration factor for uptake from soil by edible parts of crops (pCi/kg (wet weight)/pCi/kg (dry soil ) )

CSP = time average value of soil radionuclide concentration assuming a steady rate of deposition (pCi/m2).

dss = effective "surface density" for soil (kg of dry soi 1 )/m2)

f1 = fraction of the year that irrigation occurs

th = time interval between harvest and cons,umption of the food (hr)

The term CSP is given by:

8760 1 1 1 CSP = rfl {.!_ [1-exp(-\. t )] - ~ [l-exp(-x.t )] l (2-24) t'(X.s-X.) "'-s . s

where

tmax = maximum input time for calculation

The rate constant for contaminant removal from the soil, X.s, is estimated using:

2-27 \5 = (2-25) (0.15)(8760)R where

X.5 = soil nuclide removal rate coefficient (hr-1) rs = watershed infiltration (m/yr) 0.15 = depth of contaminated soil 1ayer (m) 8760 = h/yr

If farming is performed on the trench site, then CSP is set equal to dss in Equation 2-23, giving a soil concentration of l pCi/kg.

Equation 2-23 is used to estimate radionuclide concentrations in produce and leafy vegetables consumed by humans and in forage (pasture grass or stored feed) consumed by dairy cows, beef cattle, or goats.

The concentration of each radionuclide in animal forilge is calculated by use of the equation:

(2-26) where

cf = radionuclide concentration in animal feed (pCi/kg)

cP = radionuclide concentration on pasture grass (pCi/kg) Cs = radionuclide concentration in stored feeds in (pCi/kg) fp = fraction of the year that animals graze on pasture fs = fraction of daily feed that is pasture ~rass when the animals graze on pasture

The concentration of each radionuclide in milk is estimated as:

( 2-27)

2-28 where

Cm = radionuclide concentration in milk (pCi/1)

Fm = average fraction of the animal's daily intake of a given radionuclide which appears in each liter of milk (d/1)

amount of feed consumed by the animal per day (wet kg/d)

= average transport time of the activity from the feed into the milk and to the receptor (hr)

Qw = amount of water consumed by the animal (1/d)

The radionuclide concentration in meat depends, as with milk, on the amount of feed consumed and its level of contamination. The radionuclide concentration in meat is estimated using:

(2-28)

where

CF = nuclide concentration in animal flesh (pCi/kg)

Ff = fraction of the ani ma 1 1 s daily intake of a given radio­ - nuclide which appears in each kilogram of flesh (d/kg) ts = average time from slaughter to consumption (hr)

Once radionuclide concentrat i ans in a 11 the various foodstuffs are • I calculated, the annual human ingestion rate for each radionuclide is i estimated by:

(2-29)

where the variables represent individual annual intakes of a given radionuclide via total ingestion (Qing), and ingestion of vegetation (Qv),

milk (Qmilk), meat (Qmeat), and drinking water (Qw), respectively, in r pCi /yr. The annua 1 intakes vi a each type of food, Qv for instance, are calculated as:

2-29 (2-30}

where Qv = annual radionuclide intake from vegetation (pCi/yr} Cv = radionculide concentration i n vegetation (pCi/kg) Uv = individual annual intake of vegetation (kg/yr)

As mentioned earlier, Equations 2-22 through 2-29 do not apply directly to calculations of concentrations of H-3 or C-14 in foodstuffs. For the application of tritium in irrigation water, it is assumed that the concentration in all vegetation, Cv, is the same as the tritium concentration in drinking water; therefore:

Cv = Cw (2-31)

where Cv and Cw are in pCi/kg and pCi/1, respectively. The concentration of H-3 in animal's feed, Cf, is therefore also equal to Cw. Then, the concentration of tritium in animal's milk and flesh can be written as:

- . Cm= FmCw(Qf + Qw) (2-32) Cf = FfCw(Qf + Qw) (2-33)

where concentration of tritium in milk (pCi/1) fraction of the animal's daily intake of H-3 that appears in each liter of milk (d/1)

Cw = H-3 concentration in animal's drinking water (pCi/1) CF = concentration of tritium in animal's flesh (pCi/kg)

Ff = fraction of the animal's daily intake of H-3 that appears in each kg of flesh (d/kg)

2-30 The exponential term is neglected due to the relatively long radioactive half life of tritium compared to transit times through the food chain. The root uptake of C-14 from irrigation water is considered negligible and has

been set equal to zero.

M

2-31 3. APPLICATION INFORMATION

This chapter contains the detailed information necessary to construct data sets and perform PATHRAE-EPA analyses. Section 3.1 describes the data files and the organization of the PATHRAE-EPA main program and subroutines. The program options are described in Section 3.2. Detailed input instructions are given in Section 3.3 and the output is discussed in Section 3.4.

3.1 INPUT DATA AND PROGRAM ORGANIZATION

The input data for PATHRAE-EPA are read from four (five, if food pathway option is used) data files. Figure 3-1 shows the general types of information read from these files. The dose conversion factors and equivalent uptake factors, if appropriate, are read from the first file and are usually the same for all PATHRAE-EPA runs. The second ·file contains site parameters such as dimensions of the facility, cover thickness, volume of waste, etc. This file also contains pathway parameters such as distance to the river and well, aquifer dispersivity, radon diffusion coefficients, and meteorological data. The third data set, labeled "variable site parameters", contains parameters which are likely to be varied when conducting sensitivity analyses. For example, this data set includes nuclide leach rates, groundwater velocities, and trench infiltration rates. These parameters have been placed in a separate data set to minimize the unnecessary duplication of data when performing multiple PATHRAE-EPA runs. The fourth data set contains nuclide specific data such as inventories,

3-1 INPUT CALCULATIONS OUTPUT

DOSE CONVERSION FACTORS ----

H MAIN PROGRAM ~

BASIC SITE PARAMETERS - ..____. INPUT SUMMARY NUCLIDE DOSE

VARIABLE SITE PARAMETERS - i, - SUBROUTINES AND FUNCTIONS

INVENTORY, NUCLIDE SPECIFIC PARAMETERS -

FOOD CHAIN DAT A - RAE-102231

FIGURE 3-1. INPUT AND OUTPUT DATA FLOW FOR PATHRAE-EPA.

3-2 half-lives, gamma energies, and volatility factors. The fifth data set is read only if the equivalent uptake factors in the first file are entered as zero. File five contains the element and nuclide specific data such as bioconcentration factors, irrigation rate, food consumption rates, and animal retention factors.

PATHRAE-EPA and its subroutines use double precision arithmetic t o acco1T1Tiodate the requirements of the groundwater calculations. The minimum memory requirement to run PATHRAE-EPA is approximately 72K bytes.

In addition to the MAIN program, PATHRAE-EPA uses 15 subroutines and 6 functions. Figure 3-2 shows the subroutine hierarchy and Table 3-1 gives a brief description of the function performed by each program module. The logic flow of PATHRAE-EPA and its subroutines is illustrated in Figure 3-3.

3.2 PROGRAM OPTIONS

The PATHRAE-EPA code has several options which increase its flexibility and allow it to perform a variety of functions. The available options and the input required to activate the options are discussed here.

During the operational period of a waste facility, ·waste arrives at a relatively uniform rate and is emplaced in the burial trenches. For short-lived nuclides the loss due to decay during facility operations can be significant. PATHRAE-EPA has the option of adjusting the nuclide inventory for decay during operations through the use of the variable TIMOP. To ignore decay during operations set TIMOP equal to zero. Otherwise, TIMOP should equal the number of years of facility operation.

3-3 9 2 I 2 4

PTHRAE

UPTAKE PRINT RIVER PATH38

IRRIG HUMEX PEAK DSPERS RELEAS

cov

GW1 w I •=:-

DEAF ERROR DERFC

DEAF DERFC

RAE-102232

FIGURE 3-2. PATHRAE-EPA SUBROUTINE HIERARCHY . TABLE 3-1 DESCRIPTIONS OF PATHRAE-EPA SUBROUTINES

Sub- routine Pur ose PTHRAE Main program. Coordinates subroutine calls and prints summary dose information. UPTAKE Computes total equivalent uptake factors for foJd and water i ngestion. IRRIG Calculates nuclide concentrations in vegetation, milk, meat, and fish. cov Aids in the calculations performed by subrouti ne IRRIG. HUMEX Calculates amount of each nuclide ingested by humans. READ Reads the four input data files and performs preliminary calculations. PRINT Prints su1T111ary of input data. BATMAN Performs Bateman calculations for nuclide ingrowth and decay as a function of time. RIVER Calculates doses for groundwater to river pathway. WELL Calculates doses for groundwater to well pathway. PATH38 Calculates doses for all non-groundwater pathways. PEAK Calculates maximum dose and time of maximum dose for groundwater pathways with dispersion. RELEAS Calculates total curies released in a given time period for groundwater pathways. HEPCI Converts total curies released to health effects .

~ DSPERS Coordinates groundwater transport subroutines GWl and GW3. ~ GWl Calculates nuclide concentrations for groundwater pathways with dispersion. GW3 Calculates nuclide concentrations for daughter nuclides in decay chains. ERROR Adjusts dispersivity to avoid negative square root arguments in GW3 (see Section 2.2). FTRMS Evaluates dispersive groundwater transport expressions in GWl and GW3. ERFCPA Evaluates the natural logarithm of the complementary Gaussian error function. DERF Evaluates the Gaussian error function. DERFC Evaluates the complementary Gaussian error function. HUNG Calculates dispersion correction factor for non-dispersive groundwater pathways.

3-5 INPUT

CALC. TOTAL EQUIVALENT UPTAKE FACTORS

NO

CALCULATE INVENTORY FOR LATER TIMES

GWl CALCULATE YH CONCENTRATION

NO

GW3 YEI .>---- CALCULATE NEW PRINT INPUT CHAIN CONC. SUMMARY

YEii RIVER, WELL NO CALCULATE CALCULATE DOSE CONCENTRATION

PATH38 CALCULATE DOSE NO

CALCULATE FACILITY DOSE

OUTPUT

END

,.AE-101134

FIGURE 3-3. LOGiC FLOH OF PATHRAE-EPA. 3-6 One factor that can affect the dose through the groundwater pathways is the method by which waste is placed in the trench. A value of zero for the variable IFILL refers to placement of waste in the trench beginning at the upstream end of the site, relative to the aquifer. A value of one pertains to placement of waste beg ;nning at the downstream side of the site.

PATHRAE-EPA allows two methods of obtaining the nuclide inventory at times beyond the time of facility closure. The most direct method is to input the nuclide inventory at each of the future times at which doses are to be calculated. A much simpler method is to input the initial inventory and let PATHRAE-EPA compute the inventory at all future times. This option is controlled by the input variable IFLAG. To calculate the future inventories from the initial inventory set !FLAG to zero. If the future inventories are to be read from the inJut data, set !FLAG equal to one.

When calculating the groundwater pathways, PATHRAE-EPA can use a dispersive solution or a non-dispersive solution with application of a dispersion correction factor. The variable ALDIS, the longitudinal dispersivity in the aquifer, controls this option. For no dispersion use ALDIS equal to zero. Otherwise, enter a positive value for the dispersivity.

PATHRAE-EPA can also model transverse dispersion in the aquifer. This is only important for the well pathway. To ignore transverse dispersion set the transverse dispersion coefficient, DY, equal to zero.

During dispersive transport in the aquifer the decay and ingrowth of nuclides can often have significant impact on the doses from the

3-7 groundwater pathways. This can be modeled by using any of the seven decay chains discussed in Section 2.1.4. To implement any of the decay chains it is important to set the t·ransverse dispersion coefficient, DY, equal to zero, since the decay chain expressions are valid only when this is the case. The longitudinal dispersivity, ALDIS, however, must not be zero. To activate decay chain J, set IFL(J) equal to one. To ignore the chain set IFL(J) equal to zero. When considering any of the chains the user must be sure that all of the chain members are present in the initial ·inventory. The amounts of each nuclide can be arbitrarily small but they must all be greater than zero. Also, the equations for the decay chain calculations require that the sorption coefficients (XKD(I)) for all members of a particular chain be different. However, the sorpti on coefficients can be almost identical if desired.

PATHRAE-EPA will also locate the position of the maximum dose for each individual nuclide as well as the time at which the maximum dose occurs. To select this option set the variable !OPT equal to one. By using this peak finding option t~e user can get a general idea of what nuclides are most important and at what times they contribute most to the total dose. c,,. Subsequent runs without the peak finding option can then be made to further explore the time dependence of the dose near critical times.

Sometimes it is important to know the total release of each nuclide to the environment during a given time interval. PATHRAE-EPA will calculate the releases if the variable !OPT is equal to two. Like the peak finding option, this only applies to the groundwater pathways with dispersion. The time period for the release is defined by variables T(l} and T(2). Also,

3-8 for this option only, the variable NTIME must be greater than or equal to two. Both the peak finding option and the total release option can be turned off by setting IOPT equal to zero.

The atmospher~c transport pathway has the option of calculating doses at off-site locati ons due to dust resuspension, incineration of the waste, or a trench fire. This is controlled by the variable IVFAC. For dust resuspension use IVFAC equal to zero. For incineration use IVFAC equal to one and for a trench fire enter a value of two. When calculating the doses due to dust resuspension, the variable BURN is the resuspension rate (m 3/s) and FFIRE is the deposition velocity (m/s). The volatility factors are not used when doing dust resuspension. For an incinerator or trench fire, BURN is the rate at which the waste is burned (m 3/s) and FFIRE is the fraction of the year the burning occurs.

The atmospheri 1: transport pathway also has an option for calculating X/Q when specific atmospheric and meteorological data are unavailable. To activate this option, which is based on the position of maximum plume concentration, enter the source to receptor di stance, XRECEP, equal to zero. When using this default option it is unnecessary to enter data for the atmospheric stability class or fraction of time the wind blows. To bypass this option enter a positive value for XRECEP.

The final option to be described here is a solubility limit on the leach fraction. If the solubility of a nuclide is low enough that it becomes the limiting factor in the release process, PATHRAE-EPA will adjust the leach fraction so that the amount of nuclide leached is the maximum amount that is soluble in the available leachant. To use this option

3-9 enter the nuclide solubility (C i /m3) as variable SOL. To ignore solubility effects, enter zero.

If the complete foodchain analysis is required for the annual ingestion of contaminant, then set the equiv·1lent uptake factors equal to zero in data file one and enter the data as file 5. Table 3-2 contains a surrmary of the options and the input data req uired to control each of them.

3. 3 INPUT DATA

A11 of the input data for PATHRAE-EPA are read from files on the computer. Normally there are four input files required for each run unless a complete foodchain analysis is performed, which requires a fifth input file. The four data files have the specific file names BRCDCF.DAT, ABCDEF.DAT, RQSITE.DAT, and INVNTRY.DAT. The fifth data file is named UPTAKE.DAT. The data in all files may be entered in free format separated by commas or entered with the format specified. The following is a detailed description of the input data for each of the five files. Included are the units of the variable, the applicable pathway number (one through ten) to which the variable is relevant, and the name of the variable as it is referred to in Chapter 2.

3-10 TABLE 3-2 SUMMARY OF PATHRAE PROGRAM OPTIONS

Option Instructions For Use

Nuclide decay during on: TIMOP > 0 off: TI MOP = 0 operations Direction in which To start at end of trench To start at downstream trenches are filled farthest upstream on the end, IFILL"' 1 aquifer, IFILL= 0

Bateman calculations on: !FLAG= 0 off: !FLAG = 1 for nucl i de decay and ingrowth

Longitudinal dispersion on: ALDIS> 0 off: ALDIS= 0 for groundwater pathways

Transverse dispersion on: DY> 0 off: DY 0 for well pathway* ALDIS> 0 IFL(J) all zero Decay chains for aquifer to activate Jth chain: to ignore Jth chain: transport IFL(J) = 1 IFL(J) = 0 ALDIS> 0 DY = 0 Peak finder for groundwater on: IOPT = 1 off: !OPT = 0 pathways ALDIS> 0 Calculate total curies on: IOPT = 2 off: !OPT = 0 released for groundwater NTIME > 2 pathways T(l) =-beginning of relese period T(2) = end of release period ALDIS> 0 Gamma pathway options Gamma dose from undisturbed waste: I GAMMA = 0 Gamma dose for biointrusion scenario: !GAMMA= 1 Gamma dose for reclaimer farm scenario: !GAMMA = 2

Atmospheric pathway Dust resuspension: IVFAC = 0 calculation Incineration: IVFAC = 1 Trench fire: IVFAC = 2 Atmospheric pathway on: XRECEP = 0 off: XRECEP > 0 X/Q default calculation

Solubility limit on on: SOL> 0 off: SOL= 0 leaching

Perform complete foodchain on: Ul = 0 off: Ul > 0 analysis

* Where multiple conditions are given to activate an option, all conditions must be met simultaneously.

3-11 3.3.1 Data File One - BRCDCF.DAT

Text Card Variable Descri ~ti on Pathwa1 Name 1 Radionuclide Data (I6,2Fl2.6) NOOSE Number of isotopes in dose factor library. This is the number of nuclides for which dose c nversion factors are provided in the file BRCDCF.DAT. TCUT Maximum nuclide half-life (yr) All considered for analysis. The inventory of any nuclide with a half-life greater than TCUT is set equal to SINV (usually zero). In this way the doses due to short-lived nuclides can be evaluated independently of the long-lived nuclides. To consider all nuclides set TCUT equal to zero and no adjustments will be made. SINV Nuclide i nventory (Ci ) • See TCUT above. All 2 Dose Calculations ( I 6, lOF 12. 6)

NTIME Number of times for which dose All calculations will be made (up to 10).

T(M) Times (yr) at which the doses are All t to be calculated. M = 1, 2, ••• , NTIME. Time T(l) corresponds to the end of facility operations and must be entered as 1. If the food pathway is being run, the time T(4) must correspond to the time at which institutional control of the site ceases. 3 Dose Factors (I4,A8,9El2.4) KK Nuclide library number.

3-12 Text Card Variable Description Pathway Name XNAME2(KK) Nuclide name (e.g., Pu-239). The name is read as an eight character alphanumeric variable. For example, Pu-239 would be input as 'Pu-239---'. DOSE(l,KK) Dose factor (mrem/pCi) for 1-6 OF ingestion. DOSE(2,KK) Dose factor (mrem/pCi) for 8,10 OF

DOSE(3,KK) Dose factor (mrem-m2/pCi-hr) for 7 DFG direct gamma exposure. UT(KK,l) Total equivalent uptake 1 factor (l/yr) for river water usage. UT(KK,2) Total equivalent uptake 2 Uz factor (1/yr) for well water usage. UT(KK,3) Total equivalent uptake 3 factor (1/yr) for er~sion pathway water usage.

UT(KK,4) Total equivalent uptake 4 factor (1/yr) for bathtub pathway water usage. UT(KK,5) Total equivalent uptake 3,4 factor (1/yr) for erosion or bathtub pathways with surface spi 11 age. UT(KK,6) Total equivalent uptake 5,6 factor (kg/yr) for food pathway.

Note: Card 3 is repeated for each nuclide in the dose library. If the uptake factors are entered as zeros, they are calculated internally using input data in data file five.

3-13 3.3.2 Data File Two - ABCDEF.DAT

Text Card Variable Description Pathway Name 1 Run Identification (10A8) A( I . Title of run. Up to 80 characters allowed. 2 Nuclide Inventory (316)

NIS0 Number of isotopes in inventory. All

!FLAG Flag indicating whether or not All to calculate the inventory for the designated times. If !FLAG= 0 the inventory for all designated future times is calculated from the initial inventory, taking into account the ingrowth of daughter products where appropriate. If !FLAG= 1 the calculation is skipped and the inventory is read from the input data for all future times. If !FLAG= 2 the inventory for all designated future times is calculated from the initial inventory. No account is made for the ingrowth of daughter products. NNP Number of pathways to be considered. 3 Pathway Data (2016) NPN(J) Index indicating a particular pathway.

NPN = 1 groundwater to river NPN = 2 groundwater to well NPN = ·3 surface erosion and deposition in river NPN = 4 bathtub effect and runoff of water to river NPN = 5 food grown on waste site NPN = 6 biointrusion into waste and consumption of plants by humans

3-14 Text Card Variable Description Pathway Name

NPN = 7 direct gamma exposure NPN = 8 dust inhalation on site NPN = 9 radon inhalation NPN = 10 offsite atmospheric transport (incinerator, trench fire, dust resuspension) JUF(J) Index indicating type of use for ingestion uptake factors.

JUF = 0 no water use JUF = 1 all types of water use JUF = 2 all types of water use except fish JUF = 3 drinking water only For the water pathways JUF should be equal to 1, 2, or 3. For the food pathways and pathways not involving ingestion of water use JUF = O. Note: NPN(J) and JUF(J) are repealed on Card 3 for each of the NNP pathways considered. 4 Site Description (6Fl2 . 6) TIMOP Time (yr) of active operation of facility. If TIMOP is different than zero, the nuclide inventory is adjusted to account for decay during site operation. If TIMOP is set equal to zero, this correction is omitted . XLP Length (m) of trench in direction L of aquifer flow. WIDTH Width (m) of trench. w

RFR River flow rate (m 3/yr) 1,3,4 qw XR Distance (m) from nearest edge of 1,3,4 Xr waste trench to river.

SPILL Surface spillage fraction. 3 fspl

3-15

------Text Card Variable Description Pathway Name 5 Transport Data (8Fl2.6)

ARHO Density (kg/m3) of aquifer. 1,2 d

ALDIS Longitudinal dispersivity (m) 1,2 D of the aquifer.

DY Transverse dis~ersion 2 coefficient (m /yr) in aquifer. DZ Not used. ss Fraction of saturation, if 1,2 s zero, it is calculated internally. SR Residual saturation fraction.

PV Saturated hydraulic 1,2 conductivity (m/yr) of vertical zone.

SNO Soil index. 1,2 SNO 6 Gamma Radiation Data (516)

NM Number of mesh points for 1,2 N area source integration.

!GAMMA Flag for gamma pathway 7 options. !GAMMA= 0 Calculate gamma dose from undisturbed buried waste. !GAMMA= l Calculate gamma ·dose for natural biointrusion scenario. !GAMMA= 2 Calculate gamma dose for farming scenario. IVFAC Flag indicating off-site atmospheric pathway. For dust resuspension enter zero, for incineration enter one, for trench fire enter two. For incineration the dose for all other pathways is adjusted to

3-16 Text Pathway Name Card Variable Description account for the loss of nuclides by incineration before being placed in the trench.

7 Waste Properties (10F12.6) 3-9 XCT Thickness (m) of cover over waste. 3-9 XWT Thickness (m) of waste.

TWV Volume (m3) of waste disposed. All V xw Distance (m) to well from nearest 2 edge of waste along direction of aquifer flow.

YW Distance (m) to well from center 2 Yw line of disposal facility in direction perpendicular to aquifer flow. RHO Density (kg/m3) of waste. 4,8,9 FG Fraction of food eaten which 5,6 is grown over waste site.

FEXT Fraction of year spent in 7 direct radiation field. XROOT Depth (m) of plant root zone. 6,7 2 PLANT Surface density (kg/m ) of living 7 . plants.

8 Exposure Data (3F12.6) 3 AOL Average dust loading (kg/m ) in 8 air. 3 UBR Adult breathing rate (m /yr). 8-10 U·1

FTX Fraction of year exposed to 8 dust.

CANLIF Waste container lifetime (yr) 1,2

FIX INV Inventory scaling factor. All (The inventory on file is multiplied by FIXINV before calculations begin.)

3-17 Text Card Variable Description Pathway Name 9 Residency Data (7F12.6)

XH Height of room (cm) in dwellings 9 H built over the site.

ACR Air change rate (changes/s) in 9 dwelling.

EPW Radon emanating power of the 9 E waste. (Fraction of radon produced which enters pore spaces.)

DIFW Diffusion coefficient (cm2/sec) 9 for radon in waste.

DIFC0N Diffusion coefficient (cm2/sec) 9 for radon in concrete.

TC0N Thickness (cm) of concrete floor. 9

DIFC0V Diffusion coefficient (cm 2/s) for 9 radon in the cover material. 10 Atmosphere Data (10F12.6)

ISTAB Pasquill atmospheric stability 10 class. Enter an integer 0 through 6. A value of 1 signifies stability class A, a value of 6 signifies stability class F. If zero is entered, a default value of 4 is used.

VWIND Average annual wind speed (m/s) 10 u in direction from source to receptor.

FWIND Fraction of time wind blows 10 toward receptor location.

XRECEP Distance (m) from atmospheric 10 X release source to receptor location. To exercise default option on X/Q calculation, enter zero and set HSTACK = unity.

3-18 Text Card Variable Descrietion Pathway Name BURN Dust resuspension rate (m3;s) or 10 r burn rate (m3/s) of incinerator or trench fire. FFIRE Fraction of year incineratc: r 10 ff or trench fire burns, or Deposition velocity (m/s) for 10 ff dust resuspension. HSTACK Height (m) of incinerator stack. 10 hs For trench fire scenario enter zero. DSTACK Stack inside diameter (m). 10 Ds

VSTACK Stack gas velocity (m/ s ) • 10 Vs QH Heat emission rate (cal /s) of 10 QH inci nerator stack.

11 Flag 0etions {2016) IFL(I) Flags indicating which decay 1,2 chains will be considered for :1 - the dispersion calculations. : If IFL(I) = 1, then decay chain I is computed. I ~ If IFL(I) = 0, it is skipped. ti The va 1ues o·f I refer to the following chains: I = 1 Cm-244 - Pu-240 - U-236 I = 2 Pu-240 - U-236 Th-232 I = 3 Am-243 - Pu-239 - U-235 I = 4 Pu-241 - Am-241 - Np-237 I = 5 Pu-238 - U-234 - Th-230 - Ra-226 I = 6 Pu-242 - U-238 - U-234 I = 7 U-238 - Th-230 - Ra-226 If a particular decay chain is used, all of the nuclides in the chain should be present in the initial inventory. The equations used for calculating decay chains are not valid unless all members of the chain have different sorption coefficients.

3-19 Text Card Variable Description Pathway Name 12 Printout Control (416} INPRNT Flag for printout of input suJT111ary. If INPRNT = 0, no input summary is printed. If INPRNT = 1, the suJT111ary is printed. IDSRPT Not used.

IFILL Flag indicating how the waste 1,2 trenches are filled. If IFILL= 0, the trench is filled beginning at the side farthest upstream of the aquifer. If IFILL= 1, the 0 trench is filled beginning at the downstream side. IOPT Flag for selecting groundwater 1,2 pathway options. To use the peak finding option set IOPT = 1. To calculate the total curies released during a given time period set IOPT = 2. If neither of these two options are required use !OPT = 0. See Table 3-2 for more information on the use of these options • • 3.3.3 Data File Three - RQSITE.DAT 0-.

Text Card Variable Description Pathway Name 1 Site Water Data (9Fl2.6)

XPERC Amount of water (m 3;m 2-yr) which 2 p percolates through the waste annually per unit area.

VA Horizontal velocity (m/yr) of 1,2 Va aquifer.

XPOR Porosity of aquifer. 1,2 p

3-20 Text Pathway Name Card Variable Description 1,2 XAQO Distance (m) from tr~nch bottom to aquifer. xvv Vertical velocity (m/yr) of the 1,2 water in the soil between the wast~ and the aquifer. Calculat8d internally if entered as zero.

XLC Length (rn) of perforated well 2 L casing set equal to aqufer thickness. XALE Surface erosion rate (m/yr) 3,4 FLCH Scaling f actor for leach 1,2 constant. RUNF Annual runoff of precipitation (m). 3

2 Transport Characteristics (14,3El2.4) KK An integer library index specifying the nuclide. XLL(KK) The leach constant (1/yr). In the 1,2 band release model used in the dispersive calculation, it is the fraction of the initial inventory which is leached from the waste each year. For the exponential release model used in the nondispersive calculations, this constant is the fraction of current inventory leached each year. 3 XKO(KK) The sorption coefficient (cm ;g). 1,2,4 This is used to obtain the retardation coefficient in the aquifer. 3 RVERTI ( KK) Sorption coefficient (cm /g) for 1,2 vertical transport of the nuclide from the trench to the aquifer. Note: Card 2 is repeated for each nuclide in the inventory.

3-21 3.3.4 Data File Four - INVNTRY.DAT

Text Card Variable Description Pathway Name

1 Nuclide Data (I4,7E12.4) KK An integer library index specifying the nuclide. HLIFE (KK) Nuclide halflife (yr). Ln2/ >..

Q(KK,M) The amount of nuclide present (Ci) Q at each of the times T{M) for M = 1,2, ••• ,NTIME. If !FLAG is entered as zero, then only the inventory at time T(l) needs to be entered and the inventory at all subsequent times will be calculated. See Section 3.2 for a description of the use of !FLAG. XXMU{KK) Gamma attenuation coefficient 7 (1/m). These are derived from empirical data on ga111T1a attenuation by soil for various gamma energies. For nuclides which are not gamma emitters, enter zero.* Must be nonzero if EGAMMA and Q are nonzero.

EGAMMA(KK) Weighted average ga111T1a ray 7 energy (MeV) emitted by nuclide. The averaging method is described in Section 2.2. For nuclides which are not ga111T1a emitters, enter zero.*

BIV(KK) The nuclide specific soil to 7 plant transfer factor. It is the ratio of the nuclide concentration (Ci/kg} in plants to the nuclide concentration (Ci/kg) in the soil.

* Cs-137 is considered as if it is a ga111T1a emitter, even though the ga111T1a rays are emitted by its decay product, Ba-137m.

3-22 Pathway Text Card Variable Description Name 1,2 SOL (KK) Solubjlity (Ci/m3) of the nuclide in the aquifer. To omit the effects of solubility limitations, enter zero. 10 VC LATL ( KK) Volatility factor for fv incineration. It is the fraction of the inventory of a nuclide which is lost to the atmosphere as a result of incineration. This variable is not used when pathway 10 calculates dust resuspension. Note: Card 1 is repeated for each nuclide in the inventory.

3.3.5 Data File Five - UPTAKE.DAT (All data for food chain calculations)

Text Card Variable Description Name 1 Site Soil Data (3Fl2.6) SINFL Infiltration rate (m/yr)

PORS Porosity of surface soil. Ps 3 BDENS Bulk density (g/cm ) of soil. ds 2 Vegetation Data (5Fl2.6)

Yl y Agriculture productivity (kg/m2) V for pasture grass. Y2 Agriculture productivity (kg/m 2) for other vegetation. 1 XAMBWE _Weathering removal constant (hv- ) X.e from vegetation. TEl Hours for irrigation of pasture grass. TE2 Hours for irrigation of other vegetation.

3-23 Text Card Variable Descri etion Name 3 Pasture Data {6F12.6}

THl - TH4 Delay time (hr) between harvest and th consumption of pasture grass, stored feed, leavy vegetables, and produce.

FP Fraction of the year animals graze fp on pasture grass .

FS Fraction of animal feed that is fs pasture grass. 4 Animal Uetake {5F12.6)

QFC Amount of feed consumed daily (kg/d) Qf by cattle.

QFG Amount of feed consumed daily (kg/d) Qf by goats.

TFl Transport time (hr) for annual tf feed into milk.

TS Delay time (hr) between animal ts slaughter and meat consumption. TFIS Delay time (hr) between catching and consumption of fish. 5 Water Consumetion {5F12.6)

FI Fraction of the year the crops are fr irrigated. 2 WIRATE I rri gat ion rate (l/m -hr). Wr QCW Amount of water consumed ( 1 /d) Qw by milk cows.

QGW Amount of water consumed ( 1/d) Qw by goats.

QBW Amount of water consumed ( 1 /d) Qw by beef cattle. 6 Human Uetake {7F12.6}

ULEAFY Human uptake (kg/yr) of leafy UV vegetation.

3-24 Text Card Variabl e Description Name UPROD Human uptake (kg/yr) df produce. UCMILK Human uptake (l/yr) of cow milk. UGMIL K Human uptake (l/yr) of goats milk. UMEAT Human uptake (kg/yr) of meat. UWAT Human uptake (l/yr) of contaminated drinking water. UF ISH Human uptake (kg/yr) of fish. 7+ Transfer and Retention Data (A8,6F12.6) NUCLID ( KK) Nuclide identification no.

RW(KK) Radionuclide retention factor. R BR(KK ) Soil-to-plant uptake factor for ,.... grain. FMC(KK) Forage to mi 1 k transfe1· factor for cows. FMG(KK ) Forage to milk transfer for goats. FF (KK) Forage,to beef transfer factor. FIS(KK) Radionuclide water-to-fish transfer factor.

3-25 3.4 OUTPUT DATA

A typical output for the PATHRAE code for a LLW inventory of about

25 nuclides, is approximately 12 pages in length. The output begins by listing a complete summary of the input data. The site parameters, dose conversi on factors , and equivalent uptake factors are included. This is followed by tableis of nuclide doses for each nuclide and pathway considered. For the two groundwater pathways, the erosion pathway, and the facility overflow pathway, tables giving nuclide concentrations in water at various times are generated.

Following the outputs for the individual pathways, values for the cumulative risks and doses are given for the entire facility. The output also contains a table of the nuclide inventory at each of the times considered. A final summary of the maximum annual dose, health risk, year of the maximum hea '. th impact and dominant nuclide are given for each pathway.

3-26 4. SAMPLE PROBLEM

4.1 PROBLEM DEFINITION

A PATHRAE-EPA sample problem is considered in this chapter. The facility evaluated in this sample problem is a 350,000 square meter municipal dump with a capacity of one million cubic meters of BRC waste as illustrated in Figure 4-1. The facility has a 20 year operating lifetime during wh i ch the radioactive wastes are received at a constant rate. The waste is placed in disposal pits to a depth of six meters and is covered by a 0.6 meter thick cover. An aquifer with a water velocity of 28 meters per year is located 7.7 meters below the waste. The annual infiltration into the waste is 0.45 cubic meters of water per square meter of trench area. A well is located 50 meters from the edge of the waste trenches. For the groundwater calculati ons the waste area is represented by a 20-point mesh spacing grid. Values of pertinent site parameters and radiation exposure data required by PATHRAE-EPA are listed in Table 4-1. The initial - inventory of 29 nuclides i s given in Table 4-2.

4.2 RESULTS

A summary of the doses as functions of time and the pathway summary are contained in Tab.le 4-3. The total dose falls from a maximum value of 95 mrem/yr in year zero to about 1.8 mrem/yr at 15 years and 0.18 mrem/yr i n 100 years. The external exposure pathway, primarily from Co-60, dominates the early doses with the well pathway becoming dominant after 100 years primarily from C-14. Cobalt-60, cesium-137, carbon-14, and

americium-241 are the dominant nuclides.

4-1 9 2

590 m 1000 m

.f::,. I N

DEPTH TO AQUIFER 7.7 m

AQUIFER VELOCITY 28 m/yr •

RAE-102235

FIGURE 4-1. REPRESENTATION OF SAMPLE PROBLEM . TABLE 4-1 1. SITE PARAMETERS USED IN SAMPLE PROBLEM

Total area of Disposal Trenches 3.48E+5 ,n2 Length of Trenches Parallel to Aquifer Flow 590 m Velocity of Aquifer 27.8m/yr Porosity of Aquifer 0.39 Trench Infiltration 0.45 m3;m2 Total Surface Erosion Rate 1. 96E-4 m/yr Cover Thickness Over Waste 0.6 m ·, Waste Thickness in Pits 6.0 m Total Waste Volume 1.0E+6 m3 Distance From Waste Pits to Well 50 m Length of Perforated Casing in We 11 - (aquifer thickness) 10 m Average Dust Loading During Excavation 5.0E-7 kg/m3 Annual Adult Breathing Rate 8E+3 m3 /yr - Fraction of Time Spent in Excavation .. 0.228 Average Wind Speed 2.01 m/s Downwind distance to receptor location 345 m

u :::· -·-

4-3 TABLE 4-2 NUCLIDE INVENTORY

Initial Nuc l ide Halflife (yr) Inventory (Ci) H-3 l.23E+l 1.31E+02 C-14 5.73E+3 7.43E+OO Fe-55 2.70E+O l.20E+02 Co-60 5.25E+O 2.46E+02 Ni-59 8.00E+4 1.43E-Ol Ni-63 l.10E+2 4.41E+Ol Sr-90 2.86E+l 3.40E+OO Nb-94 2.00E+4 4.54E-03 Tc-99 2.13E+5 1.90E-03 Ru-106 1.0lE+O 5.04E-02 Sb-125 2. 77E+O l.85E+OO I-129 l.70E+7 5.26E-3 n Cs-134 2.06E+O 5.04E+Ol 0' Cs-135 2.30E+6 l.80E-3 Cs-137 3.0lE+l 5.70E+Ol Ba-137m 3.0lE+l* 5.70E+Ol Eu-154 8.50E+O l.86E-Ol U-234 2.45E+5 4.27E-03 U-235 7.04E+8 6.85E-05 N U-238 4.47E+9 1.25E-03 "' Np-237 2.10E+6 9.68E-06 Pu-238 8.77E+l 1.20E-01 Pu-239 2.42E+4 1.12E-01 Pu-241 1.32E+l 4.85E+OO Pu-242 3.79E+5 2.43E-04 Am-241 4.59E+2 2.31E-Ol Am-243 7.37E+3 5.41E-05 Cm-243 3.19E+l 5.52E-05 Cm-244 1. 76E+ 1 5.26E-02

* Assumed to be in equilibrium with Cs-137.

4-4 9 2 J 4 I TABLE 4-3 FACILITY DOSE RATES FOR VARIOUS TIMES FOR SAMPLE PROBLEM

Time r )

Parameter 0 1 15 50 100 200 350 500 750 1000 Dose (mrem/yr) 9.46 8.33E+O 1.78E+O 3.83E-1 1.84E-1 8.63E-2 5.51E -2 4.03E - 2 2.56E-2 1.88E -2

PATHWAY SUMMARY +=- I u, Pathway Dust Atmospheric Gamma Well Food Maximum Annual Dose 2.2E-2 2.6E-6 8.8E+O 1. l E-1 4.8E- 1 (mrem/yr)

Year of Maximum Dose 0 0 0 50 1 Dominant Nuclide Am-241 Am-241 Co-60 C-14 Cs-1 37

---..--- A complete listing of the five data sets required to execute t he sample problem and the output for the samp l e problem are given in

Appendix B. A complete source listing of PATHRAE-EPA code is given in

Append ix A.

Finally, it should be noted that the sample problem described in

Section 4.1 merely illustrates the application of PATHRAE-EPA and i s not intended as a basis for arriving at any general conclusi ons regardi ng specific disposal alternatives.

4.3 PATHRAE-EPA COMPUTER COMPATIBILITY

The PATHRAE-EPA code is sufficiently compact and calculationally efficient that it can be executed on a variety of computer systems incl uding advanced personal computers. For example, the PATHRAE-EPA code has been implemented and operated within reasonable execution times on an

IBM-AT Personal Computer.

4-6 REFERENCES

Bu80 Burkholder, H.C., and E.L.J. Rosinger, "A Model for the Transport of Radionuclides and Their Decay Products Through Geologic Media," Nuclear Technology, Vol. 49, pg. 150, 1980. I , Du80 Dunning, D. E., Jr., R. I~. Leggett, and M. G. Yalcintas, A Combined Methodology for Estimating Dose Rates and Health Effects from Exposures to Radioacti ve Pollutants, ORNL/TM-7105 (Oak Ridge National Laboratory, Oak Ridge, Tennessee), 1980.

EPA84 "Radiation Exposures and Health Risks Resulting from Deregulated Disposal of Radioactive Wastes," Envirodyne Engineers Incorporated and Rogers and Associates Engineering Corporation for U.S. Environmental Protection Agency, Office of Radiation Programs, October 1984. EPA87a U.S. Environmental Protection Agency, PRESTO-EPA-POP: A Low-Level Radioactive Waste Environmental Transport and Risk Assessment Code - Volume 1, Methodology Manual, EPA 520/1-87-024-1, Washington, DC, December 1987. EPA87b U.S. Environmental Protection Agency, PRESTO-EPA-POP: A Low-Level Radioactive Waste Environmental Transport and Risk Assessment Code - Volume 2, User•s Manual, EPA 520/1-87-024-2, Washington, DC, December 1987. EPA87c U.S. Environmental Protection Agency, PRESTO-EPA-DEEP: A Low-Level Radioactive Waste Environmental Transport and Risk Assessment Code, Documentation and User•s Manual, EPA 520/1-87-025, Washington, DC, December 1987. EPA87d U.S. Environmental Protection Agency, PRESTO-EPA-CPG: A Low-Level Radioactive Waste Environmental Transport and Risk Assessment Code, Documentation and User•s Manual, EPA 520/1-87-026, Washington, DC, December 1987. · EPA87e U.S. Environmental Protection Agency, PRESTO-EPA-BRC: A Low-level­ Radioactive Waste Environmental Transport and Risk Assessment Code, Documentation and User•s Manual, EPA 520/1-87-027, Washington, DC, December 1987. EPA87f U.S. Environmental Protection Agency, Accounting Model for PRESTO-EPA-POP, PRESTO-EPA-DEEP, and PRESTO-EPA-BRC Codes, Documentation and User's Manual, EPA 520/1-87-029, Washington, DC, December 1987.

R-1 • EPA859 U.S. Environmental Protection Agency, High-Level and Transuranic Radioactive Wastes - Background Information Document for Fina 1 Rule, EPA 520/1-85-023, Washington, D.C., 1985.

Ga84 Galpin, F. L., and G. L. Meyer, Overview of EPA 1 s Low-Level Radioactive Waste Standards Development Program, 1984: Proceedings of 6th Annual Participants' Information Meeting on DOE Low-Level Waste Management Program, Denver, Col or ado, September 11-13, 1984, CONF-8409115, Idaho Falls, Idaho. Hu83 Hung, C. Y., G. L. Meyer, and V. C. Rogers, Use of PRESTO-EPA Model in Assessing Health Effects from Land Disposal of LLW to Support EPA's Environmental Standards: U.S. Department of Energy, Proceed-ings of 5th Annual Participants' Informat i on Meeting on DOE Low-Level Waste Management Program, Denver, Colorado, August 30, 1983, CONF-8308106, Idaho Falls, Idaho. Hu86 Hung. C. Y., An Optimum Groundwater Transport Mode1 for Application to the Assessment of Health Effects Due to Land Disposal of Radioactive Wastes, Nuclear and Chemical Waste Management, Vol. 6, pp. 41-50, 1986.

Mer85 Merrel 1, G. B., et al., "The PATHRAE-EPA Performance Assessment Code for the Land Disposal of Radioactive Wastes," ~agers and Associates Engineering Corporation, RAE-8469/3-3, November 1985. Mey81 Meyer, G. L., and C. Y. Hung, An Overview of EPA's Health Risk Assessment Mode 1 for the Sha 11 ow Land Di sposa 1 of LLW, ('\ Proceedings of an Interagency Workshop on Modeling and Low-Level Waste Management, Denver, Colorado, December 1-4, 1980, ORD-821, Oak Ridge National Laboratories, Oak Ridge, Tennessee, 1981. Mey84 Meyer, G. L., Modifications and Improvements Made to PRESTO-EPA Family of LLW Risk Assessment Codes Based on Reco1T1Tiendations of Peer Review, February 1984, U.S. Environmental Protection Agency, Letter dated July 13, 1984, to Members of PRESTO-EPA Peer Review, February 7-8, Airlie, Virginia: Washington, D.C., 1984. Mo67 Morgan, K.Z., and J.E. Turner, Principles of Radiation Protection, J. Wiley, New York, 1967.

NRC77 U.S. Nuclear Regulatory Corrrnission, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with lOCFR Part 50," Appendix I, Regulatory Guide 1.109, March 1976 and October 1977.

R-2 Ro79 Rogers, V.C., et al., "A Radioactive Waste Disposal Classification System - The Computer Program and Groundwater Migration Models," U.S. Nuclear Regulatory Commission report NUREG/CR-10O5, V-2, September 1979.

Ro82 Rogers, V.C., et al., "Low-Level Waste Disposal Site Performance Assessment with the RQ/PQ Methodo 1ogy, 11 Electric Power Research · / Institute report, NP-2665, December 1982.

Ro84a Rogers, V.. C., "An Update on Status of EPA's PRESTO Methodology for Estimating Risks from Disposal of LLW and BRC Wastes, U.S. 1 Departmen -c of Energy, Proceedings of 6th Annual Participants , Information Meeting on DOE Low-Level Waste Management Program, Denver, Colorado, September 11-13, 1984, CONF-84O9115, Idaho Falls, Idaho.

Ro84b Rogers, V.C., and K.K. Nielson, "Radon Attenuation Handbook for Uranium Mill Tailings Cover Design," U.S. Nuclear Regulatory Corrmission report NUREG/CR-3533, February 1984.

• Sl 68 Slade, D.H. ed., Meteorology and Atomic Energy (1968). U.S. Atomic Energy Corrmission Report TID-2419O, 1968.

R-3 APPENDIX A

SOURCE LISTING FOR PATHRAE-EPA CODE 9 . 1 7

C PE I hOD IF 1rn t_1tft~(zbf!MofT~MJiru11: ON 111c rntH1 T INPLICil ~EALA3 (A -H.0- Z) P.t:ALA =I C. P.. UT Cllt1P.ACTERA8 VNUCL.XNAME~ COMMON /X fCR/NCCC COHMON/BLKl / ALDIS&CC100ilO)lCANLIFlDILFAClDOSVC5llDY,D?,NM~NMY~ & NMZ ttTlhE ullOO 0) HVERTCluO) T,xLlc100>,xLP,xkc<100>. ~ XV V,YW,:B COriHOH / BLK~/ACR,ADL,AMIN,ARH0 BlVC100)&BURN CUMDOS(lO>&DIFCONi : DIFCOV DlFW,t•OSCL1.l001,DSTACl(,tGAMMAilOO)1 1 EPW,tEXT,FF RE, i [G,FIXiNv rTX,fWIHD,HLIFE(lOO) HSTACK IDSRJr ItL(7) !FLAG, & IGAMMA,Itt?RttT IOPT~lSTABtIUP~I~FACtJUfiN60SE NI§O,NNP, i NP NPN, ~ VOLAfL<106>,vstACK,VWIND,§ALE xct,xH XKD(lOO) xlc & XNAME2(100),XPERC,XPOR,XR,XRECEP,XROOT,XW,XWT:xxM~(l00) COMMON/DLK3/IFILL DIMENSION XLLiilOO) RVERTI C I C CAI.CULAU TOTAL l.OUIVALENT UPTAKE FACTORS N C HI lllr .Ne. 0) CALI. UPTAKE C C CALL SUB~OUTINE WHICH PRINTS INPUT SUMMARY C CALL PklNICXLLl.RVtklI) IFIIFLAG.EO.l) GO IO 200 DO 100 K=l.NDOSE IF.£0.0.> GO 10 100 DO 50 n=2 NTIME ARG=XLI• (Kl AT ( M) OCK 11)=0. If O(K.H>=OADEXP<-ARG> 50 CONT HlUE 100 CONllNUE C C C~LL SUBROUTINE TO DO BATF-HAN CALCULATIONS C IFCitLAG.EO.O> CALL BAlHAN 200 DISY=DY DO 300 K=l.NNI' KK=I: DY=DISY IFCNPN(K).EO.l) CAJ.L kJVER IF(NPN.E0.2) CALL WELL IFCNPN.E0.3) CALL PATH38(3) IF.E0.4) CALL PATH38(4) IF.E0.5) CALL PATH38(5) IF(NPN,M=l,NTIME) WRHEl6 ll) 'R Sf(S' WRITE(6: 2oi NP,(CUHD0S (H)A2.8E -4,M=l NTIHE) 11 FORMAT(// / , ' AAAAAAAAAA CUMULATIVE tbTAL ',AS, ' PER YEAR FOR ' & ' GIVEN TIMES AAAAAAAAAA ' ,//) 19 FORMAT(lX,12,lX,A8,ll(lPEl0.2)) 20 fORMAT(4X,13,9X,1Pl0E10.2) . C C PR INT lN\lf.NtoRY C 30 l\lR=O WRilL(6 31) (T(M),M=l NTIHE) 31 FORMAT IF(0(K l).GT.0.) I l WkIIE<6,l~) K,XNAME2(K),HLlfE(K),(0(K,M),M=l,NTIME> w 500 CONTINUE IF(IVR .GT. 0) GO TO 508 DO j0j M=2,NTIHE 22G~~~L~K~~~~~rE 505 0(K,M>=0ADEXP<-ARG) IVR=l GO 10 32 508 DO 510 [CHECK=l 5 lf(D0S\l(ICHECK):Ea.o.) TllME(lCHECK)=O. 510 CONTINUE C C WRITE SUMHhRY FILES C WRITE(6,3~0~> WSLABL,,I=li5) WRITE(G,3507) (IDINT1TTIHE>,I= ,5) WRIIE(6,3506) (VNUCL(l),I=l,5) 3505 FORMA1(1Hl$ll<'A'>r' HAXIHUH DOSF.S l OOHCNANT HUCLIDES BY ', & 'PAlHWAY J0('A', // OX 'NAME 01' RUN' 3X I0AB / 12X 'PATHWAY' & 7X 'DUST' 9X 'ATMOSPHERIC' 9X 'GAHHA' iJX' 1 WELL 1 '13x' 1 f00D' /' & ax:'ANNUAL D0SE',4X,1PE9.2:4cex E9.2>i ' ' ' ' ' 3506 F0RMAT(3Xi'D0MINANT NUCLIDE',6X,AB,4<9X,A8)) 3507 F0RHAT,I=l,5) WRITE(3,3506) !VNUCL I) l=l 5, WRITE<3 _3S07> >,I=l,5) CL0SE

------t • . 9 2 9 )

C WRitEC4 1987,REC=l) NREC 1987 fCJk11Af( b, C CL0SE(i) END SUBk0UtlNE ~ATHAN C THIS SU8R0UtlNF. PERfORNS TIit: 8ATEHAN C CALCULATIONS FOR NUCLID£ INGROWTH. INPL1CII RF.ALAS (A-H,0-Z> CHARACTERA8 VNUCL . REALA4 CO · COMMON/BlKl/ALDlS C(l00il0> CANLIF DILFAC DOSV(5) DY,DZ,NH ,Nl1Y~ I Nl1Z NTIME 1u(l00 0) KVERT(lv0)1 1 T(lu)1 ITIHE,S)1 VA VNuCL(~),1 & w1ofH.wsLABL<10!.xA60,xL,xLD<160>,xLl<100;,xLi,xhcc100;, l XVV,YW,ZB C C INll ICES IN TH IS SllliR0UTINE REFER TO THE FOLLOW ING NUCL IDES: C 8 SR- 90 23 tH-230 28 U -238 33 PU-241 C 9 Y - 'JO 24 lfl· ?-32 ?-9 Nl' ··23i' 34 l"U=0(EliH) 0 (1 ':J , H) =0 < 3 H) lf(Q(24 l).E~.O.) no to 1000 0(24,H)~.?4~XLD(24)/(XLD(24)-XLD(2i'))A(XLD(27)A.76/(XLD(27)-XLD(32 l))A(XLDC32)A(XLD<24>-XLD(27))/(XLD<24)-XLD(38))A(0(38 11)A(XL0(27) ­ lXLD(32))/((XLD(27l-XLD(38))A(XLD(32)-XLD(38)))+0(38.liA((XLD(38)­1 &XLD(24))ADEXP( -XL[1(32)At(M))/((XLD(24)-XLD(32))A(XLD(32l-XLD(38))) &+(XLDC24)-XLD(38)>ADEXP(-XLD(27)AT>l<-XLD(27))ADEXP<-XLD(24)AT(H))/((XLD<24>-XLD(27) l)A(XLD<24)-XLD(32)))))+(XLD(24)-XLD<27))A0(32.H)/(XLD(24)-XLD(32)) &+0(32,l)A(-DEXP(-XLD(27)AT(H))+(XLDC27)-XLD(32))ADEXP(-XLD(24)A &T(l1))/(XLD(24>-XLD(32))))+0(27,H)-0(27,l)ADEXP(-XLD(24)AT(H)))+ 10124 to 1000 1r1al21,1>.fo.o.> Go to 1010 0(27 11)=.76AXLD(27)/(XLD(21)-XLD(32))AAADEXP< ·•XL0<21>AI>>~0(27,11) 1010 1F(0(32,l).E0.u.)1 GO to 1020 0(32 11)=XLD<32)A(0(38 H)-0(38,l)AD£XP<-XLD(32)AT(H))) l/(Xlu(32)-XLD(38))+0(J2,H)1 1 1020 IF(0(26 l>.E0.0.) GO TO 1030 0(2& H)~.13AXLD<26)/(XLD(26)-XLD(3l))A(XLD(3l)A(0(36 H>AA)+0(26,H) 1030 lf(0(3 ,l).E0.u.)1 GO TO 1040 0(31 H>=XLD(3l)A(0(36~H)-0(36,l)ADEXP(-XLD(3l)At(H))) l/(XLu(31)-XLD(36))+0(Jl,H)1 1040 lf(0(29 l).E0.0.> GO IO 1050 0(29 H)!XLD(35)AXLD(29)A(0(33,H)/((XLD(33)-XLD(35))A(XLD(33)-XLD( 129>>i+0(33,l)ADEXP<-XLD(35)AT(H))/((XLD(33)-XLD(35))A(XLD(29>-XLD( 135)))+0(33,l)ADEXP(-XLD(29)AI(H))/((XLD(33)-XLD(29))A(XLD(35)-XLD( &29))))+XLD(29)A(0(35,H)-0(35,l)ADEXP<-XLD(29>AT 1050 lf(O(JS,li.EO.O.) GO TO 1060 0(35,H)=XLD(35)A(0(33,11)-0(33,l)A0EXP(-XL0(3j)AI(H))) 9 2 &/CXLD<3~) - XLD(33))+0(3~.H) 1060 If<-XLIJ <30)) lOUO lf((XLD(25)-XL0(28)).E0.0.) GO 10 1090 E34=<1JEXP(-XLD<20)Al(K))-DEXPC-XLDC25)ATCH)))/(XLIJ(25)-XLIJ(28)) 1090 lf<) 1110 If((XLD( 2S>-XL0(34)).£0.0.) no 10 1120 El34=(El3- E34)/CXLIJC25)-XLDC34)) 1120 IF-XLDC30)) 1130 IF((XLDl23)-XL0(28)>.EO.O.) GO IO 1140 E34~=(E34-E45)/(XLDC23)-XLDC28)) 1140 IF<(XL0(22)-XL0(25)).E0.0.) GO IO 1150 E4~6=(1::4~-l::56)/(XLD(22)-XLDC25)) 1150 IF<-XLD(28)).E0.0.) GO TO 1180 E3456=(E345-E456)/(XL0(22)-XLD(28)) 1180 IF((XLD<22)-XL0(34)).EO.O.) GO IO 1190 El3456=(El345-E3456)/(XLD(22)-XLDC34)) 1190 CONTINUE OC2?..n)=CC(OC34,l)AXl.OC28)AE134~6A.77+0(30,l)AE2456A.72+0(28 l)A ):> lE3456A.77)AXLD<25)+0(25,l)AE456)AXLD(23)+0(23,l)AE56)AXLDC22>+1 I &0(22,11) <.Tl 0(23,H)=<<0<34,l)AXL0(28)AE1345A.77+0(30,l)AE245A.72+0(28,l)A &E345A.77)AXLD(25)+0(25 l)AE4~)AXLD(23)+U(23 H) 0(25,11)=(0(34,l)AXLD(28)AE134A.77+0(30,l)AE24A.72+0C28,l)AE34 lA.77)AXL0(25)+0125 11) OC28,H)=0<34,l)AXLD<20)AE13+0C28,H) 100 CONTINUE RElURN END SUBRLJUT INF. HELL Il1PLICl1 R.t:ALA8 CA-H 0-Z) CHARACTl::RA& VNUCL,XNAHE2 REALA4 C U U1 NDPKW COl1110N/XtE11 1 T(lo)1 TTIHE 5) VA VNuCLC~) 1 wrofH,.wsLABL<1oi,xA6o;xL,xLoc1001,xLlc100>,xLP,xAc<100>, ' I XVV Yw ZB COMHON/BLK2/ACR.AUL AKIN ARH0 B1VCl00> BURN CUMDOSC10) DIFCONt l DIFCOV,DIFWtuOSE(J1 1 l00,1 DSTACK,tGAHKA(l00)1 1 EPW 1tEXT,FF1RE, I FG FIXiNV F X,FWINu1 HLitEiNOOSElNI§O,HHP: I NP HPNllO)1 PLAHT1 Pv,OH RtR1 RHO RUNt1 SINV SNO SPI L SR SS , rBEGtrcoH fcurtTtNoir1HoPit1HoP1trw~,uBRf'u1: ' ' l VOLA LClOo>,VS1 ACK,vWIND AALE XC XH XKD 100) X C l XNAHE2(100),XPERC,XPOR,XA,xREtEP,XR061,xw,xw1:xxH6(IOO) COHMON/BLK3/IflLL DIMENSION EDOSE(lO),IVHD,SUHDOSClO),VHXDOSClO),HHT(lOO), IHVT(l00) HDPKW(50) CHARACTE1<*81 BLAN 2 )

DAIA VHXDOS /lOAO.D0/ DAIA BLAN/' '/ C C CALCULAllONS fOR GROUNDWATER DISCHARGE TO A WELL C JOOO DO 3088 K=l,NTIHE 3088 SUHDOSIK>=O. JOOS l'O=XLP/VA TW=XW/VA+XAOD/XVV tT::::lQtTW XLSAV=XLP TIHOf'l::::TJHOP HW=XPERCAXL~/IXPORAVA) CORFAC=l. ED=XPEkCAXLP~WIDTH IflXPlRC.LE.0.) ED::::WlDtHAXLCAVAAXPOR IFIHW.Gt.O.) CORFAC=XLC/HW IFIHW.GT.O •• AND.HW.LT.XLC) ED=EDACORFAC IFIHW.GT.XLC> XLP=XLPACORFAC IF IHW.GT.XLC> TIHOPl = TIHOPACORFAC 3008 DILFAC::::E[I ED=EllAXLSAV/VA ZB=XW XL=Zl:1-1-0. 5AXLP lf(IUPT.E0.0) GO ro 3010 IFllOPl.NE.l> GO TO 2011 IFIALDIS.GT.O.) CALL P£AKl2) IF(ALDlS.Gl.0.) GO 10 3500 NTIHE=l ):,, GO to 3010 I 2011 CONTINUE O'I IFIIOPI.EQ.l) CALL PEAK(2) IFCIOPT.E0.2) CALL RELEAS(2) GO TO 3500 3010 lFIALDlS.GT.0.) CALL DSPERS "R I'!E I G. 31 ) 31 FOkHAt(lHl ~6X 'PAtHWAY 2' /,52XL'GROUNDWATER TO WELL',//, l 'AAAAAAAAA1 NU~LIDE1 DOSES FuR1 GIVtH tIHES AAAAAAAA',/) 1031 fORHAll~6X,'PATHWAY 2 GROUNDWATER TO WELL') IFIIOPt.EO.l) WRITfl6,12) IFIIOPT.NE.l> WRITE(6ill) ITCH>iH=l,NTIHE) 11 FORMAT(/,' NUCLIDE/! Ht ' lOF 0.01 12 fOkMAtl/,' NUCLILJE',11X,'60SE',/) DO 301~ K=l NOOSE IF(U(K,l).E6.o.) GO to 30i5 TW=XW/VA+XAOOACRVERTIK)/XRCIK))/XVV Tt=tO+TW IfllOPl.cO.l> lll)=XkCIK)ATW+DLOGIXLLIK)/XLDIK)+l.)/XLLIK) IFIIOPT.EO.l.AND.Tll).GE.XRCIK)Att) 111)=1IAXRCIK) lf(IOPT.EO.l) NDPKWCK)=Tll) OSAVE=OIK 1) IF(IOPT.E~.l) OIK{l)=O GOO 13 UUV=XLDAXRC(K) HVT=HUNG=HUNG(UUH,XL,VA)1 HUNF=HVT(K)AHHTIK) 13 CONTINUE XZ= - XLL(K)AXkCA(T(H) - XkC(K)AlW) XY= - XLL(K)A(l(H) - XRC(K)ATT> If(XX.Gl.O~.) XX =B5. IF< XY.GT.35.) XY =BS. XY=DEXP.Ll. XkC(K)AlW) C(K.M)=O. IF(T(H).GE.XRCAIW) C(K,H>=XXAOAHUNF/ED IF( l (M).Gh. XkC(K)ATT) C(K.M>=XYAO(K,H)AHUNF/ED 3333 IF(C(KlH).LT.l.D- 35.AND.C( K,H).NE.O.) C=CONSTlAC(K.M) lf(lVlAC.bO.l) EUOSE(H)=EDOSE(M)A(l.-VOLATL(K)) SUHOOS=SUHOOS(H)+EOOSE.GT.VMXDOS(H)> IVMD=K IF K,XNAHE2 301s g~~,}~~gsAvE 19 EOkHAT(lX.I3t2X,A8,2X,ll(lPEl0.2)) DOSl)( 4) =O. DO Jo;w K=l 10 IF(SUMDOS=XNAHE2(1VHD(H)) IF NlSO,(SUHDOS 20 FORHAT(4X 13 9X 11(1P£10.2)) 32 lORHAT(//i, 1 lAAAAAA SUH OF NUCLIDE ',AS,' FOR GIVEN TIHES AAAAAA') WRIH<6 35) 35 lORMAT GOTO 36 WRillAHHT(K) 37 FORMAT 36 CONTINUE WRITE(6 3401) IF(IOPT:EO.l) WRITE .EO. 0.) GO TO 3400 IF(IOP1.EO.l) WRlTE<6,19) K XNAHE2,C 3400 CONTINUE 9 2 1

3500 XLP=XLSAV RElll~N END SUBkOUTlNE PAIH38(NPA1H) IHPLICII REALAS (A-H,0- Z) CHARACTERAB VNUCL,XHAHE2,XN1 REALH C O.UI COMMON/X~ER/NREC COMMON/BI .Kl/ALUIS.C(l00,10) CANLiftD1LfAC DOSV(5) DY,DZ,NM~NHY l NMZ.NTIME 0(100 10) MVERT(luO)1 T(lu)1 TTIHE15)1 VA VNuCL(j),1 i WIDTH.WSLABL(lOl,XAOD,XL,XLD(lOO),XLl,~6osElN1§0,NNP: & NP,NPN(lO)fPLANTEPv,OHHRtRfRHOPP.UNtvSINV,SNOiSPI L,SR,SS, l c~f2tl~?~o,~B~tlc~~v~IN&~xAl~~x~t!~H;~~t,~i~,~~l~:· & XNAME2(100),XPERC ~POR XM XRE~EP ~Rout xw xwt XXMu(lOO) DIMENSION BRIGGS(6.3),ED6SE(l0),tVHD(lO!,suMDOS(io>,VHXDOS(lO) CHARACTERAB BLAN DATA AHOUSE,ALOT,TG/l.D2,2.3D3,0.91D0/ DAIA BLAN/ I I I DAlA &RIGGS/0.200UO, 0.120D0, 0.080D0, 0.060D0, 0.03000, 0.016D0, & O.OOODO, O.OOODO, 2.000-4, l.SOD-3, 3.000-4, 3.000-4, i O.OOOIIOl 0.00000, -0.5000, -0.5000, -1.00DO, -1.00DO/ DA1A VMXOOS /lOAO.Du/ IF(lOPl.NE.0) GO IO 9000 )::, If(NPAIH.£0.J) GO 10 3000 I IF(NrAlH.l0.4) GO 10 3000 co IF1 13006 FORMAT(56X 'PATHWAY 4 BATHTUB EFFECT') IF 9 ') 7 4 CON~ll=.OOlAFD/kFR DO 30li K=l NDOSE II-' lf(Nf'AtH .EO. 4) UPlK=Ut~K,4) IF(SPILL .GT. 0.\ UPTK=Ut(K 5) CONS12=UPTKADOSE(l,K)ACONSTf IF (NPAIH.ED.31 GO IO 3010 XALEl=XPERC/(XKD(KIA.OOlARHO•XPOR) FE=XALEl/XWT 3010 DO 3016 M=l.NTIHE IF EDO~E(Hl=l.El2AO(K,MIAFEACONS12AFO C(K Ml=OIK HIAfEA~D/RFRAFO If(lVFAc:Ea.11 EDOSEIH)=EDOSE(H)A(l.-VOLATL(K)) IF (IVFAC.EO.ll C EDOSECH>=O. IF(NPATH.E0.3 .AND. TF.GE.O.) CCKAH)=O, IF=O. ' IF(Tf.LT.-XWT) EDOSE!H)=O. IF(TF.LT.-XWI) C(K H>=O. lf(H.GT.l .OR. SPllL.LE.O.) GO TO 3014 IF(NPAIH.E0.4) GO 10 3014 EUOSE(l)=l.El2AO(K.11ACONST2ASPILL/ & IFDA(lO.ARUNF+XKDIK)A.OOlARHO+XPORl) ):::, CA.OOlARHO+XPORII I IF 3016 CONTINUE WRIIF.<6,19) K,XNAHE2,~ncf10~·~:1~~r ~5~ GIVEN TIH£S AAAAAA') WRITEl6,28, TZl TZ2 28 FORHAt(///,' AAAAAAA lROSlON Of WASTE StARTS AFTER ' Fl0.l,' YEARS & ANO ENDS AfIER YASI£ IS ALL ERODED IN ',flO.l,' YEARS.')1 IflNPATH.E0.4) WRIIE(G,3110) TZ3 3110 FORHAT(9X 'FACILIJY OVERFLOW BEGINS At YEAR ',flO.l) WRITE(6 3'iOI>1 3401 fORHAt,H=l,NTIHE> DO 3400 K=l NOOSE IFCO(l(,l I .Gt.O. I ~ll 9 2 2 t

DOSI)( 5) =O. DO 4088 K=J.NIIHE 4088 SUMODS(K)=O. ll(NPAIH .EU. 5) WRJTl(G,4005) IF,M=l,NTIHEJ CONSTl=XWT lf(3.-XCT .LT. XWIJ CONSII=3.-XCT FH=CONSTl/((ALOt/AHOUSE ·- 1.JATGJ IF=l.fl2AO(K H)AlHACONST2 IF WRIIE<6.19) KtXNAME2CKJ,CEDOSECM>,H=l,NTIME) I lf(EDOSE(2).G: .DOSV(S)) KKN=I( ...... IFCEDOSE(2).Gt.DOSV(5)) DOSV(5)=EDOSE(2) 0 4015 CONTINUE TT1Mt(5)=t(2J NP=NP+l DO 4100 M=l,NIIHE 4100 CUMDOS(M)=CUMDOS(H)+SUHDOS WRIIE(6,32J 'UOStS' WRl1E(6,20) NISO,(SUHUOS(H),M=l,NtlMEJ WRITE<6,32J 'RISKS' WRltE(G,20) N1S0 (SUMDOSCMJA2.8E-7,H=l,NTIHEJ DOSV(SJ=SUMDOS(211 VNUCL(~J=XNAMt2(KKNJ IF'~Rltt(G,4303) FH 4303 FORMAT(' FRACTIONAL NIXING OF TRENCH HA!ERIAL IN SURFACE SOIL IS' 1 3 GoFio ~ooo C C CALCULATIONS FOR DIRECT GAHHA EXPOSURE C 5000 DO 5088 K=l,NTIHE 5088 SUMDOS(K)=O. 9 7 Wklll<6,S090l 5090 f0kHAT(lHI.56XA'PATH~AY ,,A,.~~x~•u1RECt GAHHA',I/, & 'AAAAAAAAA NULLIDE DOSES FuR GIVtN IIHES AAAAAA~A',/l 15090 FORHAT(56X,'PATHWAY 7 DIRECT GAHMA'l WRITE(6,ll) (T(H),M=l,NTIHE) TZl=XCT/XALE CONST1=8.76EIS/AHIH CONST2=2.AXLPAWIDTH/(FEXTAAHINl IF(IGAHHA.NE.ll GO TO 5100 Tl=l IF ~ 5112 lfCIGAHHA.NE.l> GO TO 5120 I CONST5=PLANTABIV(K)/(XWTARHOl ,_. OUNDRl=O GO IO 5010 IF(XXhU(Kl .GT. 0.) GO tO 5122 PO=l. RQ=OCK.HlAEGAHHACK)ADOSE(3,KlAFEXt/(XLPAWIDTHAXWT) GO 10 5014 5122 ~O=COHSTlAO(K,HlAUOSE(3,Kl THU=XXHU(KlA> IF(THU.LT.O.l THU=O . . If(THU.GT.85.l THU=85. BU=l.+tHUAAl.5/EGAHHA(Kl IF(EGAHHA .Lt. 0.25) BU=l.+2.ATHU BU=BUADEXPC-THUl IF &-tlAtll/(2.AXROOTll If(t(Hl.GE.t2l OUNDR=OUHDR2AnEXP(-XLD(KlA

PO=l. RO=OSlJl .LT. 0.25) BU=l.+2.ATHU BU=BUADEXP(-THU) IF TMU=85. BU=l.+THUAAl.S/EGAMHAIK) IF(EGAHHAIKl .LT. 0.25) BU=l.+2.ATHU BU=liUADEXPI-THUl IF(BU .Gt. 1.) BU=l. POUNDR=CONST2ACONST3/BU RO=ROUNDR+ROSURF PO=Ru/lROUNlJR/POUNDR+ROSURF/POSURFl 5014 EDOSE(Hl=RO/PO If(IVfAC.EO.ll EDOSh(Hl=EDOSh(HlA(l.-VOLATL(K)) SUHDOS(Hl=SUHDOS(Hl>EDOSE(Hl IF(EDOSE,H=l,HTIHEl 5015 CONTINUE NP=Ni'+l DO ~200 H=l,NTIHE 5200 CUHDOS(Hl=CUHDOS(Hl+SUHDOS(Hl DOSV(3)=0. 9 [Ill :5:HO f(=l. 10 1£(SUMDOS(K).Gt.DOSV(3))H=K IF 'RISKS' WRIlf.< 6;,20> NISOf( SUHDOS(Hh\2.8E-7 .t.H=lbNTIHE) IF Zl=XCT/(XALE-PLAN1/RH) IFTZl ALLERODED 29 FOkMAl(/// 1 ' AAAAA~•lROSION StOPS AFtfk COVERIS IN' &FlO.l,' YEARSAAAAAAA') GO to 9000 C C CALCULATIONSFOR DUSI lNHALAlIONPATHWAY C 6000 DO6088 K=l.NllHE 6088 SUHDOS(Kl=O. DOSU(l)=O. FH=<3.-XCt)/((ALOt/AHOUSE-l.)ATG> IF CONStl=i.El2AfMAA6LAU~RAFTX/(XLPAWIDTHAXWTARHO) I DO6015 K=l NDOSE ...... w IF.E6.0.) GOTO 6015 DO 60lb H=l NTIHE EDOSE=O(RH>ADOSE(2 K)ACONS!l · IF(IVFAC.EO.l) EDOSE{H>=EDOSEA> SUHDOS(H>=SUHDOS(H)tEDOSE(H) 6016 CONTINUE WRlTE(6\l9) KfXNAHE2,,H=l,NTIHE) IF(£DOSt(l).G .DOSV(l)) KKN=K IF 60lj CONTINUE TlIMECl)=T(l) NP=NPtl DO6100 H=l,NTIHE 6100 CUHDOS(H)=CUHDOS(H)+SUHDOS WR11E(6,32) 'DOSES' WR11E(6,20) NISO,(SUHDOS(H),H=l,NTIHE) WRIIE<632) 'RISKS' WRitE<6:2o) NIS0 (SUHDOS(H)A2.8E-7,H=l,NTIHE) DOSV(l)=SUHDOSVNUCLCl)=BLAN GO IO 9000 C C CALCULAlIONSFOR RADON INHALATION PATHWAY C 7000 ~O 7088 K=l.NtIHE 7088 SUHDOSCK)=O. WIIUE<6,7010)

't 9 2 2 I. 7 9

7010 fO~HAt,H=l,NTIHE> K=2l XNl='kN~22 · XLRN=~.lD-6 BT=PSQkI(XLkN/DJF~>AXWTAlOO. EPLUS=O£XPCBT> EHlNUS=l./fPLUS IANH=!l~LLIS -FHlNUS)/(EPLUS+iHINUS) BT=DSORT(XLRN/OIFCOV>AXCTAlOO. + DSORT(XLRN/OIFCON)ATCON EPLUS=DEXPCBT> EHINUS=l./EPLUS fF=O.SA((l.+TANH>AEPLUS + ~1.-TANH>AEHINUS) CONST1=6.5544D8AEPWADSORTCXLRNADIFW>ATANHAUBR/(XHAACRATWVAFF) DO 7016 M=l.NTIHE EDOSE(H)=CONST1A0(22 H) IFCIVFAC.EO.l> EDOSE=EDOSEA NP=NP+l DO ?100 H=l,NtIHE 7100 CUHOOS=CUHOOS(H)+SUHDOS(H) WRitl(6,32) 'DOS~S• . WRill(6,20) NlSOh(SUHDOS(H>,H=l,NllME) WRI!E(6,32) 'RISKS' WR11E(6,20) NlSO,(SUHDOS(H)A2.8E-7,M=l,NTIME> GO tO 9000 C C CALCULATlONS FOR Oif-SltE ATHOSPHEkIC TRANSPORT C 8000 DO 8088 K=l,NTIME 8088 SUHDOS=O. DOSV(2)=0. WRit£(6 8005) 8005 iukHAt CHlQ=2./(3.14159AHEFFAHEFFAVWINDA2.71828) IF(XRECEP.GT.0.) CHI0=2.032AFWINDADEXPC-0.5A(HEFF/SIGHAZ>*A2.)/ & CSIGHAZAVWINDAXRECEP> 1:~1v~At:t8~8F~l~5~'~~i~~~~~l?8~~I~1~:t!~JEcEPAAARG DENOH=TWV IF DENOH=XLPAWIDTH*CXWT+XCI) CONST1=1.El2ABURN*FFIREACHIOAUBR/DENOH DO 8015 K=l.NDOSE IFCO,EDOSE(l) IF(EDOSt(ll.Lt.DOSV(2))1 GO TO 8015 KKN=I( DOSVl2l=~U05t(l) 801~ CONTINUE n Int< ~n =t <1> Nf'=NP+l DO 0100 H=l.NtlHE 8100 CUHDOS(Hl=CUHDOS(H)tSUHDOS(H) WRI1~(6,32> 'DOStS' WRIIE16,20) NISO~SUHDOS(l) WRITE<6,32) 'RISKS' 0 7 ~:l~lt~t~ ~G~~sg:~uc~~i~tl*~if~> XRECEP CHIO 8110 FORHATCI/,' DISTANCE TO RECEPTOR IS 'if~.l,' METERS',/, & 1 CHI/0 IS ',1PE9.2t' CI/HAA3 PER C /SEC ,//) IF VNUCL<2)=BLAH 9000 REtURN END C PEI ZERO SllllkOUtINE; INitlALI2ES AI-L COHMON BLOCK VARIABLES SU8ROU1 IHE ZERO ::x> IHPLICI't REALA8 (A-H,0-Z) I CHARACTERA8 NUCLID,VNUCL,XNAHE2 ..... REALH C,O UT u, COl1110N/BLKi/ALDIS,C(lOOil0) CAHLIF DILFAC DOSV(5) DY,DZ,NH~HHYt & NHZ HTIHE 0(100 0) 1KVERT(luO)1 T(lul1 TTIHE\5)1 VA VNuCL(J) & WIDfH,~SLABL(lO~,XAOD,XL,XLD(lOO),XLl: & VOLA L(lOv)1 VS ACK vWIND ~ALE XC XH XKD1100) X C , XNAHE21100>:xPERC,XPOR,xA,xRECEP,xR061,xw,xwt:xx116<100> COMHON/BLK3/IFILL ·· COHHON/UPTAK/BDENS BR,COL1 COPlLCOCHilfCOFISH,COGHil COHEAT CWAT, & DECA FF,FI 1tlS FHC tHG,F~1 FS,IN AKE(5) KK,NUCLID1 PORti,PP1 & OBW,OcwroFt10F~,OG~,RWiSI~FL,TEl,TE2rTFIS,Tfl,THi1tH2,.TH3, & TH4rl1HAV,,r~1UCHILK,UF SH,UGHILK,ULEAFY,UMEAT,UPRuD,UwAT, & WIRATE,XAnBW~,Yl,Y2 C C COHHOH IILKl C DO 10 l=l,100 RVERt=O. XLlJ( l>=O. XLL(l)=O. XRC(ll=O. 10 CONTINUE DO 20 I=l,10 9 1

DO 30 J=l 1 100 C( J • I> =u. 30 co~tiHa~=O. T< 1)=0. 20 CONTINUE DO -40 l=l ,5 D0:31)( I) =O. !T lHf. ( l ) =O. VNUCL=' -40 CONIINUE C C COHMON BLK2 C DO 100 l=l.100 BIV( ll=O. EGAHHA(l)=O. HLIF£( 1)=0. VOLAl'L( U=O. XKD( 1)=0. XXHU( l )=0. XNAHI-:2 ( l) =' DO 110 J=l 3 DOSI::: CHARACTERAB VNUCL,XNAHE2 REALH C 0 u·r .l NDPl,xLl<100>,xL~,xRc<100>, ' I XVV YN ZB COHHON/BLK11AtKfADL.i.AHIN.i.AkHOrBIV(l00) BURN CUHDOS(l0) DIFCON, I DIFCOV D FW uOSE(J 1001 DSTACK tGAHHR(lOO)1 1 EPW 1tEXT,FF1RE & FGrFIXiNv.lrtx,FWIN6,HLifE(lOO);HsTACKtIDSRir1IfL<7>1IFLAG: I IGRHHA INrRNT IOPT 1STAB IUP IvFAC JU (10) NuOSE NI~O,NNP, & NP,HPNflO),PLANt,P~,GH,RtR,R~O,RUNt,s1NV,S~O,SPI!L,SR,SS, 9 2 )

I TBEGfTCON TCUTfTEHDiTINOPiTINOPlfTWV,UBR,Ut(l00l6), & VOLA L ):.~ 31 FORMAT (T(HliH=l,NTIMEl l.l FORMAT(/,' HUCLIDE/1 M£ ' 1 10F 0.0, 12 FOkHAIC/l' NUCLIIJE',llX,'DuSE',/) DO 2015 ~=l NOOSE IF(O(K I>.E6.0.l GO TO 2015 TR=XR/QA+XAOOACRV£R1(1<)/XRCCK))/XVV IT=TO+TR CONSTl=l.E9ADOSECl.KlAUT(K 1) IFCIOPT.EO.l) T(l)=XRCCK>AfR+DLOGCXLLCK)/XLDCK)+l.)/XLLCK) IFCIOPT.EO.l.AND.T(l).GE.TtAXRC(K)) 1(1)=11AXRCCKl IFCIOPT.EO.l) NDPKRCK>=I(l) OSAV£=Q(K 1) IF ClOPT.EO.l) OCKtl>=OCK,l>ADEXP<-XLDATCl>> If GOO 13 UUV=XLU(K)AlAHHT1K) 13 CONTINUE XZ=-XLL(K)AX~C(K)ATO IFCXZ.LT.-85.) XZ=-85. DO 2016 H=l,NtIHE IFCALDIS.GI.0.) GO TO 2222 XX=-XLLCK)A(t(Hl-XkC(K)ATR) XY=-XLL(K)A(T(H)-XRCCK)ATT) 9 2

lf(XX.Gt.O~.> XX=O~. !f(XY.Gl.8~.) XY=BS. XY=lll-:XI' ( XY )A ( l. - J•EXP (XZ)) /Xl.GE.XRC(K)AJR> C C.LT.l.D-35.AND.C(K,H).NE.0.) C U1l1SHH>=E[1USl:'CH>A< l.··VOLATL(K) l SUHDOS(H)=SUHOOS(H)+eDOSE(Hl C IF .Lt. 0.) ADI=AUl(K,Hl-EDOSE(Hl 2016 CQNTINUE WRilE(6~19l K,XNAHF2(Kl,(EDOSE(Hl,H=l,NtlHEl a 0( l) =uSAVE 2015 CONl'lNUE 19 FOl HlSOi(SUHDOS(HlA2.8E-7,H=l,NTIHEl 20 FORHAl(4X !3 9X l(1P£10.2ll 32 FORHAT(/li,'AAA*AAA SUH OF NUCLIDE ',AS,' FOR GIVEN TINES AAAAAA'l WRI1£<6 351 . 35 FD~HAt(}//,'AAAAAAA llISPERSION CORkECTlON FACTOk AAAAAA'~//,5X, & 'NUCLIDE' 18X1'VERTICAL FACTOR',8X,'HORIZONTAL FACTOR',BA, ):> l 'TOTAL FALTO~',//) I DO 36 K=l NDOSE ...... IF 37 FORHAT(lX,I3,~X,A8,9X,lPEl0.2,i4X,lPEio.2,12x,1PEl0.2) 36 CONTINUE WRITE<6 2401> IF(IOPT:EO.l) WRITE (6 21) IF(IOPT.NE.ll WRITE<6 ill (T(Hl H=l NTIHE) 21 FORHAT(/' NUCLIDE''llX 'CONC 1 4X''PEAK TINE' /l 2401 fORHAT(/}/f' CONCENTR~TIO~ ARRAY 1 ,B~,'CONCENTRAfIONS IN CI/HAA3') DO 2400 K= NOOSE IF(O(K l).E6.0.) GO TO 2400 IF(IOPf.EO.ll WRITE(6 19) K XNAHE2(Kl C(K ll NDPKR(Kl IF(IOPT.NE.ll WRITE(6:19) K:XNAHE2:,XLl<100>,xLJ,xAc<100>, ' I XVV Yw ZB COHHON/BLKj/A~ktADL AHIN AkHO,BlV(l00) BURN CUHDOS(lOl DIFCONt I DIFCOV D1FW 1uOSE(J1 100, DSIACK tGAHHA(lOO)1 1 EPW tEXT1 FF1RE ' FG1FIXiNV1FtX,FWIN6lHLifE(lOO);HsTACK1IDSRJT1IfL(7);1rLAG: I IGAHHA INrRNT IOPT STAB IUP IvFAC JUt(lO) NuOSE NI~O,NNP, 1 NP,NPN,10>,PLAHr,PO,aH,RtR,RAo,RuNt,s1Nv,s~o,sP1lL,sR,ss, 9 2 1 & TBEGfTCON TCUTfTEND,IIHOP,TIHOPlfTWV,UBR,Ut(l00lG), & VOLA L( lOu1 l VS ACK VWIND XALE XC XH XK D(lOO) X C & XNAHE2<100,;xPERC,XPOR,xA,xREtEP,XR06T,xw,xwr:xxHu<100> COHHON/BLKJ/IFILL DIMtNSION PTHNAHC3,10l,XLLIC100l,RVEkil(l00) CHARACt~RAB PIHNAH DATA PlHNAH/'GkOUNDWA' 'ItR IO R' 'IVEk ' , l'GROIJNOWA','1ER TO W', 1~LL ', 1EROSJON ',' ',' &'~AIHTUB ','lFfECT ',' ','FOOD GRO', ' WN ON Sl','IE ',I I &'NA"rUMAL , 1 •arn cwrRIJ' ·s ION , 1 •orn~t.: ·r Ii' 1 'AHHA ' 1 ' I I l'DLIST lNH ' 'ALATlON ,,, ' 'RADON lN' 'HALAIION' ' , &' ATHOSPHE'''JHC JRAN':,~PORT ,j ' ' IF(INYRNT.EO.Ol GO TO 1000 100 fORHAT(JHl ' AAAAAAAAAA PAlHkAE INPUT SUHHARY AAAAAAAAAA') 10? FORHAT(' LtNGTH1 OF REPOSI10RY (HEtERSl' 3lX F8.0) 108 FORHAT(' WIDTH OF REPOSITORY ',21X,F8.3) 4 ll~ f8t~~ii: ~t,t~Nt~R~5Iilv~t ~~~lf~~;, ~~xFia:b, 112 FORHATC' FLOW P.ATE OF RIVER (CUBIC HETER~/YEAR>' 25XilPEll.2) 113 FORHAT(' DISTANCE TO WELL -- X COORDINATE (HETER~)'1 9X FB.O) 114 FORHAT(' HIXING THICKNESS OF AQUIFER ',23X F7.l) 122 FORMAT(' AVERAGE VERTICAL GROUNDWATER VELOCITY (H/YR> 1il7X,Fl0.3) 123 FORHAT(' ' / ' DENSITY OF AQUIFER (KG/CUBIC HETER)' 2Sx,F8.0) 124 FOP.HAT(' LuNuITUDINAL1 1 DISPERSIVITY (H)' 34X lPEll.211 125 FORHAT(' NUHBER OF HESH POINTS FOR DISPERSION CALCULATION',lSX, &14) 127 FOP.HAT(' ',I,' TIHE OF OPERATION Of WASTE FACILITY IN YEARS', &16X,F8.0l 128 fORHATC' 'I, &' AHOUNr of WATFk ~tRCOLAlING tHkOUGH WASTE ANNUALLY (H)', & lOX,F7.3 /,' DEGREE OF SOIL SA1URATION',40X,f6.3,I, & 'RtSIDUAL1 SOIL SATURATION' 41X,F6.3 / & • PERMEABILITY OF VERTICAL foNE 1,21x,f1.2,1, & 'SOIL NUHBER' 54X F6.3) 129 FOkHAT(' LA!ERAL DI~~EkSION COEFFICIENT -- Y AXIS ',13X, & lPEll .2> 131 fO~HAl(' COVER JHICKNESS OVER WASTE (HETERS>',25X,Fl0.2) 132 FORHAT(' THICKNESS OF WASTE IN PITS CHETERS>',2SX,Fl0.2l 202 FORHAT (' ' / &' lHtkE Akf'~I3r' ISOTOPES IN THE DOSE FACTOR LIBRARY'f/A 0 1 I: i~~A5~i 1~v~~~MfyF~:L~~c~JE£cU~~iFL~~EE1l~;•~~i i;E9~2R~'t~1> 204 FORHAT(' ~UHBER OF TIHES FOR CALCULATION IS',13,l,J YEARS'to BE', & 1 CALCULATED ARE ••• ' //,(lX 5F9.2)) 206 FORMAT(' ',.I,' THERE A'E' I4iJ ISOTOPES IN THE INVENTORY FILE' ,I, & 'THE VALuE OF IFLAG IS 1 IJ / 'NUHBtk Ot PATHWAYS IS' 13) 208 FORHATC/~12X,'PA1HWAY',llX: 1 TfPt OF USAGE',l,2BX,'FOR UPTAKE', & 'FACTOR~',l,C3X 1 I2,2X 1 3A8,4X,I2>> 212 FORMAT<' •~/r' FLAG FOK GAHHA PATHWAY OPTIONS',34X,I3,I, 1 6 3 21& F~R~~~1,F~~v~~~gi~H§~AtI~~r~~~l~A~ ~1~ lPE9.2> 218 FORHAT(' RADON EMANATING POWER OF fHE ~ASTE',3IX,IPE9.2 /, 1 1 f : Eiii~§Jg~ gg~ii: gi :~n~~ l~N~:~I: ~~~!!~~§1El;•l~~•~~:~f ' 220 FORHAT(' ' /,' DIFFUSION COEFF. OF RADON IN COVER fCHAl2/SEC>', & l9X,1PE9.~)1 9

222 FO~HAt(' '/' LJEC~YCHAIN fLAGS' 19X 714) 224 FORHAT(' FLAGFOR INPUTSUHHARY PkINTOUT',33XfI3,I, i 'FLAG FORDIRECTION OF TRENCHFILLING' 28X 3 / & ' FLAGFOR GROIJNDWATER PATHWAY OPTIONS' '2ax' 13\ ' 510 FORMAT('RECEPTOR DISTANCE FOR ATHOSPHERiC PATHWAY 'il7X 1F7.l) 511 FORHAT<'STACK HEIGHT 'l48XfF5.l,/' STACKINSIDE DIAnETEMCH)', & 40X FS.2 / ' STACKGAS VE OCI Y CHIS)' 40X FS.l) s12 FORHAT<'HEAT EhISSION RATEFROH BURNING ',2GX,1PE9.2> 513 FORHA!(' ', / &' DUSTP.EsusiENSION RATE FOR OFFSITE TRANSPORT (HAA3/S)', & 12X 1PE9.2 / ' DEPOSITIONVELOCITY (H/S)' 41X1 OPFG.4) 514 FORHAT<'•,J/ INCINERATOROR TRENCHFIRE ~URNRATE 516 FORMAT('SURFACE EROSION RATE (H/YR>' 13GXilPE12.3,I, & 'ANNUALRUNOFF OF PRECIPITATIONCH> 31~1 E9.2) 517 FORHAT<''t/J' TOTAL WASTEVOLUHE CH!A3> A3BX,1PE12.3) 519 FORMAT('D N~ITYOF WASTE CKG/HAA3)'34X 1 t8.0, 520 FORHAI(' FRACTIONOF FOODCONSUHED THAf IS GROWNON SITE',17X, &F7.3l 521 FORHATC'DEPTH OF PLANTROOT ZONE CHETERS>',32X,FG.3) 522 fORMAt(' l' fRACTION'ot'/ YcAk SPENTIN DIRECTRADIATION FIELD' 15X F8.3) 524 FORMAT('AVERAGE DUST LOADING IN AIR CKG/HAA3)'J26X;lPEll.2) 525 FORMAT('',_Ii' ANNUALADULT BREATHING RATE CHAA~/YR1',23X,FB.0) 526 FORMAT('FMALTION OF YEAREXPOSED TO DUST' 31X,FB.3) 527 FORMAT('A~EAL DENSITY OF PLANTS(KG/HAA2> 1,32X FG.3) ):,, 529 FORMAT('HEIGHT OF ROOMSIN RECLAIHERHOUSE ', N &lSX,lPEll ... ) 0 531 FORMAT('THICKNESS OF CONCRETESLAB FLOOR CCH>',24X,FB.l) WRI1£(61 100) WRllc(G 202) NOOSETCUT SINV WRIIE CNPN,J>,XW WRITE(6115) YW WR1TE(6;519)RHO WRit£<6 S20) FG WRllE(6:S22) FEXT WRIIE

WRJT~<&,526) FIX WRIH <6, 116) CANLIF WRJTE(&,216) fIXINV WR1U(6,529l XH WRITE(6,S30) ACR WRITE DIFCOV W~ITE(6,S1Sl ISIABlVWIND,FWIND WRITE(6 510) XRECEr I~(lVfAf.EO.O> WkIIE WRITE(6f514) BURN,.FFIRE WRITE<6,Sll) HSIACK,DS ACK,VSTAC~ WRH£(& Sl2) OH If WRllE(6L222> WRI1E(&,224) IHPRNf lFI L IOPT WR11E(6,128) XPERC,~S,SR,~V,SNO WR1t£(6 110) XPOR WRlIE(6:121) XA0D WRitE(G,122) XVV VA0=VA 225 Wklll(G,109) VA0 WRCT£(6 114) XLC WRllE(G:516) XALE,kUNF WRH£(6 300) 300 FOkHAt17X,'FACIOA 1 ~/'rlSX,2(6X,'(HREA1Ptl)'), l 2Xi' HREH-HAA2/PCI-HK)',2X,'(FRA~T ON) 1 /) )> DO 3 0 K=l NDOSE I IF(0(K l>.to.o., GO TO 310 N WRIIE(i 360) r XNAHE2(K),DOSE(l K),DOSE(2,K), ...... l DOSE(J,K)1 ,V0LATLOO1 1 310 CONTINUE WRHE(6 340) 340 FOkHAT DO 3::i0 K=l,NDO::iE IF<0,UT(K,I), & U1(K~2),U1(K,6),EGAHHA(K> 350 CCINTlNuE WRirE(6 320) 320 FOkHAT 1 :2x,'CONSTANT't> DO 330 K=l NOOSE IF<0 !Gt. 0.> WRitE(6 360) K,XNAHE2,XLLl(K),XLL(K),XXHU 330 CONTINUE 1 WRlU: (6 1.27) 227 fORHAt WkllE(6,360) K,XNAHE2(K),XKD(K),XRC(K), l RVER I,RVERT(K) 354 CONTINUE WRIT£(6 228) 228 FORHAt

l ' INITIAL ' I , ' NUHBER NAHE' 7X,' CONVHRSION ' ,6X, & ' LlfH (Yk~' 'lX 'lNVfNIOk Y ' ,/) oo Ji~ K=l Nbost lf ,XLl(lOO> ,xLP,xk, 100>, ' & XVV Yw ZB COMMON/~LK1/ACk,ADL AHIN ARHO,BIV(lOO)lBURN CUHDOSl10llDIFCON, & DIFCOV D1FW 1uOSEI~1 100> DSTACK tGAHMR(lOO)1 EPW tEXT FF1RE l FG FIXfNV FfX,FWINDtHLifEllOO>;HsTACKLIDSRPTLifL<7l~IFLAG: l IGAMMA1 INrRNT1 IOPT 1STAB IUP IvFAC JUt(lO) NuOSE NI~O,NHP, & NPlNPNf1o>tPLANrlP6,0HlRFRtRAolRUNF~s1Hv,s~o sPilL,sR,ss, l TBtG TCON cur TtND TlnOP IHOrl TWv UDR UT( 100 6) l VOLAfL(l06),VSfACKi6WIND,XALE1xctlxH~XKDf100>,Xlcl' )::a & XNAHE2(100) XPERC APOR XM XRELEP AROuT xw XWT XXMu(lOO) I COHMOH/UPTAK/BDENs;aR,col1lcoi1ltocH11ttOFISH:co~Hll;coHEAT~CWAT, N & DECA FF,FI tIS FHC tHG,Fr FS,IN AKEISl KK,NUCLID POR~,PP N & 011w,6cw 0Fc 0FGiaG~,Rwis1~FLitE1,rE2 rf1siTF1,rHl rH 2,.rH1, l TH4 TIHAV,T~1 1 UCnILK,UF SH,UGnlLK,ULEAFY,UnEAT,UPRuD,UwAT,1 1 & WIRRTE,XAnBWt,Yl,Y21 1 C C UAD INPUT DATA C C OPtHIUNIT=3,rlLt='UPTAKE.DAT',STATUS='OLD') READ<3,100) SINFL PORS BDENS READ(3,100) Yl Y2'XAHBWt lEl TE2 READ<3,100l THi,TA2,TH3,fH4ffP~FS READ<3,100) OFC,OFGfTF1 TS FI~ READl3,l00) FI WIRA E OLW1 uGW1 OBW READ(3 100) ULEAFY,UPROD,~CKilK,UGHILK,UHEAI,UWAT,UFISH 100 FORHAT17Fl2.6)1 DO 110 I=l, 4 DO 110 J=l ,HNP lf(NPN(J) .EO. I> INTAKEll)=JUFIJ) 110 CONTINUE INtAKt(S)=INTAKE(3) PP=lOOO.ABOENSA0.15 C C 120 Rt~D(3,130 ~ND=300) NUCLIUtRW,Bk,~HC,FHG,FF,FIS 130 FORHA1(A0Ibfl2.6)1 DO 140 J= NOOSE IF(NUCLlD ~EO. XNAHE2(Jll GO TO 200 140 CONTINUE 9 2 1

C C CIIJ.lULAlE TOtAL l'l1UHIAU::NI UPTAKE FACTORS FOi( WATER USAGE C 200 l~(Q(J.ll . Lt. 0.) GO 10 120 DECA=XLO(Jl/8760. CWAl=l. DO :mo KK=l,S DIST=XR GO lU 1220.7J0,230 240t2~0) KK C CALCULATE tIHE OVEK1 WH1CH SOIL CONCfNTRA!ION WILL OE AVERAGED 210 DIST=XW 220 TIHAV=l./XLL(Jl RET=l.+AkHOAXKD(J)/XPOR ARG=T(NTIHE>-RETA(OIS! •O.SAXLP)/VA IF IIHAV=ARG GO TO 260 230 TlHAV=XMl/XALE ARu=T tIHAV=AiG Gll TO 260 240 lll1AV= TIHAV=TIHAV-(XWT+XCT)/(XPERC/XPOR+XALE) GO TO 260 250 IIHAtl:Q. l S/X°'LE 260 lf(T ,HAV .ti. 1., 1IHAV=l. CALL H!R lG( J) CALL HUhEX L l 280 CONT IHUE )::, C I C CALCULAI~ TOTAL lOUIVALtNI UPTAKE FACTORS FOR FOOD N C w CWAl=O. KK=6 CALL lklOG .Gt. 0.) WRJTE<6,330) XNANE2(1),(UT(l,J),J=i,6) 320 CONTINuF. 330 FORNAl(3X,A8,3X,IP&El0.3) RETURN END SU!lROUTINE DSPlRS IHPLICI! REALA8 (A-H 0-Zl CHARACTERAB VNUCL,XNAHE2 REALH CO UT COHHON/lllKif Al.lJ IS 1.. C( 100{ 10) CANL IF DILFAC DOSV(5 l ( DY ,DZ ,NH,.NHY i. I NHZ NTIHE u(lOO 0) 1xVERT(luO)1 T(lul1 !TINES) VA VNuCL(J) I WIDfH,WSLABL(lO~,xA6D,XL,XLD(l60),XLl(lOO),XLJ,xic<100>, , i 9 '

I XVV YW,ZB COHHCIN/ttl.td / ACk ,AnI.lAH lN Al;HSTACK IDSRPT IfL<7>;IFLAG: I IGAHHA INrRNT1 IOPT STAB IUP IvFAC JUt(lO>1 NuOSE1 NI~O,NNP, , NP NPN(1o>tPLANt P6,0HiRfRtR~0 RuNfis1Nv,s~o sPilL,sR,ss, I TBtG1 ICON CUT TtND1 TinOP IHOrl1 TWv UBR UT( 100 G) I VOLAfL(l06),VSfACK 6WIND *ALE xct XH 1 XKDflOO>,xlc ' I XNAHE2(100),XPERC,XPOR,X~,XRECEP,XROOT,XW,XWT,XXMU(l00) COHHON/BLK3/IFILL DO 100 K=l,NDOSE KK=K IF(O(K~l).GT.O.) CALL GWl(KK) 100 CONTINUE C C Dl:CAY CtlAlN CALCULATIONS C IF (IFL(l).EO.l) CALL GW3(38,32,27) IF(IFL(2).EO.l) CALL GW3(32 27 24) IF C CONCENTRATION IN FISH ALSO CALCULATED. I C COFISH = NUCLIDE CONC IN FISH N C COPAST = NUCLIDE CONC IN PASTURE GllCANLIF DILFAC DOSVfDY,DZ,NH ,NHYi & NHZ NTIHE u(lOO1 0) KVERT,xLl<100,,xLP,xAc<100,, I XVlJ Yw ZB COHHON/BLK1tAfR,AUL AHIN ARHO,BI\1(100) BURN CUHDOS(l0) DIFCON, & DIFCOV D1FW 1uOSE(~1 100> DSTACK tGAHHA(lOO)1 1 EPW tEXT1 FF1RE & FG FIXiNV FfX,FWIN6iHLifE;IF~A~~ & IGAHHA1 INrRNT1 IOPT 1STAB IUP IvFAC JUt(lO)1 NuOSE1 NI~O,NNP~ I NP NPN(lO)fPLANt P6,0H1,RfRfR~0 RUNf~SINV,S~OiSPilL,SR,SS, & TBtG1 !CON CUT TtND1 TinOP IHOrl1 TWv UBR UT( 00 6) ' VOLAfL(l06),VSfACKl6w1ND1*ALE1XCf,,xH;XKD(100>,xlcl' I XNAHE2(100) XPERC ~POR Xx XRELEP ~Rout xw XWT XXMu(lOO) COMMON/UPTAK/BDENs;sR,col1,co,11tocHiltfoFISH:co~Mil;coHEAT~CWAT, I DECA FF,FI tlS FHC tHG,fr FS,IN AKECS) KK,NUCLID POR~,PP I OBw,6cw,aff10F~,OGW,RWiSI~FLiTEl,tE2,rtIS,TFl,tHi1IH2,.tH1, I TH4,tIHAVlt~,uCHILK,Uf1SH,UGnILK,ULEAFY,UHEAI,UPRuD,UwAT, I WIRATE,XAnBWt,Yl,Y2 C 9 COl:l5U = FIS A U!At A DEXl'(-lJECAltTE'lS) IfCNUCLIO.£0. 'H-3 ') GO 10 200 IFCNUCLID.EO. ' C-14 ' ) GO10 300 B = 0.243/tBIV(J) TV=l. COl'ASJ=COV(JYl tEl !HI B tV> B = 0.68 It <6.3}BAB6+ 6.&22/tBIV(J)) ! 1.l= .1 COStO=COV(JYI Tll tH2 B,tV) COFE£D=FPAFSAC6PASft fl. - fPAfS)ACOSTO B = 0.066AB1V TV=l. COLl=COVIt DEXP<-DECAAtFll COHEA!=FF It (C014AOFC+CWATAOBWlIt DEXPC-DECAAIS) C C REtURN END SUBl NuOSENI~O,NNP, & NP1 HPHf1o>fPLANt1 P6,aHiRtRtR~o1 RuNt~s1Nv,sA0sPilL,sR,ss, l TBtG TCON CUTTtND IlnOP IHOrl IWv UBRUT< 100 6) l VOLAfL(l06>,VSfACKi•WIND1~ALE,xctixH;xKDf100>,Xlc,.' l XNAl1E2(100)XPERC ~POR x~ XRELEP~ROUT xw XWT XXHu(lOO) COHl10H/UPTAK/BDENS~BR,COl1,col11toc1111ttoFISH:co61111;co11EAI1CWAT, l DECA,FF,FI,tIS,FHC,tl1G,Fr,FS,IN AKE,KK,NUCLID,POR~,PP,

------9 2

l O&~,OCW,OfC10FG,OGW,k~iSINFL,TEl,TE2rTFIS,tFl,THl,rH2,TH3, r. TH4,TIHAViTo,.UCHILK,UF SH,UGHILK,ULEAFY,UHEAT,UPRuD,UWAT, & WIRATE.XAnBWt,Yl,Y2 C C CALCULAl ION OF RADIONUCLIDE INTAKE BY CONSUHPT ION C OF VEGETATION, HILi(, HEAT, FISH, AND DRINKING WATER C OVEG = COLlAULEAFY + COPlAUPROD OHILK = COCHilAUCHILK + COGHilAUGHILK OHEAT = COHEATAUMEAT OFISH = COF1SH~UFISH OWAT = CWATAUWAT C C If .LE. 2) OlNG=OING+OVEG+OHILK+OHEAT IF = OING/CWAT 200 RETURN -~R1 IMPLICIT REALAB I NHZ NIIHE 0(100 0) MVERT T(lu) TTIHE{5) VA VNuCL(j) I & w1ofH.WSLABL<10~,xAnD,xL,xLoc160>,xLlc100>,xL~,xkcc100>, ' N I XVV YW,ZB 0) COHHON/BLK2/ACR,ADL AHIN ARH0 BIV(l00) BURN CUHDOS(lO)fDIFCOni I DIFCOV DIFW 1uOSE(J1 100>1 DSIACK 1tGAHHA(lOO)1 EPW EXT FF RE l FG,FIXiNV FfX,FWINDlHLIFEClOO>;_HSTACKfIDSR~T IFLC7l~IFLAG: I IGAHHA INrRNT1 IOPT 1STAB IUP,IvFAC JU (10) NuOSE1 NloO,NNP, & NP1NPNflO)tPLANT1PV,OHiRFRfRH01RUNF~SINV,SNOiSPllL,SR,SS, & TBtG ICON CUT TtND TlnOP IHOrl TWv UBR UT( 00 6) & VOLAfL READ(3 10B> NOOSE !CUI SINV READ 1=1,9) IFCKK.LE.O .OR. KK.GI.luO)1 GO IO luOO1 XNAHh2=DUH(l) DOSE<2,KK)=DUH(2) DOSEC3,KK>=DUHC3) 1 101 E~,k~ 1f:Au~cI+3) IF(UtfKK,l) .HE. 0) lUP=O 1000 CONTINUE 114 FOl

------9 2 ? C OPEN (UN JT=3,fILE='ABC UEf.DAt' , SIATUS='OLD') R£AO<:l'-l02) {A{ (), .l=l,10) C Nk~C=NKhC+l C WkJI~{4il02,RBC=NkFC) ,JUf,J=l,HNP> 103 FORHAI .2016) 104 FORl1A1(10Fl2.6) READ!J,104) IIHOP XLP WIDTH RFR,XR,SPILL READ(3,104) ARHO,ALDI~lDYrDiiss,sR,PV,SNO READC3,103) NH luAl111A VfAC NHY,Htli READ(J,104) xct,xwI,IWV,XWiYW,RHO,.FG,FEXI,XROOI,PLANl READ{3,l04) AOL UBR fTX CANLlt fixINV READ 1sfABiQWINO,FWIND,XREC£P,BURN,FFIRE,HSIACK,DSIACK, & VSIACK OH READ{3 103) 108 FORHAT(I6t(l0Fl2.6)) Al1IN=l.6D'i TBEG=t(l) TEND=t(2) DO 120 1=1,7 IF 122 ro~HAT(/,' WARNING: WITH tHE PkEShNT HODEL~ LATERAL DISPERSION ' , I & 'CANNOT BE',/ilOXi'CALCULAIED FOR DECAY CnAINS. FOR DECAY ', ...... ,N & 'CHAINS USE D1=0. ,I> 123 HIIHE=NTIHE IF(lfLAG.h0.0) HTlHE=l DECFAC=l. C OPhH(UNIT=3,flLh='ROSITE.DAT' STATUS='OLD') READ(3,104) XPERC,VA,XP.OR,XAOD,XVV,XLC,XALE,FLCH,RUNF DO 332 K=l,NDOSE . READ(3,109 hND=340) KK,(DUH(l),I=l,3) 109 FORHAT{l4 1JE12.4) . IF=XLL 350 XLLCK)=XLLAFLCH C OPEN(UHlT=3~FJLE='INVNtRY.DAT',STAtUS='OLD') VOL=XLPAWID1HAXPERC lf(SS .EO. O.> SS=SR•A K~,HLIFECKK>i, & XXHU KK),EGAHHACKK,,BI~CKK>,~Ol,VO ATL,KK)1 9 2 )

111 fOkHAt(l4,,~l2.4l IF=RVERTI=l,+ATIHOP) IFAFIXINVADECFAC 15 CONTINUE Gora s 4 NISO=K-1 5 CLDSt(UNII=3> C lf(Q(26.ll.LE.O •• OR. 0(31,ll.LB.O. ,OR, 0(3~,l).LE.O.l IFL(3)=0 IF(0(29,ll.L£.0; .OR. 0(33,ll.L£.O •• OR. 0(3~,ll.L£.O.l lfL(4l=O WR1IE<6,3) (A(ll,l=l,10) 3 fORHAt('l'llOA8l///) DO 100 lWlNG=J 0 WSLABL REALA4 CO UT I COHMUN/~lKi/ALUIS~C(lOOilO)tCANLIF 1 DILFAC 1DOSV(Sl 1DY,DZ,NH,.NHY~ N & NHZ NTIHE u(lOO Ol xVERT1 EPW tEXT ff1RE & FG FIXiNV FfX,FWIN6tHLifE;HSTACK IDSRPTtlfL<7>;1FLAG: & IGAHMA1 INYRNT1 IOPT 1STAB IUP IvFAC JUt(lO)1 NuOSE NI~O,NNP, & NP,NPNllO)tPLANT,P~,OHLRtRtR~O,RUNt~SINV,S~OlSPilL,SR,SS, & TBtGfTCON CUTfTtND~TinOPt IH0YlfTWv,UBR UT< 00l6>, & VOLA L(lOul,VS1 ACK vWIND ~ALE XC XH XKD\100)1 X C , XNAHE2<100>,XPERC,XPOR,XR,XRECEP,XROOT,xw,xwr:xxH~<100> COHHON/BLK3/IFILL WRITE<6,50) TBEG TEND NPATH . 50 FORHAT(/////,' AAAAA fotAL CURIES RELEASED AND HEALTH EFFECTS FROH & YEAR' F8.0' TO YEAR' F8.0' AAAAA' 4X 'PATHWAY' 12 /// 4X &'NUCLIDf',12Xi'CURIES RElEASE6 ' ,4X,'HEALT~ EFFECTS',,, ' ' ' &' NUHB£R NAnE',/) DO ~00 K=l,NUUSE IF =TEH D [I ELU =Tl.'.HLI - TI JO) ~TIHE =l I= 1 GO to 130 110 lf(t(l).II.TEEG) t(ll=tBEG DO 120 1=2,10 !(l)=l(l- l)+DiLT IF . Ll.TEND> GO TO 120 !( ll=rEND DEL!l=TEHD-l IF(ltL(l).F.0.l.AND.(KK.1:0.32,0k.KK,E0,27)) CALL GW3(38,32,27) IF(IFL(2).EO.l.AND..EO.l.AND..EO.l.AHD.CKK.E0.28.0R.KK.E0.25)) CALL GW3C34,28,2S) IF(IFL<7>.EO.l.AHD.CKK.E0.23.0R.KK.E0.22)) CALL ' GW3C28,23,22) IFCT(l).EO.TAU.OR.TCll,EO.TBEG) CCK,l)=O.S*CCK,l) IFCI.E0.11) GO TO 140 CCK,Il=0.5*C.GI.1BEG) GO IO 220 TC l>-=U«l:G DELll=ICl-1)-l~EG NTIHE=I GO to 230 220 CONT IHUE 230 CALL GWI

IF.EO.l.AND..EO.TAU.OR.T(ll.EO.TEND) C(K,1)=0.jACAD£LT1/DELI l=I-1 IF GO TO 250 240 1=10 250 CSUl1=0. DO 2&0 J=l. I 260 C5Un=CSUl1+C(K,Jl IF, ' l XVV Yw ZB )> COHHON/BLK2/ACkiADL1AHIN1 ARH0 1BIVC100) 1 BURNrCUHDOS(lOl 1 DIFCONt I l DIFCOV D FW uOSE(~ 1001 DSIACK tGAHHA(lOO) EPW tEXI FF1RE w & FG,FIXlNV1FfX,FWIN6iHLIFE(lOO):HsTACK1IDSR~IzIFL(7)~1FLAG: 0 & IGAHl1A INrRNI IOPT STAB IUP,IVFAC JUt(lO),NuOSE Nl~O,NNP, & NP1NPNllO)tPLANT1PV,OHiRFRtRH01RUNF~SINV,SNOiSPilL,SR,SS, & TBtG ICON CUT TtND TlnOP IHOrl TWv UBR UTC 00 Gl & VOLAfL<106>,vsfACK VWIND iALE xct XH 1 XKDf1ooi,xlc ' l XNAHE2(100l,XPERC,XPOR,X~,XRECEP,XROOT,XW,XWT,XXMU(l00) COHHON/BLK3/IFILL C TL=l./XLLCK) TDELAY=XAODARVFRTCK)/XUV+CANLIF P=XL/ALDIS OKl=uATIHOP/Cl.-DEXPC-XLD(K)ATIHOPl) ODECAY=OKIADEXPC-XLDCKlATDELAYl Fl=ODECAY/(DILFACATLl DTOP = TIHOPlAVA/CNHAXLl IFCIFILL .EO. Ol GO TO 50 LB= 0 IUB = I-NH ISTEP = -1 GO TO 70 50 LB= 1 IUB = NH !StEP = 1 70 CONTINUE DO 200 H=ibNtIHE ICORR = TOP/2. TIHSAV = TCH) T(H) = I(H) + TIHOP 9 2 4 THTA=(I(H> - TDfLAY)AVA/XL THIA2=IHIA- ILAVA/XL SC=0, DO 100 JJ=LB.lUB,JST~P TIH) = IIHSAV • IIH0P - ?C0RRAXL/VA THETA= IHTA - TC0kR IF (1H£IA .LE. 0,) GO TO 195 THETA2 = THTA2 - TCORR ETA=(ZB+XLP~(l.-IFILL+(0.~-JJ)/NH))/XL Al=-XLDA>> A24H=0. IfAP/THETA)+USORT(PATHETA/(4.AXRC(K))) A24P=0. IF(THETA2,GT.0.> I A24P=0.5AhlAADS0RI(XkC(K)AP/THETA2)+DSGkT(PATHETA2/(4.AXRC(K))) SC=SC+FTRHS(Al,A23H A24H,A4,A23P,A24P,THETA2) TCORR = TCORR + DTOr1 100 CONTINUE 195 tAXkC(K)/VA IA0=-r OO-IDELAY )> IF~1AG .GT. IHEtA> IA0=1HETA I YCONC=2.ADSORT> w YCONC=0.5A=0.5AflASCAYCONC/NH - 200 CON INUE RETURN END SUB~OUtlNt GW3(1DC,JDC,KLJC) IHPLICI! REALA8 (A-H 0-Z) CHAkACTlRA8 VNUCL,XNAME2 R£ALH C 0,UT C lHlS SU~kOUtlNc EVALUATES BURKHOLDER'S SOLUTION FOR GROUNDWATER C MIGRATION EQUATIONS. FOUND IN NUC. TECH. VOL. 49, JUNE 1980 C (THREE HEHBER CHAINS WITH DISPERSION) COHHON/BLKl/ALDIS C(l00il0) CANLIF DILFAC DOSV(5),DY,DZ,NHlNHYi I NHZ,NTIHE u(l001 0) 1KVERT(lu0)1 T,xLJ,xkc1100>, ' I XVV Yw ZB COHHON/BLK2/ACR,ADL AHIN ARHOrBIV(l00) BURN CUHDOS(l0> DIFCONt I DIFC0V DIFW vOSE(~1 1 1001 DSTACK 1tGAHHA(l00)1 EPW ·1tEXT FF1RE ' FG,FIXiNv,FtX,FWIN6iHLIFE(lOO)~HSTACK1IDSRPT1IFL(7);1rLAG: I IGAHHA INrRNT IOPT 1STAB IUP,IvFAC JUt(l0) NvOSE Nl~O,NNP, I NP1NPNflO)tPLANT1PQ,OHiRFRtRH01RUNFlSINV,S~OlSPilL,SR,SS, I TBtG ICON CUT TtND TlnOP IHOrl TWv UBR UT( 00 6) , voLAfL1106>,vsfAcK QWIND XALE xct xH'XKDf100> xlc ' ' XNAHE2(100),XPERC,*POR,Xk,xRECEP,*RO0T,XW,XWT:xxH6(100) C0HH0N/BLK3/IFILL DIHENSION Fl(3),R(3),XK(3) C TL=l./XLL( JDC) 9 2 I q

TDELAY=XAOD*kVEkt(lDC)/XVV+CANLIF XK(I >=Xf XK(2)=Xl OJl=O(J[JC,l> OKl=O(K[JC1) IF Go10 40 Oll=OllAXLD(IUC)ATlMOP/(1.-DEXP(- XLD(IDC)*TIHOP)) OJl=OJlAXL[J(JDC)AtlHOP/(1.-DEXPC-XLD(JDC)ATIMOP)) Of(l=OKlAXLD Q[JECAY=AOll/(XLD-XLD(IDC)))A l DEXP<-XLDATDELAY>+XLDA I TDELAY)/(XLO(JDC)-XLD=0DECAY/(DILFACATL) QDhCAY=(OKliXLD(J[JC)/(XLD(KDC>-XLD(JDC))A(XLD(IDC>AOII l /(XLD(KDC>-XLD>-OJl))ADEXP(-XLD(KDC)ATDELAY>+ & XLD(JDC)/(XLD(KDC)-XLDAAIHl/ I -XLD(IDC))) Fl(3>=0DECAY/(DILFACATL> DTOP= TIMOPlAVA/(NMAXL) lf(lfILL .Ea. O> GO TO50 LB=O IUll=l-NH )> I ISTEP=-1 w GO IO 70 N 50 LB=l IUli=NH ISTEP=l 70 CONllNUE R=XLh(IDC)AXL/VA R(2)=XLD(JDC)AXL/VA R<~>=XLD(KDC)AXL/VA F22l=fl(2)+fl(l>*RAR<2>AXK(2)/((R(3)-R(2))AXK(3)) F412=Fl(l>AR(l)AAR(2)/((R(l)-R(3))A(R-R(2))A(R(l)-R(3))AXK(3)) F7l=F61A(XK(3)/XK(2)-l.) F72=F62*ARAR(2)/((R(2)-R(l))A(XK<2)A(R(2)-R(l))-XK(3)A l(R(J)-RAXK(2)AR(l)ARC2)ACXK(2)-XK(3))/((XK(2)A(k(2)-k(l)) l-XK(3)A(R(3)-R>>A-R>>> Fll=Fl0ACJ.-XK(l)/XK(3))A(XK(2)A(R(2)-R(l)>-XK(3)A(R(3)-R(l)))/ lCCXK(2>-XKCJ))ACRC3)-R(l))) F12=fllA(R(3)-k(l))ACXKCl)-XKC2))/CCRC2)-R(l))AXK(2)ACl.-XKCl)/ &XK(3))) 9 2 9 6 DO ~!000 ti= i • Nl' ltlE TCORR = OTOP/2. Tltl~AV = l Ci'O !(ti)= t(tl) + TltlOP THlA=(t(tl)-lDELAY)AVA/XL lf(THIA.LS.O.) GO ro 1990 THTA2~IHlA-TLAVA/XL SC2=0. SC3=0. DO 1000 JJ=ia.1u~.JStEP T(tl) = IJtlSAV + IlHOP - tCORRAXL/VA THElA = tHtA - ltOkR If (1HE1A .LE. 0.0) UO 10 1990 THtlA2 = IHTA2 - tCORR ETA=(ZB+XLPA Al =-R ( 1 HTHETA I A4=Al+UAH w A2=0.~A~tAAUSOkT(XK(l)AP/1HElA) w AS=DSOR1(PH:lE1A/(4.AXK(l))) A2=A2-A5 A:5=A2+2.AA5 IF(THETA2.LE.0.) GO TO 100 A3=0,5AETAADSORT(XK(l)AP/THETA2) A6=DSORT-R A4=-R(l)AlHEIA+0.5A~tAAPA(l.+Al) Al=-R(l)ATH£1A+O.SA£tAAPA(l,-Al) A2=0.~AETAADSORT(XK(2)AP/THETA) AS=-R A6=(P/(4.AXK(2))+R(2)-R(l))AtHETA2 IF(A6.Lt.O.) CALL ERROR(3,A6,P) IF(A6.Lt.O.) GO TO l 9 2

A6=0SORTCA6) A3=A3- A6 A6=A3+2.*A6 110 SC2=SC2• F~l2AF!kMS(Al.A2 A3 A4 A5 A6 THETA2) 2 XTH=(XK(2)AR(2)-XK(l)AR>lrHtrA}cxic1>-XK(2)) Al=l,+4.AXKAXl((2)ACRC2)-RC1))/CPACXK(l)-XK(2))) IFCAl.L!.O.) CALL ERRORC4,Al,P) If(Al.Ll.O.) GO 10 2 Al=DSORT(All A4=XlH+0.5AelAAPACl.+Al) Al=XJH+O.SAEIAAPA(l.-Al) A2=0.SAETAADSORTCXKC2lAP/THETAl . AS=CP/C4.*XKC2))+XKCllACRC2)-R(ll)/CXK-XK(2)))ATHETA IFCA5.LT.0.) CALL ERRORCS.AS,P> IFCAi.LT.O.) GO TO 2 A5=lJSORtAR(l))ATHETA/(XKCl)-XKC2))-Ck(l)+(XKC2)ARC2)- &XKCl)ARClll/(XKCll-XKC2)llA!LAVA/XL Al=l.+4.AXKCJlAXKC2)ACR(2)-k(l))/(PACXK(l)-XKC2))) )::a IF(Al.U .0.) CALL f;f GO lO 3 .i:- Al=DStJRTCAl) A4=XlH+0.5AtlAAPACl.+Al) Al=XtH+O.SA£1AAPACl.-Al) A2=0.5AETAADSORTCXK(2)AP/THETA2) AS=CP/C4.AXKC2)l+XKCl)ACRC2)-R(l))/CXKCl)-XKC2)))ATHETA2 IFCA5.LT.O.) CALL EkRORCB,AS,P) IFCAS.Lt.O.) GO TO 3 A5=DSOl CALL ckROR<9.A6,Pl IFCA6.Lt.O.) GO TO 3 A6=1JSOl:TA 2.LE.O.) f:iO TO 130 A3=0.5A£TAAOSOR1(XK(3lAP/tHETA2l A6=DSORT>IP IF CALL ERROR Al=XTH+0.5AEIAAPA(l.-Al) A2:0.SAEIAADSORT IF(AS.Lt.O.> GO TO 4 AS=DSORT GO 10 140 A3=0.5AETAADSQRT(XK(3)AP/THETA2) A6=(P/(4.AXK<3))+R<3>-R<2>>ATHETA2 IF(A6.LT.O.> CALL ERROR IF(A6.LT.O.l GO IO 4 A6=0SORT S XtH=-R(l)ATHETA I w Al=l.+4.AXK(3)A(k(3l-k(l)l/P 01 IF(Al.LT.0.) CALL £RROR(l3,Al,P> lf(Al.LT.O.l GO TO S Al=OSORT(All A4=XtH+O.SAETAAPA(l.+All Al=XTH+O.SAEIAAP*(l.-Al) A2=0.SAETAADSORT(XK(3)AP/THETA) AS=(P/(4.AXK(3)l+R(3)-R(ll)*THETA IF(AS.LT.O.l CALL ERkOR(l4.AS,P) lf(AS.Lt.0.) GO TO S AS=IJSORT A2=A2-A5 A5=A2+2.*A5 IF GO tO 150 A3=0.5AETA*DSOR?*?HE?Al IF(A6.LT.O.> CALL ERROR(l5,A6,P) IF(A6.LT.O.> GO TO 5 A6•DSORT(A6) A3=A3-A6 A6=A3+2.AA6 150 SC3=SC3+(f72if9)AfTkHSUHETA A4=Al+etA*P A2=0.~Af.tAAIJSO~t(XK(2l*~/tHETA) A5=DSORI GO TO 160 9 t l 7

A3=0.5AETAADSORT IF A4=XTH+0.5AclAAPA(l.+Al) Al=XTH+O.SAETAAPA(l.-Al) A2=0,5AETAADSORI IF(A5.LT.O.) GO TO 6 AS=D!iUl:t(A~) A2=A2-AS A5=A?.+2.AA5 IF(tHltA2.LE.O.) GO TO 170 A3=0.SAETAADSllR1 CALL £RROR(l8,A6,P) IFATHETA A4=AHl'.tAAP A2=o.~,ErAADSORT(XK(l)AP/tHEtA) AS=DSORT~AT~ET~/(fK<2>-XK(3)) Al=l,+4.AXK<2>AXK(3)A(R(3)-R(2))/(PA(XK<2>-XK(3))) IF(Al.Lt.O.) CALL ~RROR(l9,Al,P) IF(Al.Lt.0.) GO tO 7 Al=DSORT-XK(J)))AIHETA If(AS.LI.O.) CALL ERROR(20,A5,P) IF(AS.Lt.O.) GO TO 7 AS=USORI

------9 2 2 ~ ') 7 A6=A:H 2. l!A6 2 SC3=~C3+(f32~- f61-F8+FlO)A~lRHS(Al.A2,A3,A4,A5,A6,1D0) If(rllll'CA2.L£.0.) fiO TO 190 8 XtH=AR(3)-XKC2>AR(2))/ilHETA/(XK<2>-XK(3))-(R(2)+(XK(3)/i IR(3)-XK(2)AR(2))/(XKC2)-XK(3)))A1LAVA/XL Al=l.+4.AXK<2)1!XK(3)/i(R(3)-k(2))/(PACXKC2>-XK(3))) If(Al.Lt.O.> CALL ERROR(22,Al,P> If(Al.Ll.0.) ao ro 8 Al=DSOR!(Al> A4=XlH• O.~AEtAl!P/i(J.+Al) Al=XIH+O.SAEIAAPA{l.-Al) A2=0.~l!ETAl!DSORT>+XK(2)/i{R(3)-R(2))/(XK(2)-XK(3)))A!HETA2 IF If(A5.Lt.0.) GO TO 8 A5=1JSOkT(A5) A2=A2-A5 A5=A2•·2.l!A5 A3=0.~Al!Al!IJSORt(XK(2)/iP/tHt!A2) . A6=CP/(4.l!XK(2))+XK(3)A(R(3)-R(2))/(XK(2)-XK(3)))ATHETA2 IF CALL ERROR(24.A6,P) IF A3=A3-A6 A6=A3+2.AA6 SC3=f:if3+(F61-f323)H!kHS(Al A2 A3,A4 AS AG 1D0) 9 XTH=AR<3>-XK(2>AR<2>>l1HtTA/(X~<2J-X~(3)>-+(XKC3>A &R<3>-XK(2lARC2)l/(XK(2l-XKC3ll)l!TLAVA/XL Al=l.+4.AXK<2>AXK(3)A(R(3>-R(2))/(PA-XK<3>>> ):,, If(Al.LT.O.> CALL ERROR(25.Al,P> I IFCAl.Ll.0.) GO TO 9 . w Al=IJSORt SC3=SC3+(FB-rlO)At!kHS(Al A2 A3 A4 AS A6 1D0) 190 XTH=-XKARAfHEfA/fXKfl>~XKC3)) Al=l.+4.AXK(l)l!XK(3)A(R(3)-k(l))/(PA If(THETA2.LE.0.) GO O 1~00 10 XTH=CXK<3>AR(3)-XK{l)Ak(l))ATHETA/(XK(l)-XK(3))-(R(l)+(XK(3)A. IR(3)-XK(l)AR(l))/(XK(l)-XKC3)))A1LAVA/XL 9 2 2 7 D

Al=l.+4.AXK(l)AXK<3>A CALL €fRLl9,Al ,P> lf!Al.LT.0.) GO TO 10 Al=OSllRT(Al) A4=XIHiO.~A£TAA,A(l.+Al) Al=X1H+O.SAE1AAPA(l.-Al) A2=0.~AETAADSORT>>ATHETA2 IFCA~.LT.O.> CALL hRROk(30.AS,P> IF(AS.L1.0.) GO TO 10 AS=C•~~Okt(A5) A2=A2-AS AS=A2+2.AA5 A3=0.~Al?AAIJSORT(XK(l)AP/tHtitA2) A6=(P/C4.AXK(l))+XK(3)A(R(3)-R(l))/(XK(l)-XK(3)))ATHETA2 If(A6.LT.O.> CALL ERkOR(31.A6,P) IF(A6.L1.0.) GO TO 10 A6=1JSURl 200 XTH=-XK< 1 HRl 1 >Suf1Ed1-XK<2> > Al=l.+4.AXK(l)/tXK(2)A(R(2)-R(l))/CPACXKCl)-XK(2))) lf(Al.Lt.O.) CALL ERRORC32,Al,P) If(Al.Lt.O.) GO TO 200 Al=OSllRT(Al) A4=XtH+0.5AETAAPACl.+Al) Al=XTH+O.SA£1AAPA(l.-Al) A2=0.SAETAADSORTCXK(2)AP/THETA) AS=(P/(4.AXKC2))+XK(l)A(R(2)-R(l))/(XK(l)-XKC2)))ATHETA ):::, I If(A~.LI.O.> CALL EkROR(33,A5,P) w If(AS.Lt.O.) GO TO 200 co AS=IJSQkt(AS> A2=A2-AS AS=A2-t2.AAS A3=0.~AlIAAIJSOkT(XK(l)A,/tHETA) A6=(P/(4.AXK(l))+XK(2)A(R(2)-R(l))/(XK(l)-XK(2)))ATHETA IF(A6.LT.0.) CALL ERkOk(34,A6,P) If(A6.Lt.0.) GO TO 200 A6=DSORT(A6) A3=A3-A6 A6=A3-t2.AA6 SC3=SC~·Fl2AFTkHS(AltA2~A3,A4,AS,A6,lDO) lf(tHetA2.L~.0.) GO O ~10 11 XTH=-XK(l>AR(l))/(XK(l)-XK(2)))A1LAVA/XL Al=l.+4.AXK(l)AXK(2)A(R(2)-R(l))/(PA A2=A2-AS AS=A2+2.AA5 A3=0,5AtTAADSOkT(XK(J)AP/tHB?A2) ------92 f 2 ;j 19 0 AG=(P/(4,*XK(l))+XK(2)*(R(2)-R(l))/(XK(l)-XK<2>>>*THETA2 IF CALLEkROR(3'l.AG,P> IFIA6.Lt.0.) GQ TO 11 AG=D~,ClklI A6> A3=A3-A6 AG=A3+2.AA6 . SC3=SC3+Fl2*flRHS(Al,A2,A3,A4,A5,A6,lDO> 210 CONTINUE TCORk=lCORR+DlOP 1000 CONTINUE 1990 TIM)= tlMSAV IFISC2.Lt.0.) SC2=-SC2 If(SC3.Ll.0,) SC3=-SC3 CIJOC,H)=0.5*SC2/NH CIKDC~.n)=0.5ASC3/NH 2000 CONTINUE RETUkN END FUNCTIONHEPCI(K,CUkl~S~NPA!H) IHPLICft REALA8(A-H,0-L) DIHENCIONHECON(lOO) C EPA DATA DATAHlCON/3.lGD-3.4.58D-2,-l.OODO,-l.OOD0,6.80D-4,l.81D-3, I -l.OODO,l.21D-l,6.10D-3,6.94D-2,-l.OOD0,2.860-4, - l.OODO, & l.20D-l.l.09D-2,3.83D-3,l.98D-2,-l.OODO,-l.OOD0,9.50D-l, & 3.17D00,3.17DOO,l.06DOO,l.OGDOO,l.33DOO,l.OGDOO,l.33DOO, I l.06D00,5.98D-l,2.29D-2,6.93D-2,6.54D-2,l.l2D-3,6.77D-2, & 7.31D-l,2.77DOO,-l.OODO,-l.OODO,-l.OODO,-l.OODO,-l.OODO, & -l,OODO,-l.OODO,:l,OOD0 -l.OODO,-l.OODO,-l.OODO,-l.OODO, ):> 1 I & -l.0000,-1.00DO,~OAO.OOuO/ w C RAJ•;IJATA \.0 C DAlAHECON/-l.OODO,l.52D-4,-l.OODO,-l.OOD0,2.08D-5,-l.OODO, C & -l.OOD0,7.69D-3,-l.OODO,-l.OODO,-l.OOD0,3,33D-6,-l.OODO, C & 2.04D-4,l.33D-4,6.67D-5,3.45D-4,-l.00D0,-l.00D0,-l.00D0, C & -l.OOD0,2.63D-l,-l.OODO,-l.OOD0,8.33D-3,-l.OODO,-l.OODO, C & -l.OOD0,6,67D-3,l.52D-4,2.860-3,8.33D-4,-l.OOD0,7.69D-4, C l 4.35D-3,7,69D-3,-l.OODO,-l.OODO,-l.OODO,-l.OODO,-l.OODO, C l -l.OOD0,-1.00DO,-l.OODO,-l.OODO,-l.OODO,-l.OODO,-l.OODO, C & -l.00D0 -1.00D0/ HEPCJ=CURlf.SAHf.CON(K) IFINPAIH.NE.l) H£PCI=-l. RETURN END SUBROUlINEPEAK(NPATH> IHPLICIT REALABIA-H 0-Z> CHARACTER*BVNUCL,XN~HE2 REALH CO UT COHHON/BlKf/ALDIS,CllOOil0)1 CANLIF1 DILFAC1DOSV(5)(DY,DZ,NHiNHY1 , l NHZNTIHE 01100 0) xVERT(luO)Tllo) TTIHE5) VAVNuCL(J) ' WIDfH,WSLhLllO~,xA6D,XL,XLDl160) ,XLlllOO) ,XLi,xicClOO), , & XVVYW ZB COHHON/BLK1/A~RiADL1 AHIN1 ARHO,BIV(l00)1 BURN1CUHDOSl10)1 DIFCONL l DIFCOVD FWuOSE<~ 1001 DSIACKtGAHHAllOO) EPW tEXT FF1RE & FG1FIXiNV1 FfX,FWINDlHLitE;HSIACK1 IDSRJI1 ItLl7)~1FLAG: l IGAHHAIHrRNT IOPT !STABIUP IvFAC JUt(lO) NuOSENI~O,NNP, I HP,HPH{lO)tPLAHI1 P6,0HiRtR?RA01RUHtiSIHV,S~01SPilL,SR,SS, l IBEGtTCON1 CUTfitHDiIInOPi IHOrlfIWv,UBR(UT(100l6), I VOLAL,XPERC,XPOR,x~,xREtEP,XRobt,xw,xw1:xxHu<100> COHHOH/BLK3/IFILL 9 7

WRITE(G,100) NPATH 100 FORHAI(/////. ' AAAAAPEAK CONCENTRATIONS AND TIMES FOR PAIHWAY ' , l 12 ' AAAAA'Ill 4X 'NUCLIDE'9X 'PEAK CONCENTRATION'5X l 'PtAK TIHE'1'9x,'AvtRAGE DOSE1,1:1 NUHBER NAHE',1ox:1 (~l/HAA3)', l 12X1 '(YR>', 2X1 'AT PEAKTIHE',/,G2X,'(HR£H/YR)' ,/) DO3u0 K=l.NfJOSt IFIO.EO.O.) GO TO 300 IJRll"f.("', 10) K 10 fORHA1(' K = ',12) Kl<=K NTIHE=5 IPASS=O CHAXl=O. TMAXl=O. TBkEAK=(ZB+O.~AXLP/NH>AXRC(K)/VA+XAODARVERT(K)/XVV+CANLIF THESH=XLPAXRC(K)/(NHAVA> [IELl=.15/XLL(K> IF(~ELl.GT.HLlFE(K>> D£LT=HLIFE(K) IFIDELT.GT.0.5ATBREAK)DELT=O.SATBREAK DO llO I=l,5 110 TCI>=TBREAK+(I-3>*DELT IBREAK=TBREAK+THESH 120 CALLGWl IF.it.CHIN> CHIN=C IF IHAX=I THAX=t(l) 140 CONTINUE ~:+DELI DO146 1=2 S 146 1(1)=t=THAXl+(l-3)*DELT GO10 120 149 IF(CHAX.£0.0.) GO tO 300 NTIHE=l 9 2 I ? 7 i) GO to (l~o.210,210,210,1&0) lHAX l~8 f.~1}~~ C (10 200 1=4, l -1 200 t((l=T(l+l)-6ELT GO l"O 130 210 NTIHE=2 220 l(3l=tHAX-DELT T(4l=tHAX t(Sl=IHAX• OF.LT DEU=O.SADELT I< ll=lHAX-DELT T( 2 >=·tHAX+DELT CALL G~l O(K > IF(IFL(l).EO.l.AND.CKK.E0.32.0R.KK.E0.27)) CALL GW3(38,32,27) IF(IFL(2).EO.l.AND.(KK.E0.27.0R.KK.E0.24)) CALL GW3(32,27,24) IFCIFLC3l.EO.l.AND.CKK.E0.31.0R.KK.E0.26)) CALL GW3(36,31,26) IF(IFL(4).EO.l.AND..EO.l.AND. !~<~<~t~>;~E.CHAX) GO TO 23u • . ,nA;, \ :' . • } ·;nAX='t< ,1 23C 1 CONt lNUE - IF((tHAX-CHINl/CHAX.Gt.0.02) GO TO 220 , PEKDOS=l.~9A00SE(l KlAUt(K l)ACHAX IF(~PATH.E0.2> PEKLOS=l.E9lDOSE(l,KlAUT(K,2lACHAX WRITE C CAI.CULAlIONS FOR'DI~~ERSION CONCENTRATION FACTOR - HUNG(X,Y,Z) IHPLICit REALA~

T2k=USOkT<4.AXUUAVV+VVAVVl ARG=XDLA1 ?TIME 5) VA VNuCL(~)1 , w1ofH,WSLABL<10>,XAOD,XL,XLD<160>,xLL<100>,xLi,x,c<100>, ' & XVV YW,ZB COHHON/Ul'tAK/BDENS &k,COL1 COP1 COCHilfCOFISH,COGHI1 1 COHEAT 1CWAT, & DECA FF,FI tlS1 FHC 1tHG,Fr1 FS,IN AKE(5) KK,NUCLID PORb,PP ' GBw,6cw,ort1GF~iGG~,Rw,s1~FLiTEl,TE2,TFISiTFl,THi6TH2,,TH1, & TH4 TIHAViTb UCnlLK,UF1SH,UGnILK,ULEAFY,UnEAT,UPR D,UwAT, & WIRATE1 XAnBWt1 Yl Y2 C CSPO/PP = SOIL CONCENTRATION IN PCI/KG XAHBEF=DECA+XAMBWE TERMl=WlRATEACWAIATVARWA(l.-DEXP<-XAHBEFATE))/(YAXAHBEF) CSPO=PP JF(KK .t-0. 6) GO 10 JOO RE1=1.+8DENSARV~Rt(J)/PORS TDEC=XLD(J)iSlNFL/(0.l~AkET) EXPl=O. >I ~ EXP2=0. N IFCXLll(J)ATIHAV .LE. 85.) EXPl=DEXP(-XLD(JlAtlHAV> IF(TDECAtIHAV .LE. 8~.) EXP2=DEXP(-1DECATIHAV) ARG = <1.-EXPll/XLD(J) - (l.-EXP2)/TDEC IFCSINFL .EG. O.> ARG=(l.-(1.+XLD(J)ATIHAV)ADEXP<-XLD(J) I A11HAV))/(XLD(J)AA2ATIHAV) · lf(SJNfl .• GT. 0.) AkG = ARG/(tIHAVA(tDEC-XLD(J))) CSPO = CWA1AWIRA1EA8160.AFIAARG 100 TERH2=CSPOA&/PP COV=(tEkHJilEkM2lAUEXP(-DECAATH) RETURN END FUHCtlON FTRHS(Al A2,A3 A4,A~,A6,T) IMPLICIT REALA8 (A-H1 0-L)1 C lHIS FUNCTION COHPUTts: C EXP GO tO 20 ARG=AliERfCPA(A3ASIGH) 9 2 7 IF(ARG.Gt.85.> ARG=85. IF C BASED OH CONtlNUED 1-'RACTION FRON ABRAMOWITZ I STEGUH 17.1.14 IFCDABS(Z).Gt.2.) GO IO 10 DERFC=l.-DEkl-'(Z) GO IO 30 10 XNUt1=20. ZAB=DABS FRAC=ZAB DO 20 I=l,40 9 2 7 9

FRAC~ZA&+XNUN/FRAC 20 XNUN=XNUH-0.5 DEkl'C=O, If IHPLICIJ REALA8 (A-H 0-Z) C ~RfCPA IS NATURAL LO~ Of COHPLEHENTARY ERROR FUNCTION C BASEDIF

DATA FILES AND OUTPUT FROM PATHRAE-EPA FOR SAMPLE PROBLEM APPENDIX B DATA FILES AND OUTPUT FROM PATHRAE-EPA FOR SAMPLE PROBLEM

The five data sets used for the sample problem describ2d in Chapter 4 are presented here. Each data set is di sp 1ayed in two fo n s . First, the Fortran variables are given in the order in which they :re read (load form). Then the data set is given in the form read by PAT H\\E-EPA.

B.l DATA SET ONE - BRCDCF.DAT

NOOSE, TCUT, SINV NTIME, (T(M), M=l, NTIME) KK, XNAME2(KK), (DOSE(I,KK), I=l,3~(UTl(I,KK), UT2(I, KK) , I = 1,3) Note: The last line is repeated for each nuclide in the dose library.

80,0.,0. 10,0.,l.,15.,50.,100.,200.,350.,500.,750.,1000. 41,H-3 8.6E-8, 1.2E-7, o.,o.,o.,o.,o.,o.,o. 42,C-14 1. SE-6, l.lE-8, o.,o.,o.,o.,o.,o.,o. 43,Fe-55 4.7E-7, 1. 9E-6, 9.6E-13,0.,0.,0.,0.,0.,0. 44,Co-60 5.8E-6, 4.0E-4, 1.2E-08,0.,0.,0.,0.,0.,0. 45,Ni-59 1. SE-7, 1. 7E-6, 1.8E-12,0.,0.,0.,0.,0.,0. 46,Ni-63 3.7E-7, 4.4E-6, o.,o.,o.,o.,o.,o.,o. 47,Sr-90 5.6E-6, 2.0E-4, o.,o.,o.,o.,o.,o.,o. 48,Nb-94 2.7E-6, 5.8E-4, 8.0E-09,0.,0.,0.,0.,0.,0. 49;Tc-99 l.9E-6, 2.2E-5, 2.9E-15,0.,0.,0.,0.,0.,0. 50,1-129 8.6E-4, 5.7E-4, 8.lE-11,0.,0.,0.,0.,0.,0. 51,Cs-135 6.SE-6, 4.SE-6, o.,o.,o.,o.,o.,o.,o. 52,Bal37m O.OE+O, l.4E-9, 3.lE-09,0.,0.,0.,0.,0.,0. 53,Cs-137 4.4E-5, 3.0E-5, o.,o.,o.,o.,o.,o.,o. 54,Ra-226 7.4E-4, 2.lE-2, 3.7E-ll,O.,O.,O.,O. ,0.,0. 55,Th-232 2.2E-4, 2.SE-1, 2. 8E-12, 0. , 0. , 0. , 0. , O. , 0. 56,U-234 8.4E-6, l.9E-l, 3.3E-12,0. ,0. ,0. ,0, ,0. ,0. 57,U-235 8.6E-6, 1.8E-l, 8.3E-10,0.,0.,0.,0 , ,0.,0. 58,U-238 7.9E-6, 1. 7E-1, 2.6E-12,0. ,0 .. ,0. ,0 . ,0. ,0. 59,Np-237 3.lE-3, 4.0E-1, 1.4E-10,0.,.0.,0.,0. ,0.,0. 60,Pu-238 2.9E-3, 3.6E-l, 3.4E-12,0. ,0. ,0. ,0 . ,0. ,0. 61,Pu-239 3.4E-4, 3. 7E-l, 1.6E-12,0.,0.,0.,0.,0.,0. 62,Pu-241 7.6E-5, 4.4E-3, o.,o.,o.,o.,.o.,o., u.

B-2 63, Pu-242 3.3E-4, 3.5E-l, 2. 7E-12,0. ,0. ,0. ,0. ,0. ,0. 64,Am-241 3.4E-3, 4.4E-l, 1. 3E- l O, 0. , 0. , O. , 0. , 0. , 0. 65,Am-243 3.5E-3, 4.4E-1, 2. 9E -10, O. , O. , O. , O. , 0. , 0. 66,Cm-243 2.0E-3, 2.7E-1, 7 .OE-10,0. ,0. ,0. ,0. ,0. ,0. 67,Cm-244 1.6E-3, 2.lE-1, 3.2E-12,0. ,0. ,0. ,0. ,0. ,0. 68,Ru-106 1.lE-5, 1. 2E-3, o. ,0. ,0. ,o. ,0. ,0. ,0. 69,Sb-125 O.OE+O, 2.8E-5, 2.2E-09,0. ,0. ,0. ,0. ,0. ,0. 70,Cs-134 6.6E-5, 4.5E-5, 8. OE-09, 0. , 0. , 0. , 0. , 0. , 0. 71,Eu-154 O.OE+O, 3.4E-4, 6.lE-09,0.,0.,0.,0.,0.,0. 72,Pb-214 3.8E-7, 7.8E-7, 1.3E-09,0.,0.,0.,0.,0.,0. 73,Bi-214 3.0E-7, 2.4E-7, 7.2E-09,0.,0.,0.,0.,0.,0. 74,Pb-210 3.8E-4, 9.8E-3, l.2E-ll,O.,O.,O.,O.,O.,O. 75,Po-210 6.4E-4, 1.7E-2, 4.4E-14,0.,0.,0.,0.,0.,0. 76,Ra-228 O.OE+O, 4.5E-5, 4.6E-09,0.,0.,0.,0.,0.,0. 77,Ac-228 4.7E-4, 4.0E-3, 2.9E-18,0.,0.,0.,0.,0.,0. 78,Th-228 7.7E-5, 5.5E-l, l.3E-ll,O.,O.,O.,O.,O.,O. 79,Pb-212 2.4E-5, 2.8E-4, s.oE-10,0.,0.,0.,0.,0.,0. 80,Tl-208 O.OE+O, O.OE+O, 1.6E-08,0.,0.,0.,0.,0.,0.

8.2 DATA SET TWO - ABCDEF.DAT

(A(I), I = 1,10) NISO, IFLAG, NNP (NPN(J), JUF(J), J=l, NNP) TIMOP, XLP, WIDTH, RFR, XR, SPILL ARHO, ALDIS, DY, DZ, SS, SR, PV, SNO NM, !GAMMA, IVFAC XCT, XWT, TWV, XW, YW, RHO, FG, FEXT, XROOT, PLANT AOL, UBR, FTX, CANLIF, FIXINV XH, ACR, EPW, DIFW, DIFCON, TCON~ DIFCOV - ISTAB, VWIND, FWIND, XRECEP, BURN, FFIRE, HSTACK, DSTACK, VSTACK, QH (IFL(I), I= 1,7) INPRNT, IDSRPT, IFILL, IOPT

******** 6 PWRHU - MD SE 3/86 ***~**** 29,0,7 2,2, 3,1, 5,1, 6,1, 7,0, 8,0, 10,0 20.,590.,590.,3.57E5,50.,0.0 1600.,0.,0.,0.,.801,0.,0.,0. 20,0,2 0.6,6.,2.10E6,50.,0.,590.,0.22,0.228,l.,O. 5.E-7,8035.,0.228,0.,1. 240.0,5.56E-04,0.2,2.00E-02,6.00E-05,20.0,1.14E-02 4,2.0l,0.093,345.,2.51E-5,0.00274,l.O,O.,O.,O. o,o,o,o,o,o,o 1,0,0,0

8-3 8.3 DATA SET THREE - RQSITE.DAT

XPERC, VA, XPOR, XAQD, XVV, XLC, XALE, FLCH, RUNF KK, XLL(KK), XKD(KK), RVERTI(KK) Note: The last line is repeated for each nuclide in the inventory •

• 454,27.8,.39,7.7,l.ll,10.,1.96E-4,l.0,.322 41,3.48E-3, .01, .01 42,3.48E-3, .01, .01 43,2.99E-5,6000.,6000. 44,2.99E-5,55., 55. 45,2.99E-5,150.,150. 46,2.99E-5,150.,150. 47,4.96E-5,20.,150. 48,2.14E-5,350.,350. 49,l.63E-3, .5, .5 50,4.40E-4, 3., 3. 51,l.50E-5,500.,1000. 52,1.50E-5,500.,1000. 53,l.50E-5,500.,1000. 54,6.84E-6,2.20E+2,2.20E+2 55,2.51E-8,6.00E+4,6.00E+4 56,2.01E-6,7.50E+2,7.50E+2 57,2.0lE-6,750.,750. 58,2.01E-6,7.50E+2,7.50E+2 59,2.78E-4, 5., 5. 60,2.15E-6,3500.,3500. 61,2.15E-6,3500.,3500. 62,2.15E-6,3500.,3500. 63,2.15E-6,3500.,3500. 64,l.87E-5,80000.,80000. 65,l.87E-5,80000.,80000. 66,2.15E-6,3300.,3300. 67,2.15E-6,3300.,3300. 68,2.14E-5,220.,220. 69,3.32E-5, 45.,45. 70,l.50E-5,500.,1000. 71,7.54E-7,4000.,4000. 72,6.84E-6,2.20E+2,2.20E+2 73,6.84E-6,2.20E+2,2.20E+2 74,6.84E-6,2.20E+2,2.20E+2 75,6.84E-6,2.20E+2,2.20E+2 76,6.84E-6,2.20E+2,2.20E+2 77,6.84E-6,2.20E+2,2.20E+2 78,2.51E-8,6.00E+4,6.00E+4 79,2.51E-8,6.00E+4,6.00E+4 80,2.51E-8,6.00E+4,6.00E+4

B-4 8.4 DATA SET FOUR - INVNTRY.DAT

KK, HLIFE(KK), Q(KK,M), XXMU(KK), EGAMMA(KK ) , BIV(KK), SOL(KK), VOLATL(KK) Note: This line is repeated for each nuclide in the inventory. Ii II 41,1.23E+Ol,l.31E+02,0.00E-01,0.00E-01,0.00E+00,0.,0.9 42,5.73E+03,7.43E+OO,O.OOE-01,0.00E-01,0.00E+00,0.,0.75 43,2.70E+OO,l.20E+02,0.00E+OO,O.OOE+00,4.00E-03,0.,0.0025 44,5.25E+00,2.46E+02,8.30E+OO,l.25E+00,2.00E-02,0.,0.0025 45,8.00E+04,l.43E-01,0.00E-Ol,O.OOE-01,6.00E-02,0.,0.0025 46,9.20E+Ol,4 . 41E+Ol,O.OOE-01,0.00E-01,6.00E-02,0.,0.0025 47,2.86E+Ol,3 . 40E+00,2.00E+Ol,3.39E-01,2.50E+00,0.,0.0025 48,2.00E+04,4.54E-03,1.15E+Ol,7.87E-01,2.00E-02,0.,0.0025 49,2.13E+05,l.90E-03,0.00E-01,0.00E-01,9.50E+OO,O.,O.Ol 50,1.70E+07,5.61E-03,9.70E+Ol,3.96E-02,l.50E-Ol,O.,O.Ol 51,3.01E+06,l.90E-03,0.00E-Ol,O.OOE-Ol,8.00E-02,0.,0.0025 52,3.00E+Ol,5.70E+Ol,1.30E+Ol,6.62E-Ol,1.50E-01,0.,0.0025 53,3.00E+Ol,5.70E+Ol,1.30E+Ol,6.62E-01,8.00E-02,0.,0.0025 56,4.47E+09,4.27E-03,5.00E+Ol,1.20E-Ol,8.50E-03,0.,0.0025 57,7.04E+08,6.85E-05,2.90E+Ol,1.77E-01,8.50E-03,0.,0.0025 58,4.47E+09,l.25E-03,6.30E+Ol,4.80E-02,8.50E-03,0.,0.0025 59,2.10E+06,9.68E-06,5.00E+Ol,6.02E-02,1.00E-01,0.,0.0025 60,8.77E+Ol,1.20E-01,5.00E+Ol,5.62E-02,4.50E-04,0.,0.0025 61,2.42E+04,1.12E-01,5.00E+Ol,1.37E-01,4.50E-04,0.,0.0025 62, l .32E+Ol,4.35E+00,5.00E+Ol,1.32E-01,4.50E-04,0.,0.0025 63,3.79E+05,2.~3E-04,5.00E+Ol,O.OOE-Ol,4.50E-04,0.,0.0025 64,4.59E+02,2.31E-Ol,5.00E+Ol,5.74E-02,5.50E-03,0.,0.0025 65,7.37E+03,5.41E~05,5.00E+Ol,7.29E-02,5.50E-03,0.,0.0025 66,3.19Et01,5.52E-05,l.80E+Ol,2.24E-01,8.50E-04,0.,0.0025 67,1.76E+Ol,5.26E-02,5.00E+Ol,6.66E-02,8.50E-04,0.,0.0025 68,1.01E+00,5.04E-02,1.40E+Ol,6.00E-01,7.50E-02,0.,0.0l 69,2.77E+00,1.85E+OO,l.70E+Ol,4.60E-01,2.00E-01,0.,0.0025 70,2.06E+00,5.04E+Ol,1.20E+Ol,7.00E-01,8.00E-02,0.,0.0025 71,8.50E+00,1.86E-01,1.00E+Ol,l.OOE+00,1.00E-02,0.,0.0025

8.5 DATA SET FIVE - UPTAKE.DAT

SINFL, PORS, SOENS Yl, Y2, XAMBWE, TEl, TE2 THl, TH2, TH3, TH4, FP, FS QFC, QFG, TFl, TS, TFIS FI, WIRATE, QCW, QGW, QBW ULEAFY, UPROD, UCMILK, UMEAT, UWAT, UFISH NUCLID(K), RW(K), BR(K), FMC(K), FMG(K), FF(K), FIS(K) Note: The last line is repeated for each nuclide in the inventory.

B-5 0.43, 0.39, 1.60 0.67, 0.65, 2.lE-3, 720., 1440. 0.0,2160., 24., 1440., 1.0, 0.83 50., 6., 48., 480., o. 0.40, .015, 60., 8. , 50. 14., 88.5, 89.4, · 0., 62.8, 481. 6, o. H-3 .25, 0. , 0., 0., 0. , 9.0E-1 C-14 .25, 0. , 0. , 0., 0. , 4.6E3 Fe-55 .25, .001, 2.5E-4, 1.3E-4, 2. 0E-2, 1.0E2 Co-60 .25, .007, 2.0E-3, 1.0E-3, 2. 0E-2, 5.0El Ni -59 .25, .06, 1.0E-3, 6.7E-3, 6. 0E-3, 1.0E2 Ni-63 .25, .06, 1.0E-3, 6.7E-3, 6.0E-3, 1.0E2 Sr-90 .25, .25, 1.5E-3, 1.4E-2, 3.0E-4, 3.0El Nb-94 .25, .005, 2.0E-2, 2.5E-3, 2. 5E-l, 3.0E4 Tc-99 .25, 1.5, 1.0E-2, 2.5E-2, 8.5E-3, 1.5El 1-129 .25, 0.05, 1.0E-2, 3.0E-1, 7.0E-3, 1. 5El Cs-135 .25, .03, 7.0E-3, 3.0E-1, 2.0E-2, 2.0E3 Ba-137M .25, 1.5E-2, 3.5E-4, 3.0E-1, 1. 5E-4, o• Cs-137 .25, • 03, 7.0E-3, 3.0E-1, 2.0E-2, 2.0E3 Ra-226 .25, 1.5E-3, 4.5E-4, 5.0E-6, 2.5E-4, 5.0El Th-232 .25, 8.5E-5, 5.0E-6, 0.' 6.0E-6, 3.0El U-234 .25, 4.0E-3, 6.0E-4, 5.0E-4, 2.0E-4, 2.0EO U-235 .25, 4.0E-3, 6.0E-4, 5.0E-4, 2.0E-4, 2.0EO U-238 .25, 4.0E-3, 6.0E-4, 5.0E-4, 2.0E-4, 2.0EO Np-237 .25, 1.0E-2, 5.0E-6, 5.0E-6, 5.5E-5, l.OEl Pu-238 .25, 4.5E-5, 1.0E-7, 1. 5E-6, 5.0E-7, 3.5EO Pu-239 .25, 4.5E-5, 1.0E-7, 1. 5E-6, 5.0E-7, 3.5EO Pu-241 .25, 4.5E-5, 1.0E-7, 1. 5E-6, 5.0E-7, 3.5EO Pu-242 .25, 4.5E-5, 1.0E-7, 1. 5E-6, 5.0E-7, 3.5EO Am-241 .25, 2.5E-4, 4.0E-7, 0., 3.5E-6, 2. 5El Am-243 .25, 2.5E-4, 4.0E-7, 0., 3.5E-6, 2.5El Cm-243 .25, 1.5E-5, 2.0E-5, 0., 3.5E-6, 2.5El Cm-244 .25, 1.5E-5, 2.0E-5, 0.' 3.5E-6, 2.5El Ru-106 .25, .02, 6.0E-7, 1.3E-4, 2.0E-3, l.OEl Sb-125 .25, .03, 1.0E-4, 1. 5E-3, 1.0E-3, l.OEO Cs-134 .25, .03, 7.0E-3, 3.0E-1, 2.0E-2, 2.0E3 Eu-154 .25, 4.0E-3, 2.0E-5, 2.0E-5, 5.0E-3, 2.5El Pb-214 .25, 9.0E-3, 5.0E-4, 0., 4.0E-4, o. Bi-214 .25, 9.0E-3, 5.0E-4, 0., 4.0E-4, o. Pb-210 .25, 9.0E-3, 5.0E-4, 0., 4.0E-4, 1.0E2 Po-210 .25, 9.0E-3, 5.0E-4, 0., 4.0E-4, 5.0E2 Ra-228 .25, 1.5E-3, 4.SE-4, 5.0E-6, 2.SE-4, 5.0El Ac-228 .25, 3.5E-4, 2.0E-5, o., 2.5E-5, o. Th-228 .25, 8.5E-5, 5.0E-6, o., 6.0E-6, 3.0El Pb-212 .25, 9.0E-3, 2.0E-3, 0., 4.0E-2, o. Tl-208 .25, 9.0E-3, 2.0E-3, o., 4.0E-2, o.

B-6 7

B. 6 OUTPUT FROM PATHRAE-EPA

The fo l lowing is the output from the PATHRAE-EPA computer code for the

sample problem generated by the five data sets defined in Sections B.l

t hrcu gh B.5, and described in detail in Chapter 4.

B-7 9 ,-

AAAAAA**o P~R~U - ~D jE 3/So HHHH.

!DIAL EOU:VALEN~UPIA~E FAC!ORS FDR PATHR~E

I : J • ! j UT(J,: ; UT(J,Ji ·JI( J. 4) UT(J.5) UTCJ,6) R ~•ER WEi.L En•S:ON BA'.'.HTUB SPILLAGE FOOD ,WCL ':DE L YR L/ YR L. ''fR L," f R L/YR l{G/Y!l M-" 5,84:E+~2 5.84:E+02 5.B41E+02 5.B4:E+02 5.841E+02 O.OOOE-;i: C -:-l -l.8 ~oE+C2 4.816E+02 4.S:6E+02 -l.8 : GE+02 4.BluE+02 O.OOOE-01 F~-55 i,l28E+02 7.l28E+C2 7.128E+02 7.12BE+02 7.l28E+02 9,002E-O.: ·:c -60 7.384Et02 7.384:+02 7,3S4E+02 7.38-lE+v2 7.384E+02 5.397E-Ol Ni-5S £.067E+C2 6.067£+02 6.067E+02 7.287E+02 7.06GE+02 l. 492E+•:i0 \J~·oJ a.066£+02 6,066E+02 6.0GaE+02 6.!16E+02 G.13 : E+02 1. 490E+OO Sr-90 ~-6~9E+02 ~-649~+C2 ~-619E+O~ 5.67BE+02 5.691E+02 l.173E+O : :b-94 ~.9,3E+03 ~.973t+03 w,9 , 3E+Ow 3.441E+03 3.352E+03 5.07'."E+OO !c-99 7.704E+02 7.704E+02 7.704E+02 l.012E+C3 l.012E+03 2.238E+02 I-129 7,347E+02 7.347E+02 7.347E+02 7.538E+02 7.537E+02 3.848E+.:>O Cs-13 8,075E+02 8.075E+02 8.075E+02 l.094E+03 l.030E+03 2.753E+CO Ba:37 C.OOOE-0! O.OOOE-01 O.COCE-01 O.OOOE-01 O.OC·OE- 01 O.OOOE-01 Cs-13 8.070E+02 8.070E+02 8,070E+02 8,079E+02 8.082E+02 2.746E+00 '.>]34 5,51CE+02 5.510E+02 5.5 : JE+02 5.S14E•03 5. 57GE+02 8.233£-02 U-235 5.510E+02 5,510E+02 5.~10E+02 5.594E+C2 5.57GE+02 8.233E-02 '.:-238 5.SlOE+02 S.510E+02 5.510E+02 5,514E+02 5.57GE+02 8.233£- 02 OJ No-: .37 5.4!9E+02 5.419E+C2 5.4!9E+02 ~.440E+02 5.440£+02 2.633E-01 I ?u-JJa 5.413£+02 5.4~3Et02 5,413:+02 5.413E+02 5.4l3E+02 l.lGOE-03 CX> Pu-:39 5,413E+v2 S.413E+02 5.413E+02 5.415E+02 5.414E+02 l.lG!E - 03 h-:>n 5.410E+02 5.4 10E+02 5.4 : 0E+02 5.410E+02 5.4lOE+02 l.:54E-03 Pu-24: 5.413E+02 5.413E+02 5.413E+02 5.4 : 5E+02 5.414E+02 1.161£-03 .;1-24: 5.4:4E+02 5.~14EtO? i.414E+0? 5.417E+02 ~.4!7E+02 A11-2-13 5.414E+02 5.4:4E+Oi J,414E+O~ 5.423E+02 J.421E+02 gJ3ijE=8~ c,~-243 5.415E+02 5.415E+02 5.415E+02 5.415~+02 5.415E~02 1.05GE-03 Cm-244 5,4l4c+02 5.414:+02 5.414:+02 5.414E+C2 5.414E+02 l.055E-il3 Ru-106 5.535E+02 5.535E+02 5.535E+02 5.535E+02 5.535E+02 4.884E-Ol St,-125 5.49GE+02 5.49GE+02 5.496E+02 5.495E+02 5.495E+02 8.564E-Ol c ..-134 8.000E+02 8,u00E+02 8.000E+02 7,g98E+02 7.998E+02 2.541:E+•O E•J- l 54 5.841E+02 5.841E+02 5.84 : E+02 5.84 1E+02 5.841E+02 l.200E-Ol .,_.,_x-,,.i<.Hid<.k. PA!HRAE INPUT SUMMARYAA******** THERE ARE 80 ISOTOPES IN THE DOSE FACTORLIBRAR Y :HE CUTOFF VALUE FOR NUCLIDE ~ALF L!~ES IS 0.0 YEARS i DEFAULTlNVE~IORY VALUE FOR CUTOFF NUCLIDES IS O.OCE-01 CI NUMBEROt IIHtS ~OR CALCULATION:s lO :YEARSTO BE CALCULATEDARE ••• ; I 0.00 1.00 15.00 50.00 100.00 200.00 350.00 500.00 750.00 1000.00 I : THERE ARE 29 ISOTOPES IN THE INVENTORYFILE THE VALUEOF IFLAG IS 0 NU~BER OF PATHWAYSIS 7 . PATHWAY TYPEOF USAGE FOR UPTAKEFACTORS 2 GROUNDWATERIO WELL 2 • 9 A. 7 l r ·~ , 3 E!IOS • ;\ SITE ; ' ' ,.,r: FOG D GROt,.; JN .. .,o N,UURAL E :o:wrr DENSITY (Ml .., O.OOE-0:. LOHG:TUD:iAL DIS?ER~:VITY -- Y Ax:s ·(Hii2/YR) .,\J LATERAL DISPERS:ON COEFFIC:ENT CALCULAT: •N CF MES~ PC!~TS FOR DISPERS:ON v ~U~B3R :: GAHMA PA!HUAY OPT:ONS FLAG FGR PATHWAY 0.60 FLAG FOR At~OSPHERIC ~ASTE (METERS) G.00 COVER IH!C~NESS OVER {METERS) T~:C {~ESS OE ~ASTE IN PITS 2.!00E+OG 50. VOLUME ANNUAL ADULT TO DUST v. FRACI:ON OF YEAR EXPOSED l.OOE+OO C~N!S:ER L!FETINE OF RO[~S IN RECLAIMER HOUSE S.5GE-04 / EIGHT (CHANGES/SEC) ::.OOE-01 Rh:E IN RECLAIMER HOUSE AIR CHANGE OF THE WASTE 2.00E-02 2 ~ ~ ~~ EMA~ATING PC~ER (CMiA2JSECl G.OOE-05 CG 2~~ - ~ ~ ~ ~~8N iN WASTE ~IFi~S ION OF R~ IN CuNCRETE (CM,,2/SEC) 20.0 D!FFUS!ON CDEFr. FLOOR (CH, THICKNESS OF CONCRETE SLAB 1. 14£-02 IN COYER CCHiA2/SEC) 4 D:FFUSION COEFF. OF RADON 2.01 SIAB:LITY CLASS ATHCSPHERIC SPEED l~/S) 0.0930 AVERAGE ~IND BLOWS TOWARD RECEPTOR 345.0 FRACTION OF TIME WIND PATHWAY O.OOE-01 GAS VELOCITY

FLAG FOR GROUNi~~:ER PATHWAY OPT : ONS ~~OUN: 0~ ~ATER PE3COLA! ! NG :~RCUGM ~ASTE ANNUALL1 (H > 0 • .\5~ DEGREE~= so:L SATLRAT:ON 0.8C ! RES:~~AL SOIL SATURAT IO~ 0.000 PER~EAB:LITY OF VERTICA~ ZONE (H/YR ~ o.oo Su!L NUHBER 0.000 0 .3':i POROSITY OF AOU : FER " .. D: ::ANCE FROM AOU::ER TO WASTE C~~TERSi 1I• •.•' AlJERA GE VEiT:CAL GROUND~A~ER UELOCiTY (M/YRI - • - .;. V ··~R::o~r~L VELCC:!1 OF AOU!~~R IME:ERS/1R) 27.800 M:X:N3 IH~C~NESS OP AOU:~ER (~ETERS ) 10.000 :~RFACE ERCS:ON RATE : ~/YR> : • 960E-04 ANNUAL RUNOFF GF PRECIPITATION (N i J.22E-v ~ MUCL!DS 1NGEST!ON IN~ALATIO~ O:RECT GA~HA VOLAT :i.!T': NUHBEi NAME DQSE FAC~ORS DOSE FA2IORS DOSE FACTORS F.;c:oR ,l1REH/PCII CHREH/PCII CMREH-H**2/?CI-HRI < Fr ~ (KG/YR> ::? 3.000E+02 2.G46E+OO 7.000E-01 71 Eu-154 S.841E+02 5.841E+02 l.200E-Ol l.OOOE+OO NUCL!DE INP!JT LEACH FINAL LEACH GAtltlA NUMBER NAME CONSIANT< : IYR) CONSTANI(l/YR) A!IENUAIION(!/tl) 41 H-3 3.480E-03 3. 48•:>E-03 O.OOOE-01 42 C-14 3.4BOE-03 3.480E-03 O.OOOE-01 43 Fe-55 ::?.990E-OS 2.9qOE-OS O.OOOE-01 H Co-60 2.990£-05 2.990E-OS 8.300E+OO 45 ~i-59 ::?.99 ·:>E-OS 2.990E-OS 0. OO,')E-0 ! O'J 46 Ni-63 2.990E-05 ::?.990E-05 O.OOOE-0! .....I 47 Sr-90 4.960E-05 4.%0E-05 2.•:>00E+Ol ..... 48 N':>-94 2. :. 40E-OS 2.140E-05 l.15CE+O! 49 ! r. -99 l.630E-03 1.630£-03 O.OOOE-01 50 ! .. 129 4.400E-04 4.400E-04 9. 700E+O :. Sl Cs-135 l.SOOE-05 l.SOOE-OS O.OOOE-01 5:? Ba!37• l.SOOE-OS l.SOOE-05 l.300E+Ol 53 Cs-137 l.SOOE-OS l.SOOE-05 l.300E+Ol 56 U-234 2.0lOE-06 2.0lOE-06 5.000E+Ol 57 U-235 2.0lOE-06 2.0lOE-OG 2.CJOOE+Ol 58 U-238 2.0lOE-06 2.0lOE-06 6.300E+O l 59 Np-237 2.780E-04 2.730E-04 5.000E+Ol GO Pu-238 2.:SOE-OG 2.lSOE-06 5.000E+Ol 61 Pu-239 ::?.lSOE-06 2.lSOE-06 5.000E+O: 61 Pu-241 2.lSOE-OG 2.lSOE-OG S.OOOE+Ol 63 Pu-242 ::?.lSOE-OG ·2.!SOE-OG 5.000E+Ol 64 A• -241 l.870E-05 l.870E-OS S.OOOE+Ol 6~ A•-243 ~.970E-OS l.870E-05 S.OOOE+Ol 66 C•-243 .... lSOE-06 2.lSOE-06 l.800E+vl G7 C•-244 2.lSOE-06 2.1SOE-OG S.OOOE+Ol 68 Ru-106 2.140E-05 2.140£-05 1.400£+01 69 Sb-125 3.320E-OS 3.320E-05 1. 700E+Ol 70 Cs-134 l.SOOE-OS l.SOOE-OS l.200E+Ol 71 Eu-154 7.540£-07 7.540E-07 l.OOOE+Ol NUCLIDE AOU !FER AQUIFER VERTICAL VERTICAL NUMBER NAHE SORPT ION RE!ARDAI ION SO RPI ION RETARDATION 41 H-3 l.OOOE-02 l.041E+OO l.OOOE-02 l.051E+OO -12 C-14 l.OOOE-02 l.041E+OO l.OOOE-02 l.051E+OO 43 Fe-SS 6.000E+03 2.462E+04 6.000E+03 3.073E+04 H Co-60 S.SOOE+O: 2.266E+02 5.SOOE+Ol 2.827E+02 9 • .'f,,• 0

7.693E+02 -45 N>59 ~.500E+02 6.l64t:+02 l.SOCE+02 46 'h-63 :.100E+O: 6.l&4E+02 l.500E+02 7.693E+02 47 Sr-90 2.000E+Ol B.305E+Ol l.500E+02 7.G93E+J2 4~fE+8~ ~ij Tc-Nb-~J ~:~88E~8r ;-.0.;, + V s:~88E~8r iJ2H!8a so !-!29 3.000E+OO :.331E ...o~ 3. 000£+,:}0 l,637E+Ol ~l c,-13s S.000E+0::: 2.052£+03 L 000£+03 5.l23E+03 ~ ... :.0002+03 5.l23E+03 )_ B-.1137• 5.000E+02 2.os:s+oJ 53 Cs-137 S.OOOE+O::: 2.052£+03 :.OOOE+03 5.:.23E+03 56 U-234 7.500E+O: 3.078E+03 -:'.500E+02 3.842E+03 <'" ..JI u-::::5 7,5COE+02 3.078E+03 7.500E+02 3.842E+v3 53 U-233 7.SOOE+02 3.C78E+03 7.500E+02 3.842Et03 59 Np-237 S.OOOE+OO 2.15~E+Ol 5.000E+OC 2.66 -.E+ ,)l GC, Pu-:38 3.500E+03 l.436E+04 3,~500E+OJ 1.793£+04 3.500E+03 l.793E+O.\ Pu-239 3.500E+03 l.4~GE+O.\ 793E+04 ~! Pu-241 'J.500E+03 1.4 GE.-04 j 3.500E+03 l. 63 ?u-24: 3.500E+03 l.436E+04 3.500E+03 l.793E+04 64 A• -:41 8.000E+0-4 3.:::82£+05 8.0COE+O.\ -LOCJ7E+05 65 A11-243 8.000E+04 3.282E+05 8.000E+04 4.097E+05 &u Ca-243 3.300E+03 :..354E+04 3.300£+03 :.6CJOE+04 67 Ca-244 3.300E+03 l.354E+04 3.300£+03 l.690E+04 118 Ru-106 2.200E+02 9.036E+02 2.200E+02 l.!28E+03 69 Sb-125 4.500£+01 l.85GE+C2 4.SOOE+Ol 2.3:.5E+02 iO Cs-134 5.000E+O: 2.052£+03 l.OOOE+03 5.l23E+03 7l Eu-154 4.000E+03 l.641E+04 4.000E+03 2.049E+04 :we:..:oE so::L TO PLANT HALF :NII IAL NUMBER NME CONt,,'ERSION LIFE CYR) INVENTORY(CI) ex, 4! H-3 ,).OOOE-0! 1.230E+O: 7.857£+0: I .\J C-14 O.OOOE-01 5.730E+03 7.42!E+OO ~ 2.700E+OO 2.333E+Ol N 43 fe-55 4.000E-03 44 Co-60 2.000E-02 5.250E+OO 8.G52E+Ol 45 '.'L-59 6.000E-02 8.00CE+04 l.430E-Ol 4· ~-2~4~+ob+O 4~ ~~=t~ ~J88i~8~ 3Ji8t!8i ... 4 48 Nb-94 2.000E-02 2.yooE+04 4.538£-03 -19 Tc-99 CJ.500E+OO 2. 30E+05 1•• CJOOE-03 ~o I-129 1.500£-01 1.700£+07 5.610£-03 51 C;-135 8.000E-02 3.0!0E+06 l.900E-03 52 Ba!37m 1.500£-01 3.i>OOE+Ol 4.564E+Ol 8.000E-02 3.000E+Ol 4.564E+Ol 53c-. Cs-137 ,J IJ U-234 8.500E-03 4.470£+09 4.270E-03 57 U-235 8.SOOE-03 7.040£+08 6.850£-05 58 U-238 8.SOi>E-03 4.470E+09 l.250E-03 59 Np-237 1.000E-01 2.100E+06 9.680£-06 60 Pu-238 4.500E-04 8.770E+Ol 1. l lOE-01 u: Pu-239 4. 500£-04 2.420E+04 1.120£-01 Pu-241 4.SOOE-04 1.320E+Ol 3.002E+OO g~ Pu-242 4.500E-04 3.790E+05 2.430£-04 64 Am-241 5.SOOE-03 4.590£+02 2.275E-Ol 65 A• -243 5.500E-03 7.370E+03 5.405£-05 0.5oo!-o1 ~-f7E-O~ &, ~--~43,- .. 44 8.500 -0 ~:;?&t!8l • 40E-Ow 68 Ru-106 7.500£-02 l.OlOE+OO 3. 6 72£-03 69 Sb-125 2.000E-01 2.770E+OO 3.672E-Ol 70 Cs-134 8.000E-02 2.060E+OO 7.480E+OO 7l Eu-154 1. OOOE-02 8.500E+OO 9.172E-02 PATHWAY2 GROUNDWATERTO WELL --- - ~ 1 ------HHHH NUCLrrE ::OSES FOR G: .'EN T:HES H.H'JH

~uct:DE / T!HE o. !. 15. 50. :oo. ::oo. 350. 500. '."50. ~000. 4i H-3 O.OOE-O: O.OOE-O: 9.SlE-03 4.7 :.E-03 2.36E-04 5. 96E-07 7.54E-ll 9.54E-15 3.04E-2 ) ~- 10E- :rn 1 2.09£- ,j ~ : E- GJ 3.46E- 03 42 c-:..\ O.OOE-01 O.OOE-01 J.OBE- 02 .• OGE-,)1 8.84E-02 G. 17E-02 3.59E- 02 8.5 43 F@-55 O.:)OE-01 O.OOE-01 O.OOF.-01 O.OOE-01 O.OOE-01 O,OOE-01 O.OOE-0: O.OOE-01 O.OOE-01 O.OOE- 0'. H Co-60 O.OOE-O: O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-C: 45 N~-59 il.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-Ol O,OOE-0! O.OOE-01 46 ~i-GJ O.OOE-0: O.OOE-C: O.OOE-01 O.OOE-01 0,00E-01 O.OOE-O: O.OOE-01 O.OOE-01 O.OOE-0~ 0.00=- 01 47 Sr-90 O.OOE-01 O.OOE-01 O.OOE-0! O.OOE-01 O.OOE-01 O.OOE- 01 O.OOE-01 O.OOE-O:. O.OOE-O: O.OOE-0~ ~3 ~':i-94 O.OOE-O: O.OOE-0;. O.OOE-01 O.OOE-O: O.OOE-0~ 0,0CE-0 1 O.OCE-01 0.00:::-01 O.OOE-,'.}: G , 0 OE- ,j: 49 ':c:-99 O.OOE-01 O.OOE-01 O.OOE-O: 8.GJE-06 2.70E-05 2.29E-05 !.79£-05 1. 4C·E-05 9.34E-OG f, . 2: E-OG 50 =-~:iCJ O.OOE-O: O.COE-01 o. ,:)OE-01 O.OOE-01 O.OOE-01 2.lGE-03 7.0CJE-03 8.%E-03 8.03£-03 7.:CJE-03 ~: Cr.-135 O.OOE-0~ O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 '3:: Bil3711 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-·:)l O.OOE-01 O.OOE-0! O.OOE-01 O.OOE-O: O.OOE-01 O.OOE-01 53 Cs-13i O.OOE-01 O.OOE-Ol O.OOE-01 O.OOE-01 O.OOE-01 O.OOE- 01 O.OOE-01 O.OOE-01 O.OOE-0! 0. OGE-·J! 50 U-234 O.OOE-Ol O.OOE-Ol O.OOE-01 O.OOE-01 O.OOE-01 C.OOE-01 0. OOE-·:ll O.OOE-0! O.OOE-01 O.OOE-01 57 U-235 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-Ol O.OOE-0! O.OOE-01 O.OOE-O: 58 U-238 O.OOE-01 O.OOE-Oi. O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-O: O.OOE-01 O.OOE-Ol O.OOE-01 59 Np-~.37 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 7.BOE-06 1. 67E-OS 2.63E-05 2. 46£- ,)5 60 Pu-238 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 0 .OOE-•)l Gl Pu-239 O.OOE-01 O.OOE-01 O.OOE-01 O,OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 u:? Pu-241 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE- 01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 63 ?•J-242 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-Gl 64 Aa-241 O.OOE-01 O.OOE-0~ O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 65 A;i:-243 O.OOE-01 O.OOE-0! O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 G6 C•-243 O.OOE-O: O.OOE-01 O.OOE-01 O.OOE-02 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 G7 C• -244 C.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-Ol O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-,~:. ta 68 Ru-106 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 ~. 69 Sb-!25 O.OOE-Ol O.OOE-Cl O.OOE-0~ O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-Ol O.OOE-01 O.OOE-0! w 7C Cs-134 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 0,00E-01 O.OOE-01 O.OOE-0! O.OOE-01 71 Eu-:54 ii. OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-0! O.OOE-01

****** SUHOF NUCLIDEDOSES FOR GIVENTIMES****** 29 O,OOE-01 O.OOE-01 4.06E-02 l.llE-01 8.BGE-02 6.38E-02 4.JOE-02 2.99E-02 1.66E-02 l.07E-02

*****SUH OF NUCLIDERISKS FOR GIVENTIHES ****** ~ ~. 00E-C: • . OOE-01 l.14E-05 3.09£-05 2.48E-05 l.79E-05 l.21E-OS 8.38E-06 4.64E-06 2.99E-06 x~~*•~ LISPS23 !GN CORRECI!G~ PACIOR ll *~k' -~oT~L FM'.'.!'[}" 1~UCLIDE VER! :CAL FACTOR HORIZONTALF ACTO~

41 H-3 !. OlE+OO l.OOE+OO l.OlE+OO -12 C-14 l.OOE+OO l.OOE+OO l.OOE+OO 43 Fe-55 1.00E+03 l.OOE+03 l.OOE+06 4-1 Co-60 l.OOE+03 7.93E+OO i.93E+03 45 Hi-59 l.OOE+OO l.OOE+OO l.OOE+OO 46 Ni-63 l.OOE+03 l.OSE+OO 1.05E+03 47 Sr-90 1. OOE+03 1.0lE+OO 1.01E+03 48 Nb-94 l.OlE+OO l.OOE+OO l.OlE+OO 49 Tc-99 l.OOE+OO l.OOE+OO l.OOE+OO 50 1-129 l.OOE+OO l.OOE+OO l.OOE+OO Sl Cs-135 l.OOE+OO l,OOE+OO l.OOE+OO 52 Bal37• l.OOE+03 1. 69E+02 l.69E+05 9

r .. -• ,, .., 1. 69E+05 53 w ~ - ...., / ~.OOE+03 !.69E+02 ... E+OO .J ;J 'J-234 :. OOE+OO : .:OE +OO ~.OC 57 U-235 l. OOE+OO l,OOE+OO l. OOE+OO :8 U-J33 : .~OE+OO :.OOE+OO l .OOE+OO l .OOE+OO 59~. Np-237 l.OOE+OO l .OOE+OO \J V Pu-:38 l.OOE+03 !.ilOE+ C3 : .OOE+06 i:;: Pu-239 l . 43E+OO l.OOE+OC l.43E+OO G..:, P,.J-24! i..OOE+03 l.ilOE+03 l .OOE+OG \J ,J ?u-242 1. OOE+OO l.OOE+OO l .OOE+OO 64 A11-24! : , •JOE+03 l .OOE+03 l.OOE+OG Aa-243 l.OOE+03 9.04E+OO 9.04E+il3 ~~Ca-'.:43 : .OOE+03 l .OOE+03 : .OOE+06 G7 Ca-244 l. OOE+03 l. OOE+03 1. OOE+06 GS Ru-lCG l.OOE+03 !.OOE+03 l.OOE+06 Sb-;25 l,OOE+03 1. 3s~+O~ 1.381+05 ,6 Ci-~34 ... OOE+03 1.0 +O 1.00 +OG 71 Eu- 154 l,OOE+C3 :. • OOE+03 l.OOE+OG COhCSNTRATIONARRA? CONCENTRATIONS:~ C~/~Ah3 :rnCLIDE / ! !:'!E o. 1. :5. 50. 100. 200. 350. 500. 750. 1000. 41 H-3 O,OOE-01 O.OOE-01 l.95E-07 9.38E-OB 4.71E- 09 l.19E-:l 1. SOE-15 l.90E-19 6.0GE-26 1. 93E- 3::J 42 C-H O.OOE- 01 O.OOE-01 -t.26E-08 l.46E-07 l.22E-07 B.53E-08 4. 97E-08 2,90E-OB l. 13E-OB 4.iCJE-09 43 Fe-55 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 0,00E-01 O.OOE-01 O.OOE-01 O.OOE-G~ H Co-60 O.COE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE- 01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-O: 45 Ni -59 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-Ol O.OOE-O: O.OOE-01 O.OOE-0). 4G Ni-63 O.OOE-il: O.OOE-01 O.OOE-01 O.OOE-01 O.vOE-01 O.OOE- 01 O.OOE-01 O. OOE-01 O.OOE- Ol O.OOE-0! 47 Sr-90 il.OOE-01 0.00E-0! 0,00E-01 O.OOE-01 O.OOE-01 O.OOE-01 O. OOE-01 O.OOE- 01 0,00E-01 0. OOE-:ll 48 Nb-94 O.OOE-01 O.OCE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-Ol O.OOE-01 O.OOE- 01 O.OOE-Ol O.OOE-01 49 Tc-99 O.OOE-01 O.OOE-Oi. O.OOE-0:. 5.90E-:.2 l.84E-ll l.57E- ll l.23E-~l 9,59E- 12 6.38E-1 2 4.24E-12 ~-:.2':) O.OOE-01 O.OOE-01 ,).OOE- 01 O.OOE- 01 3.41E- 12 l. 12E-l i l.42E-ll l.27E-:l : .l4E- l '.. co 50 C.OOE-•)l O.OOE-01 I 51 Cs-!35 0. OOE-0:. C.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 ..... 52 Ba:37• O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O. OOE-01 O.OOE-01 O.OOE- 01 O.OOE-01 O.OOE-01 O.OOE-01 +'" 53 Cs-137 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-0:. O.OOE-il: 5G U-234 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-O: O.OOE-01 O.OOE-O: O.OOE-01 O.OOE-01 O.OOE-01 57 U-235 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 0,00E-01 O.OOE-01 O.OOE-01 O.OOE- 01 O.OOE-01 O.OOE-01 53 U-238 O.OOE-01 O.OOE-01 O.OOB-01 O.OOE- 01 O.OOE-01 O.OOE- 01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE- 01 4.64£-15 9,93E-15 l.57E-14 l.4GE-H S2 Np-~f &.OOE-01 O.OOE-Ol o.oot-01 O.OOE-01 O.OOE-01 O.OOE-01 llV Pu- .. 8 .OOE-0 O.OOE-0 .. 0.00 -01 O.OOE-01 O.OOE-O: O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-0! o.ooi-01 o.oot-oi 0,00E-01 O,OOE-01 O.OOE-01 O.OOE- 01 O.OOE-01 O.OOE-0:. O.OOE-01 9~u .. ~~::HY 8:88t=8i o.oo -01 0.00 -0 O.OOE-01 O.OOE-01 O.OOE- 01 O,OOE- 01 O,OOE-01 O.OOE-0! O.OOE-01 O.OOE-01 6~ Pu--?4? g.oo~-Ol o.ogt-01 o.goE-o: o; ooE-O! O.OCE-01 O.OOE-01 O.OOE- 01 O.OOE- 01 O.OOE-01 .· :.--~.,; .oo -0. o.o -01 0. OE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O,OOE-Ol O.OOE-01 O.OOE-C-1 65 Aia-243 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O,OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O,OOE-01 O.OCE-01 66 C11-243 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE- 01 O.OOE-01 O.OOE-01 G7 Ca-244 O.OOE-01 O,OOE-01 O.OOE-01 O,OOE-01 O,OOE-01 O,OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O,OOE- 01 68 Ru-!06 O.OOE-01 O.OOE-01 O.OOE-01 O,OOE-01 O.OOE-01 O.OOE-01 O,OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 G9 Sb-125 O.OOE-0). O.OOE-01 O,OOE-01 O.OOE-01 O,OOE-01 O,OOE-01 O.OOE-01 O.OOE-01 0,00E-01 O.OOE-01 70 Cs-134 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE- 01 O.OOE- 01 O.OOE-01 71 Eu-154 O.OOE-01 O,OOE- 01 O.OOE-01 O.OOE- 01 O.OOE-01 O.OOE-01 O.OOE- 01 O.OOE-01 O.OOE- 01 O.OOE-01 PATHWAY3 EROSION

AAAAAAAANUCLIDE DOSES FOR GIVEN TIHES AAAAAAAA

NUUlll!P!!"! o. 1. 15. 50. 100. 200. 350. 500. 750. 1000. 41 H-3 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O. OOE-01 O.OOE- 01 O.OOE-01 O.OOE-01 O.OOE-01 42 C-14 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O,OOE-01 O.OOE-01 O.OOE- 01 O.OOE-01 O.OOE-01 43 Fe-55 O.OOE-01 O.OOE-01 O.OOE-01 O,OOE-01 O.OOE- 01 O.OOE- 01 O.OOE- 01 O. OOE- 01 O.OOE- 01 O.OOE-01 H Go-6C ii,OOE-Ot O.OOE-0~ o.oo~ -of o.looe~ 1 ~ . otE-0'1 :,t oot-01 ~o..-QiJ:>E-01 O.OOE-0! O.o'.lOE-01 O.OOE-c·. 4~ N:. -59 O.O•J:-01 O.OOE-01 O.OOE-O: O.OOE-01 o.oc-::-01 O.OOE-01 O.OOE-O: O.OOE-0~ C.OCE-Ol O,OOE-v: ~.j Ni-63 O.OOE-01 0.00E-01 O.OOE-0! O.OOE-01 O,OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-0:. 0.00E-O: 47 Sr-% O.OCE-01 O,OCE-01 O.OOE-O: 0,00E-Ol. O.OOE-01 O.OOE-O: O.OOE-0! O.OOE-0! ·:l. OOE-01 O.OOE-~' -48 %-'H O.OCE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-o: O.OOE-0 1 49 Tc-99 O.OOE-O: O.OOE-01 O.OOE- 01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-Cl O.OOE-O: 5 ,j I-!:?9 O.OOE-01 O.OCE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OCE-01 Sl C':>-:35 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-0! O.OOE-01 O.OOE-01 O.OOE-01 O.OOE- 01 O.OOE-01 O.OOE-·:>: 5:! B1!371 O.OOE-,)l O.OOE-Ol O.OOE-0~ O.OOE-01 ·1.00E-0~ O.OOE-01 C.OOE- 01 O.OOE-01 O.OOE-0:. O.OOE-O: i).i)OE- 01 O.OOE-O: O.OOE-O: O.OOE-Ol O.OOE-01 O.OOE-0! O.OOE-ii! 53IC'. Cs-137 O.OOE-01 O.OOE-01 O.OOE-01 JIJ O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 C. ,)OE-01 O.OOF.-01 O.OCE-O: O.OOE-01 0.00£-,): IC'- U-:!34 ..; ; !J-235 O.OOE-01 o.on-o: O.OOE-01 O.OOE-O: O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OCE-01 O.vOE-Jl 58 U-::138 O.OOE-01 O.OOE-01 O.OOE-0). O.OOE-01 O.OOE-Ol O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-O: O.OOE-O: 59 N;i-:?37 O.OOE- 01 O.OOE-01 O,OOE-0! O.OOE-01 O.OOE-01 O.OOE-0 1 O.OOE-01 C.OOE-01 O.OOE-Ol O.OOE-01 60 PiJ- 238 O.OOE-01 O.OOE-01 O.OOE-01 0,00E-O: O.OOE-01 O.OOE-01 O.OOE-01 O.COE-0 ~ O.OOE-O: O.OOE-01 61 Pu-239 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 '.>,OOE-01 O.OOE-01 O.OOE-0 1 O.OOE-O: O.OOE-01 O,OOE-v: , ~ o .. Pu-'.141 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE- 01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 0. OOE-•'.>l 63 Pu-242 O.OOE-0! 0,00E-01 O.OOE-01 O.OOE-Oi. O.OOE-01 O.OOE- 01 O.OOE-01 0,00E-01 O.OOE-01 O.OOE-01 64 Aa-241 0,00E-01 O.OOE-01 O.00E-01 O.OOE-01 O.OOE- 01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-O: GS A• -243 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE- 01 O.OOE- 01 O.OOE-01 O.OOE- 01 O.OOE-01 06 c~-'.?43 O.OOE-01 C.OOE-01 0.00E-0! O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 G.OOE-01

~~i~=r~i 8:S81:8i 8:881=8i8:881=8i 8:88i=8i 8:881:818:88i=8i 8:88i=8i 8:88i:8\ 8:88i=8i 8:88f:8l 69 Sb-125 O.OOE-01 O.OOE-01 0.00E-01 O.OOE- 01 O.OOE-01 O.OOE-01 O.OOE-0 1 O.OOE- 01 O.OOE-01 O.OOE-01 iO Cs-134 O.OOE- 01 O.OOE-01 O.OOE-01 O.OOE-O: O.iiiiE-01 O.OOE- 01 O.OOE-01 O.OOE-01 O. OOE-• i v.OOE-01 71 Eu-154 O.OOE-01 O. OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OCE-01 O.OOE-01 O.OOE-01 O.OOE-01

~ AAAAAASUN OF NUCLIDEDOSES FOR GIVEN TIMES AAAAAA .... ~'J O.OCE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 u,

******SUN OF NUCLIDERISKS FOR GIVEN TINES AAAAAA '.?9 O.OOB-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE- 01 O.OOE- 01 O.OOE-01 O.OOE-O:

AAAAAAAEROSION OF WASTESTARTS AFTER 3061.2 YEARSAND ENDS AFTER WASTEIS ALL ERODEDIN 33673.5 YEARS. CONCENTRATIONARRAY CONCENTRAT:ONSIN CI/MAA3

:~UCL!DE/! IME o. l. 15. 50. 100. '.?00. 350. 500. 750. 1000. 41 H-3 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O,OOE-01 4'.? C-14 O.OOE- 01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE- 0! O.OOE-01 O.OOE-01 O.OOE-01 43 Fe-55 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE- 01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 H Co-60 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE- 01 O.OOE-01 O.OOE- 07. O.OOE-01 O.OOE- 01 Ni-5~ 0.001-01 O,OOE-01 O.OOE-Oi O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O,OOE- 01 O,OOE-01 O.OOE-01 iR Ni-6 o.oo -o ... O.OOE-01 O.OOE-0 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE- 01 O.OOE-01 O,OOE-01 47 Sr-90 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE- 01 O.OOE-01 O.OOE-01 O.OOE-01 48 Nb-94 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 49 Tc'-99 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 50 I-129 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE- 01 O.OOE-01 g.ooE-01 g.001-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 !~ i!iH~ 8:881=81.OOE-01 .oo -0 O.OOE-01 O.OOE-01 O.OOE-01 O,OOE-01 O.OOE-01 O,OOE-01 O.OOE-01 53 C5-l37 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 SG U-234 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O,OOE-01 O.OOE-01 57 U-235 O,OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 ss U-238 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE- 01 O.OOE-01 O.OOE-01 O.OOE-01 9 2 I 2 4 I 9 ') 7

~9 Nu-:37 O.OOE-01 O.OOE-01 O.OOE-O: O.OOE-01 O.OvE-01 O.OOE-Cl O.OOE-01 O.OOE-0 1 v.vCE-O i. O.OCE-v 6V p;r238 J,O,;E-01 O.OCE-01 O.OOE-Ol 0.00£-,): O.OOE-01 O.OOE-01 O.OOE- 0: O.OOE-01 O.OOE-0 1 C.OOE - ~ 61 ?,J -239 O.OOE-01 O.OC·E-0! O.OOE-01 0. OilE-0 :i. O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-O: O.COE-v 02 ?u-241 O.OOE-01 v.OOE-01 O.OOE-O : O,OOE-01 O.vOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-0 62 Fu-242 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-0 64 A11-241 O.OOE-01 O.OOE-01 O.OOE-O: O.OOE-Ol O.OOE-01 O.OOE-01 O.OOE-01 O,OOE-01 O.OOE-01 O.OOE-0 65 Aa-243 O.OOE-0! O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-ii ua Cm-243 O.OCE-01 · O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.JOE-01 0.00E-0 Gi Ca-244 O.OOE-0: O.OOE-01 O.OOE-Cl O.OOE-01 O.OOE-01 O.OOE-O l O.OOE-O l O.OOE-0 1 O.OOE-01 O.O ~- E-0 Ga R•rl06 O. ·:>OE-0! O.OOE-01 C.OOE-O: O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE- •:>: O.OOE-0 69 Sto -1.25 O.OOE-01 O.OOE-01 C.OOE-01 O.OOE-01 o.ooe-o: O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-•- O.OOE-01 O.OOE-01 O,OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 iO Ci-134 J.OOE-01 O.OOE-01 O.OOE-01 O.OOE-vl "1I ~ Eu-154 0.0·:JE-Ol O.OOE-01 O.• OOE-01 O.OOE-01 O.OOE-01 o.ooe-c: O.OOE-0 1 O.OOE-01 O.OOE-01 PATHWAY 5 FOOD GROwN ON SITE ******** NUCLIDE DOSES FOR G!VEN TIMES********

NliCL !DE/! IHE o. l. 15. 50. 100. 200. 350. 500. 750. 1000. C H-3 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-0;. 42 C-14 O.OOE-01 O.OOE-01 O,OOE-0! O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 l.63E-05 4.47E-07 5.60E-ll l. 49E-16 l.06E-27 0.00E-01 O.OOE-01 O.OOE-01 O.OOE-vl u ia-5~o-6 ~-ioe-o~• OE-0 5.0SE-03 8.00E-04 7.98E-06 l.07E-08 1.'37E-14 4.9:SE-23 l.24E-31 O.OOE-01 O.OOE-01 ~-Z9~:8Z i~ ~t-~31-0 iJjfi:8~ ~:~~t=8~ t:~3l:8~ ~J~l=8~ t~~i=8~ ~:Mi:8~ ~:1H=8~ Y:Bt=8~ Y:9ol=8~ ... ..i3 .' 47 Sr-90 3.79E-03 3.70E-03 2.64E-03 l. 13E-03 3.36E-04 2.98E-05 7.85E-07 2.07E-08 4.84E-ll l.!3E-~3 48 Nb-CH l.33E-06 l.33E-06 l.33E-06 !.33E-06 l.33E-06 l .32E-% l.32E- 06 1. 31 E-06 1.JOE-06 l.29E-06 49 Tc-99 l.73E-05 1.73E-05 l.73E-05 1. 73E-05 l. 73E-05 l.73E-05 l.73E-05 l. 73E-05 l. 73E-05 l.72E-05 so I-129 3.97E-04 3.97E-04 3.97E-04 3.97E-04 3.97E-04 3.97E-04 3.97E-04 3.97E·04 3.97E-04 3.97E-04 .... Cs-135 7.28E-07 7.28E-07 7.28E-07 7.28E-07 7.28E-07 7.28E-07 7.28E-07 7.28E-07 7.28E-07 7.28E-07 0:, O.OOE-01 O.OOE-0 1 I 52"· B.313711 O.OOE-0! O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 .... 53 Cs-137 l.18E-Ol l.15E-Ol 8.35E-02 3.72E-02 1.17£-02 1. l6E-03 3.G3E-05 1. 13E-06 3.52E-09 1. 09£-11 56 U-234 6.32E-08 G.32E-08 G.32E-08 6.32E-08 6.32E-08 G.32E-08 6.32E-08 6.32£-08 6.32£-08 6.32E-03 °' 57 U-235 l.04E-09 l.04E-09 l.04E-09 1.04£-09 l.04E-09 1.04E-09 l.04E-09 l.04E-09 1.04£-09 1. 04E-09 5'3 U-238 1. 74E-08 1.74£-08 1.74E-08 1. 74E-08 1. 74E-09 1.74£-08 1.74E-08 ~.74£-08 l. 74E-08 1. i-tE-08 59 Np-237 l.69E-07 1.69£-07 1.69£-07 l.69E-07 l.69E-07 l.69E-07 l.69E-07 l.69E-07 1.69£-07 l.G9E-07 GO Pu-238 7.99£-06 7.93E-OG 7.lOE-06 5.38E-06 3.63£-06 l.64E-06 5.03E-07 1.54£-07 2 .13£-,)8 2.95E-09 61 Pu-239 9.46E-07 9.46E-07 9.46E-07 9.45E-07 9.43E-07 9.41E-07 9. 37E-07 9.33E-07 9.26E-07 9.lCJE-07 62 Pu-241 5.64£-06 5.35E-06 2.57E-06 4.08E-07 2.%E-08 l.55E-10 5.8BE-l4 2.23E-17 4. HE-23 B.83E-29 63 Pu-242 l.99E-09 1.99£-09 l.99E-09 1.99£-09 1. 99E-09 1. 99E-09 l.99E-09 l.99E-09 l.99E-09 l.99E-09 64 A11-24 1 l.53E-04 1. 53E-04 1.50£-04 l.42E-04 1.32£-04 1. 13E-04 9.02E-05 7.19E-05 4.93B- 05 3. 38E-05 65 Aa-243 3,74E-08 3.74E-08 3.74E-08 3. 72E-08 3.71E-0!! 3.67£-08 3.62E-08 3.57E-08 3.49E-08 3.41£-08 66 Ca-243 2.02E-09 l.98E-09 l.46E-09 6.83E-10 2.30E-l0 2.62E-ll l.OlE-13 3.87E-14 1.69E-16 7.41E-19 67 Ca-244 l.32E-06 l.26E-06 7.29E-07 l.84E-Oi 2.56£- 08 4.99E-10 l.36E-12 3.69E-15 1.96£-19 l ,04E-23 68 Ru-106 4.22E-07 2.13E-07 l.43E-l 1 S.29E-22 6.6:lE-37 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 69 Sb-!25 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 70 Cs-134 2.80E-02 2.00E-02 1.SOE-04 1.3BE-09 6.82E-17 l.66E-31 O.OOE-01 O.OOE - 01 O.OOE-01 O.OOE-01 il Eu-154 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01

****** SUH OF NUCLIDE DOSES FOR GIVEN TIHES ****** 29 1.S7E-Ol l.4SE-Ol 8.81E-02 3.92E-02 l.28E-02 l.83E-03 S.81E-04 5.03E-04 4.70E-04 4.53E-04

****** SUH OF NUCLIDE RISKS FOR GIVEN TINES****** 29 4.39E-08 4.07E-08 2.47E-08 1. lOE-08 3.S9E-09 S.13E-10 l.63E-10 l.41E-10 l.31E-10 1.27E-10 9 2 I

FRACTIONALHIX :NG OF WASTE:N SOIL IN TRENCHIS ~.005 ER~CTION OF FOODC ONSUMED W~! CH IS GROWN AT THE WASTESI TE (FGl IS 0,220 FRACT: ONALHIXING OF TRENCH MATERIALIN SURFACESOIL IS 0,1 20 PATHWAY 6 NATURALB IOINTRUSION

*****AAANUCLIDE DOSES FOR GIVEN T!MES ********

NUCL! DE/! HIE o. . . 15. 50. !00 • 200. 350. 500. 750. 1000. 4: H-3 O,OOE-01 O,OOE-01 O,OOE-01 O.OOB-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OvE- o:. 42 r.-:4 O.OOE-Ol O.OOE-0: O.OOE-01 O.OOE-01 O.OOE-0: O.OOE-01 O.OOE-01 O.OOE-01 O,OOE-) 1 O,OOE- 01 43 :e-55 7.02E-05 5.43E-05 l.49£-06 l.87E-10 4.98E-16 3.53E- :7 O.OOE-01 O.OOE- 01 O.OOE-01 O.OOE- 01 44 Co-60 l. 93E-g2 l .69E-02 2.67E-03 :?.~3E-05 3.57E-08 G.59E-:4 l.GSE-5l 4.14~-~l O.OOE- gi o.~o~-o! 45 Ni-59 2.29E- G 2.29E-OG 2,29E-OG 2, SE-06 2.28E-OG 2.28E-OG 2.28E- 2.28 - 6 2. 27E·· 2. 7 -o 46 Ni - r:.3 l,6 1E-03 l.GOE-03 l.HE-03 1. : lE-03 7.59E-04 3.S7E- 04 l.lSE - 04 3.73E- OS 5.67E- 06 8.62E-07 sr-io i,261-0:i l,23E-02 8.79E-03 3.76E-03 l.12E-03 9.93E-05 2.G2E-06 6,90£-08 1.61£-10 3.77E-l3 1~ Nb- 4 .44 -06 4.44E-OG 4. HE-06 4.43E-06 4,43E-06 4.41E-06 4.39E-06 4.37E-OG 4.33E-OG 4.29E-06 Tc- ~9 5.77E-01 5.77E-05 5. 77E-05 5. 77E-05 5.77E-0~ 5.77E-OS 5.76E-05 S.76E- 05 5.76£-05 5.75£-05 'ClA I-1.:.'3 l.33E-O l,33E-03 l.33E-03 l.33E-03 1.33E - O l.33E-03 l,33E- 03 l.33E-03 1.33E-03 l.33E-03 51.,.., Cs-135 2.43E-OG 2,43E-OG 2,43E-OG 2.43E-06 2.43E-OG 2.43£-06 2.43£-06 2.43E-OG 2.43£-06 2.43£-06 ,.J,;, Bal37s O.OOE-O: O.OOE-01 O.OOE-01 O.OOE- 01 O.OOE-01 O.OOE- 01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 53r:, Cs-137 3.94E-Ol 3.BS.E-01 2.78E-Ol 1.24.E-O l 3.91E- 02 3.BBE-03 l,21E-04 3,79E-OG 1. 1iE-08 3.64E- 11 yl) U-234 2.llE-07 2.llE-07 2,llE-07 2.llE-07 2.llE-07 2.llE-07 2.llE - 07 2.l!E - 07 2. llE-07 2,llE-07 57 U-235 3.46E-09 3.4GE-09 3.4GE-09 3,4GE-09 3.46E-09 3.4GE-09 3.4GE- 09 3.4GE-09 3.46£-09 3.4GE-09 53 U-238 s.a : E-oa 5.3:E-08 5.3lE-08 5.SlE-08 5.81£-08 5.SlE-08 5,8 ).E-08 5.31E-08 5.BlE-08 5.B l E- 08 0::, 59 Np-237 5.G4E-07 5.64E-Oi 5.64E-07 5.64E-07 5.64E-07 5.G4E-07 5.64£-07 5.G4E-07 5.64£-07 5.64E- 07 ....I 60 Pu-238 2,G7E-05 2.65E-CS 2.37E-05 1.SOE-05 l.21E-05 5.49E-OG 1.68£-06 5.12E- 07 7.lOE-08 9.SSE-09 -...J 61 Pu-239 3.16E-OG 3.16E-06 3.lSE-06 3.15E-OG 3,15E-OG 3.14E-06 3.12E-OG 3.llE-06 3,09E-06 3.0,E-06 62 Pu-241 l.SSE-05 l.78E-05 9.SGE-06 l.36E-OG 9.SGE-08 S.17E-10 l.%E-13 7.HE - 17 l.48E-2:? 2.94E-23

~~t~:3H t~Bt=8~§:Yii:81 ~ Jijt:8l \:~~t=8l~jiji:81 t~~t=8l ~:8H=8lt~it:8l ~:Ui:81~JU:8l GS A•-243 l.25E-07 l.25E-07 l.25E-07 1. 24E-07 l.24E-07 1. 22E-07 1. 2 lE-07 1.19E- 07 1.16£-07 1.14£-07 GG C:a-243 6.75E-09 G.GlE-09 4,87E-09 2,23E-09 7.69E-10 8.75E- ll 3.3GE-12 l,29E- 13 5.6SE-16 2.47E-18 67 Ca-244 4.39E-06 4,22E-06 2.43E-06 6.13E-07 8.SSE-08 l,67E-09 4,S3E-12 l,23E-14 6,52E-19 3.45£-23 68 Ru-106 l.-llE-06 7.09E-07 4.77E-ll l.76E-21 2.21E-3G O.OOE-01 O.OOE-01 O.OOE- 01 O.OOE-01 O,OOE-01 69 Sb-125 O.OOE-0! 0,00E-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O,OOE-01 O,OOE-01 O.OOE-01 70 Cs-134 9.33£-02 6.G6E-02 G.OOE-04 4.GlE-09 2.27E-16 5.54E-31 O.OOE-01 O.OOE-01 O,OOE-01 O,OOE-01 il Eu-154 O.OOE-01 O,OOE-01 O,OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O,OOE-01 O.OOE-01 O.OOE-01 O.OOE-

******SUH Oc NUCLIDEDOSES FOR GIVEN TIHES ****** 29 5,23E- Ol 4,84E-Ol 2.9-tE-Ol 1. 3!E-Ol 4.28E-02 6.llE-03 1.94E-03 l.68E-03 l.57E- 03 l,SlE-03

******SUH OF NUCLIDERISKS FOR GIVEN TIHES ****** 29 l,46E-07 l.3GE- 07 8,23E-08 3.GGE-08 l.20E-08 l.71E-09 5.43E-10 4.70E-10 4,39E-10 4.23£-10

FRACTIONALHIXING OF WASTEIN SOIL IN TRENCHIS 1,005 FRACT:ONOF FOODCONSUHED WHICH IS GROWNAT THE WASTESITE

i~~CL ::DE/T I11E o. 1. 15. 50. 100. 200. 350. 500. 750. l 00 •'} . 44 Co-60 S.39E+OO 7. 3oE+OO l. l BE+OCi l.21E-O: l.74E-05 3.61E-l l l.OBE-19 3.20E-28 O.OOE-0 1 O.OOE- •:i : -t'.' Sr-90 O.OCE-01 O.COE-01 i).OOE-01 O.OOE-01 O.OOE-O : O.OOE-01 O.OOE-il l O.OOE - 01 O.OOE-01 ii .OOE - 01 48 Nb-94 9.83E-05 9.85E-05 ! .OlE-04 l.07E-04 l.17E-04 1. 39E-04 l.80E-04 2.31E-04 3.48E- 04 5. l iE-04 Sv I-229 -t.82E-28 4.91E-28 6.37E-28 l.23E-27 3.:2E-27 2.02E-26 3.31E-25 5. 4::JE-24 5.6BE- ::l:! 5.38E-JO .,.,,.., ,,, Ba l 37a :::.!iE-01 2.13E-Ol :.59E-Ol 7.60E-02 2.65E-02 3.23E- 03 : .37E- 04 5. 77E-06 2.92E-08 : .4 J:-: o c,.-p1 ').O~E-oa ~-•sE-01 O.OQE - 0} O.OOE- ·:>l O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.O OE-01 ~2 U-2 4 9.2 E-1 .3 E-18 l.O,E-1 :.49E-:i 2.40E-li 6.17E-17 :::.SSE - 16 l.OSE-15 1.lOE- 14 l.l-tE-:3 Si U-235 '.'.93E-12 7.97E-12 S.59E-12 1.04£-11 l.35E-11 2.31£-11 5.15E-!~ 1.14E-10 4.29E-l0 ~.59E-09 58 !_l -238 2. ·:BE-21 2. l OE-21 2.4CJE-21 3.79E-21 o.92E-21 2.30E-20 1.39E-19 8.37E-l9 l.66E-17 3.25E- i G 59 lfo-237 :..ilE-18 : • 72E-l8 :.97E-18 2.HE-18 4.40E-18 Ll 3E - 17 4.o8E-17 l.92E- 16 J.02E-15 2. 09E - H 60 Pu-238 5.08£-16 5.09E-16 5.20£-16 5.49£-16 5.94E-16 6.94E-16 8.75E- 16 1. :OE- : 5 1. 60E - 15 2.JOE-15 l.06E-:G 1.21£-16 l.68£-16 2.69E-16 6. 91E-15 2.84£-15 l .16E-14 l. 21E-13 l.~~E-1 2 u~, ., Pu-239 l.05£-16 O.OOE-O: O.OOE-v l \) .. PiJ -241 O.OOE-O: O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE - 01 O.OOE-01 64 Aa-24: 3. 90E-! 4 3.93E-l4 4.40E->I 5.81E-14 8.GSE-14 l .92E- 13 6.30E-13 2.07E-12 l..\BE- 11 l.OSE·- ~.O GS Aa-2-13 :.65E-17 1.66£-17 1.89£-17 2.63E-~7 4.20E-17 l .07E-16 4.36E-16 l.77E-15 l.81E-: 4 L83E-: 3 66 Ca-243 2.56E-09 2.61E-09 2.02E-09 l.OSE- 09 4.lBE-10 6.55E- ll 4.0GE- 12 2.SlE-13 2.40E-15 2.28E- 17 67 Ca-244 :.33E-16 l.29E-16 8.SlE-17 2.99E-17 6.70E-18 3.36E-19 3.77E-2l 4.21E-23 2.34E- 26 l. 2BE-:!9 68 Ru-106 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 G9 s~-125 :::.36E-04 1.84£-04 S.77E-OG l.OOE-09 4.2SE- l. 5 7.GSE-26 O.OOE-01 O.OOE - 01 O.OOE-01 O.OOE-0 ! '7. O.OOE - 01 O. OOE - 01 O.OOE-01 ~,, V Cs-134 l. 48E-O l 1.06£-01 9.76E-04 9.00E-09 4.34E-16 l.27E-30 O.OOE-01 I ,. Eu-154 2.42E-03 2.24E-03 7.30E-04 4.43E-05 8.09E-07 2.70E-10 1.64E-1S 9.8BE-21 : .%E-29 3.84E-38

4AAAAA SUH OF ~UCLIDE DOSES FOR GIVEN TIHES ****** 29 3.i6E+OO 7.68E+OO ).• 34E+OO 8.82E-02 2.67E-02 3.37E-03 3.lGE-04 2.37E-04 3.48E - 04 5.17E-04 OJ ...... I ex,****** SUH OF NUCLIDE RISKS FOR GIVEN TINES****** 29 2.45E-OG 2.15E-06 3.75£-07 2.47E-08 7.47E-09 9.43E-10 8.SGE- 11 6.63E- ll 9.75E-:l l.45E-10

******* EROSION STOPS AFTER COVER IS ALL ERODED IN 3061.2 YEARS******* PATHWAY 8 DUST INHALAT !ON ******** NUCLIDE DOSES FOR GIVEN TIHES ********

iWCL IDE/TIHE o. 1. 15. 50. 100. 200. 350. 500. 750. 1000. -ll H-3 8.40E-07 7.94E-07 3.61£-07 S.02E-08 3.00E-09 l.07E-ll 2.2BE-15 4.87E-19 3.71E-25 2.82E-31 42 C-14 7.28E-09 7.28E-09 7.2GE-09 7.23E-09 7.19E-09 7. ! 0E-09 G.97E-O

5G 'J- 34 7.23 E-05 7.23E-OS 7.23E-05 7.J2E-05 7.23E-05 7.:l3E-05 7.23E-05 7.:l3E-05 7.23E-05 ':.23E-v5 c-~ l ·~~-06 ,j .l u- 3~ !.lVE-06 :.lOE- 06 l.lOE-J6 1. lOE-OG l .lOE-06 l. : OE-06 : .lOE- 06 l. lCE-06 : • : OE-06 l. 58 u- 38 :.S':JE-05 : .8':lE-05 l ,SCJE-05 :.SCJE-05 l.89 E-05 l.39E-05 !.39E-05 l,S'JE-05 l.89E-OS l .39E-05 59 Np-23 7 3.45E-07 3.45E-07 2.45E-07 3.45E-07 3.45E-07 3.45E-07 3.45E-07 3.45E-07 3.45E-07 3.45E-07 GO ?u-238 3.:::r,E-03 3.53E-03 3.:H-03 J.40E-03 l.6:lE-03 7.33E-04 2.HE-04 G.85E-05 9.49E- 06 l.3JE-06 3.69E-03 3.69E-03 3.69E-03 3.68E-03 3.67E-03 3.66E-03 3. 64E- 03 3.olE-03 3.59E-03 6, 1') Pu-239 3. 69E-03 u .. P•J-2 •t: :.lS E-03 l.::E-03 5.JGE- 04 8.52E-05 5.17E - 06 3.24E-08 1. 23E- l l 4,56E-15 9.27E-21 l .34E -26 98 Pu-24 2 7.58E-06 7.5E:E-06 7,58E-06 '.7.SSE-06 7.SSE-06 7.58~-06 7.S8E- 06 7.57E-06 7.57E-06 7.57E-O~ 1:>4 ~11-:4~ 8.92E-03 8.CJlE-03 8.7'.lE-03 8.27E-03 7.67E-03 6.60 -03 5.26£- 03 -L l CJE-03 2.83E-03 l.97E-03 65 Am-243 2.!2E-06 2.12E-06 2.12E-06 2.llE-06 2.lOE-06 2.08E-Oo 2.0SE-06 2.02E-06 l. 98£ - 06 !.93 E- 06 60 C;i-243 l .08£- ,:;G l.05E-OG 7.78E-07 3.64E-07 l .23E -07 l. 40E- 08 5.36£-:0 2.0GE- :.1 9.0lE->l 2.94E-:6 67 C11-244 6.E:E-04 6.55E-04 3. 77E-04 9.51E-05 :. • 33E-05 2.59E-07 7.03£- 10 : .9 i.E-12 l .OlE -16 5.3~E-:l: 68 R•J-l OG 3.93E-C7 l.98E-07 l.33E-ll 4.92E-22 6. :. SE-37 O.OOE-01 O.OOE-01 O.OOE-Ol O.OOE-011 O.OCE-01 69 Sb-1:!5 9.lGE-07 7.l3E-07 2.15E-08 3.38E-~2 l.24E-l7 !.69E-28 O.OOE- 01 O.OOE-01 O.OOE-O: O.OOE-0 : 70 Cs- : 34 3.00E-05 2.:4E-05 :.93E - 07 1.48E-12 7.JlE-20 l.?SE-34 O.OOE- 01 O.OOE-01 0 .OOE-C: 0.00E - •~: 71 Eu-154 2. 78£-06 2.56E-06 8.18E-07 4.71E-08 7.99E-10 2.30£-13 1. 12E- 18 5.45E- 24 7.63£-33 l.07E-41

*****~ SUH OF NUCL:DE DOSES FOR GIVEN TIMES****** ::9 :::.15£-02 ::!.09E-02 1. 72£-02 l.47E-02 1.31£-02 1. llE-02 9.24E-03 8.0lE-03 6.60E-03 S.66E-03

****** SUH OF NUCLIDE RISKS FOR GIVEN !IHES ****** 29 o.OlE-09 5.86£-09 4.80E-09 4.12E-09 3.67E-09 3.llE-09 2.59E-09 2.24E-09 l.85E-09 l.SCJE-09 PATHWAY10 ATMOSPHERICTRANSPORT cc ******** NUCLIDEDOSES FOR GIVEN TIHES ******** I ..... 1.0 11/0f.!AL DOSE TO AN IND!V IDUAL DUE TO OFF-S !IE ATMOSPHERre TRANSPORT 4: H-3 3.o2E-08 42 C-14 2.GlE-10 43 Fe-55 4.iOE-10 H Co-60 3.69£-07 ".59E-12 ni=~~ r. nE-o9 u47 Sr-90 5.74E-09 48 ~b-94 2.SOE-11 :: C: ::--99 1.78£-:2 ...... _ .. "

~·~ .<~-:, C'.JJ. Cs-135 9::':E-i4 52 Bal37a 6.81E-13 53 Cs-137 1. 46£-08 SE U-234 8 . 64£-09 5, U-235 l . 31E-10 58 U-238 2.26E-09 59 Np-237 4.12£-11 60 Pu-238 4.26£-07 61 Pu-239 4.41£-07 62 Pu-:!41 1.41£-07 63 Pu-242 9.06£-10 64 Aa-241 1.07£-06 A• -24~ 2.~3E-10 ~~Ca-24 1 ... 9£-10 61 Ca-244 8.14£-08 68 Ru-106 1.88£-10 69 Sb-125 1.09£-10 9 J

iO C;-134 2.SSE-09 7: Eu-154 3.32E-:v

~AAAAASUM OF NUCLIDED03E3 FOR GIVEN TIMES AAAAA~ 29 2.60E-0c

AAiAAASUH OF ~UCLIDS R!SKS FOR G!VEN T!HES AAAAAA ~9 7.28E-13

DISTHNCETO RECEP~0R IS 345.0 HETERS CH!/Q IS l.62E-05 CI/HAAJ PEi CI/SEC

AAAAAAAAAACUHULA!:VE TOTAL DOSES PER YEARFOR GIVEN !!HES AAAAAAAAAA

7 9.46E+00 8.33E+00 l.78E+00 3.83E-0l l.84E-0l 8.63E-02 5.51E-02 4,0JE-02 2.56E-02 l.88E-02

AAAAAAAAAACUHULAT!VE TOTAL RISKS PER YEARFOR GIVEN !IHES AAAAAAAAAA

i 2.65E-03 2,33E-03 4.98E-04 l.07E-04 5.15E-05 2.42E-05 1.54£-05 l.13E-0S 7.16E-0o 5.27E-06 0::, NO I -~CL IDE HALFL :FE AND INVENTORY( C: l ASSUMING TRANSPORTFROM THE FACIL :n N ·O CTIHE IN YRl HALFLIFE o. l. 15. so. 100. 200. 350. 500. 750. :ooo. 2.64E-23 4 t '.-t-3 l.23E+0l 7.86E+0l 7.43E+0l 3.37E+0l 4.69E+00 2.S0E-01 1.00E-03 2.lJE-07 4. 5'5E-ll 3.47E-17 42 C-14 5.73E+03 7.42E+00 7.42E+00 7.41E+00 7,38E+00 7.33E+00 7.24E+00 7.llE+00 6.99E+00 6.78E+00 6.5BE+00 43 fe-i5 2.70E+00 2.32E+0l 1. 30E+0l 4.94E-01 f-l~E-05 l.t5E-60 g.o0E-01 g.ooti-~l 44 o- 0 S.25E+OO 8.65E+0l 7.58E+0~ 1.19£+01 .1 E-01 1. OE- 4 ~:i~E=rAg:~~~=?~ ?:~~g:g~ .00E-01 . 00 - .. 45 Ni-59 8.00E+04 l.43E-0l l.43E-0l l.43E-0l l.43E-0l l.43E-0l l.43E-0l l.43E-0l l.42E-0l l.42E-0l :.42E-0l 46 Ni-63 9.20E+Ol 4.09E+0l 4.06E+0l 3.66E+0l 2.81E+0l 1. 93E+0l 9,07E+00 2.93E+00 9.46E-0l 1. 44E-0l 2.19E-02 47 Sr-90 2.86E+0l 2.69E+00 2.63E+00 1.87E+00 8.02E-0l 2.39E-0l 2.12E-02 5.58E-04 1.47E-05 3.HE-08 8.03E-ll ,1~ t.11-.-q4 2.00E+04 4.54E-03 4.S4E-03 4.S4E-03 4.53E-03 4.52E-03 4.5!E-03 4.48E-03 L 46E-03 4.42E-03 4.3BE-03 ~ ·., ·.. ...:-·'-.JJ :.:3!+05 l.90E-03 l.90E-03 l.90E-03 1. 90E-03 l.90E-03 l.90E-03 l.90E-03 l.90E-03 1. 90E-03 l.89E-03 SO I-129 l.70E•07 S.61E-03 5.61E-03 5.GlE-03 S.GlE-03 S.GlE-03 S.GlE-03 5.61E-03 S.GlE-03 5.61E-03 5.61E-03 :n Ci-135 3.01E+06 l. CJ0E-03 1.90E-03 l.90E-03 l.90E-03 1.90E-03 l,90E-03 l.90E-03 l.90E-03 1. 90E-03 l.90E-03 52 Ba137• 3.00E+0l 4.5GE+Ol 4.46E+Ol 3.23E+0l 1. 44E+Ol 4,53E+00 4.49E-0l 1.40E-02 4.39E-04 1. 36E-06 4.22E-09 GJ C»-137 3.00E+0l 4.SGE+Ol 4.46E+Ol 3.23E+0l 1. HE+0l 4.S3E+00 4.49E-0l l.40E-02 4.39E-04 l. JGE-06 4.22E-09 03 i,27E-0~ 4.27E-0~ 03 a,27E-03 4.27g-03 !.27E-03 4.27E-03 a,27E-03 ~, 8:B3 ~:3~i!83!:i§!:8! i·ri-. 5 -OS .85E-0 6.B~E-0 a·. ri-S -05 .8'5E-05 6.85 -05 ,SSE-OS G.SSE-05 .BSE-05 58 U-238 4.47£+09 l.2SE-03 1.2SE-03 l.25E-03 l.25E-03 l.2SE-03 l.25E-03 l.2SE-03 l.25E-03 1. 25E-03 1.25E-C3 59 No-237 ::?.lOE+OG 9.68£-06 9.68£-06 9.68£-06 9.688-06 9.688-06 9.~BE-06 9.GBB-gG ~-6BE-8j ~-Gn-06 9.GRI·8~ ~.77E+0l l. 101-01 9.86E-02 7.48E-02 S.04E-02 2. 8E-02 6.98E- 3 .13E- ~-9 -04 4.10 - .i ... 42£+04 i:Bi:8\ l. 12 -01 1. 12E-0l 1. 12E-01 1.12E-0l l.llE-01 1.llE-01 1. l0E-01 l.l0E-01 l.09E-0l 3.13£-08 ~-19£-11 2.36£-17 4.70E-23 1~=m 117roi 1.rro2 .01-04 .431-04 2.432-04 2.432-04 r :H:8 l: :8t ,:lH:H.34E-0l l.07E-0l 7.33E-02 5.03£-02 I ~=Utt;niu J:Hl=lr 1:1H:si trl=°r l 1 £i5 A• -243 7. 1E+03 5.40E- 5 .40E-o! S.4!EJS S.38E-05 5.35E-05 S.30E-0S 5.23£-05 S.16E-0S S.04E-0S 4.92E-05 66 C• -243 3.19E+Ol 4.48E-05 4,38£-05 3,23E-0S l.51E-0S 5.l0E-06 S,80E-07 2.23£-08 8.56£-10 3.75E-12 l.64E-14 67 C• -244 1. 76£+01 3.64E-02 3.S0E-02 2.02E-02 S.0BE-03 7.09E-04 l.38E-0S 3.7GE-08 1.02£-10 S.41£-15 2.87E-19 68 Ru- 06 l.0lE+O0 3.67E-03 ~-85E-03 l.24E-07 4.60£-18 5.7SE-33 0,00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01 69 Sb-125 2.77E+00 3.67E-0l .86E-Ol 8.60£-03 l.3SE-0G 4.98E-12 6.76E-23 0.0OE-01 0.00E-01 0.00E-01 0.00E-01 9 I ) 7

70 Cs - 134 2.0GE+OO 7.48E+OO S,34E+OO 4.81E-02 3.69£- 07 1.82£- 14 4 . 44E - 29 O. OO E-0 1 O,OOE - 01 O.OO E- 01 O. OOE -vl 71 Eu- 154 8.SOE•OO 9. 17£ - 02 3.45E- 02 2.70E - 02 l.55E-03 2. 64E - 05 7 .SSE- 09 3. 69£ -1 4 :.SOE - :9 2. 52E - 23 3. 53E-37 NUCLIDE HALFLIFE AND INVE NTORY !CI ) REHA ! NING IN THE FAC ILIT Y

i: ~:1 E :N YR> HALFLIFE 0. 1. 15. 50. 100. 200. 350. 500. 750. :ooo. 41 H-3 l.23E+Ol 7.8GE+O l 7.40E+Ol 3.20E+Ol 3.94E+OO l,98E-Ol 4.99E-04 6. 32E-08 7.99E- 12 2,55E-1 8 8, 13 E- ::?5 42 C- 14 S.73Et03 7.42E+OO 7.39E+OO 7.0JE+OO G.20E+OO S.13E• OO 3.6 l E+OO 2. l OE+OO l.23E+OO 4,CJSE -0 ". 2.03E- Ol 43 Fe-55 2.70E+OO 2.32E+Ol l.BOE+O l 4.94E- Ol 6.lBE- 05 l.64E- 10 l.16E-21 O.OOE-01 O.OOE-01 O.OOE - 0! O. OO E-01 44 Co-GO 5.25E+OO 8.65E+0 ~ 7.53E+Ol 1.19E+Ol 1. l 7E - 01 l,59E- 04 2. 93E- 10 7.31E-1CJ l .9::?E - 27 O.OOE - 01 11.00E-0! 45 Ni -59 B.OOE+04 !.43E- Ol 1.43£-01 l.43E-Ol l.43E-Ol l.42E- Ol 1. 42£-01 l.41E-O l 1. 40E - Ol l. 39E - Ol l .38E- Ol 4G ~i -63 9.20E+O l 4.09E+O ! t. C6 E+Ol 3.65E+Ol 2.SOE+Ol l .92E+Ol '3.02E+OO 2.90E+OO 9.32E -Ol : . C E- 01 2. l ::?E -02 47 Sr - 90 2.86E+Ol 2.69E+GO 2,63E+OO l . 87E+OO 8.00E-01 2.38E-01 2.09E-02 5.48£-04 1. 44E - 05 3.31E- 08 7. 65 E-~~ 48 Nb-94 2.00E+04 4.54E-03 4.54E- 03 4.53E-03 4.53E- 03 4.51E-03 4.4CJE-03 4.45£-03 4.41£-03 4.35E- 03 4.29£-03 49 Tc - 99 2.13E+OS l.90E-03 l.90E-03 l.85E-03 l.75E-03 l.61E-03 l.37E-03 l.07E-03 8.40E - 04 5.58E-0 4 3.7l E- 04 SO !-129 1.70E+07 S.GlE-03 5.G : E-03 5.57£-03 5.49E-03 5.37E-03 5.14£-03 4.8l E-03 4.50E- 03 4. 03£-03 3 .&1.E-03 51 Cs-135 3.0:E+06 ~.90E-03 l,90E-03 1.90£-03 1.90£- 03 l.90E-03 l.89E-03 l .89E- 03 l.89E- 03 1. 88E-03 l. 87E - 03 52 B~:37m 3.00E+Ol 4.56E+Ol 4.46E+Ol 3,2JE+Ol l,44E+Ol 4.52E+OO 4.48E-O l 1.40£-02 4.35E-04 1.:15E-06 4.15E-09 l. 35E-O& 4.15E-09 ~ 53 Cs-137 3.00E+Ol 4,56E+Ol 4.46E+Ol 3.23E+Ol l.44E+Ol 4.52E+OO 4.48E-Ol 1.40£-02 4.35£- 04 C 56 U-234 4.47E+C~ 4.27£-03 4.27£-03 4.27£- 03 4.27E-03 4.27£- 03 4.27E-03 4.27E-03 4. 27E - 03 4.26E-03 4.26E-03 V> 57 U-235 7,04E+08 G.BSE-05 6.8SE-05 G.85E-05 6.85E-05 6.85E-05 &.BSE-05 6.85E-05 6.84E-05 6.84E- 05 6.84E-05 C, , . ':l 5E-g;3 0 o < ~j~~=82 s:i~E=8i , j~f:82 1.~3E- B iij ~;33~, ~:tiE:82 ~~iiE=8l ~:iaE:8i J:iiE=8l a:~;E:8i i:i?E:82 tr~E=82 ~ 2.28E-02 6.98£-03 2. ). 3E - 03 2.CJSE - 04 4.09E- 05 ~ 60 ?u-238 8.77E+O! l.llE-01 l.lOE- 01 9.86E-02 7.48£- 02 5.03£-02 a 1. l.09E-Ol 1. 09E-O : B 61 Pu-239 2.42E+04 l.12E-Ol l.12E-Ol 1.12£-01 l.12E-01 1.12£-01 1.llE-01 1. 2: s-01 lOE-01 ~ 4.69E-23 rt o2 Pu-241 l.32E+Ol 3.00E+OO 2.85E+OO 1~37E+OO 2.17E-01 1.57E- 02 8.25E-05 3.13E- -:>8 l.19E-ll 2.36E-l7 2.42E- 04 2.42E-04 'O ~3 Pu-242 3.79E+05 2.43E-04 2.43E-04 2.43E-04 2.43£-04 2.43E-04 2.43E-04 2.43£-04 2.43£-04 ;!. o4 Ai-241 4.59E+02 2.23E-Ol 2.27£- 01 2.22E-O l 2.llE-01 l.95E-O l 1.68£- 01 l.33E-01 l.06E- Ol 7.23E-02 4.93E- 02 ~ rt S.llE-05 4.97E-05 4.83E-0'.:i ~· 65 A• -243 7.37E+03 5.40E-05 5.40£- 05 5.40E-05 5.37E-05 5.34E- 05 5.28£-05 5. 20E-05 ~ ~ ~6 Ca-243 3. 19E+Ol 4.48E-05 4.38E-05 3.23E-05 1.SlE-05 5.lOE-06 5.SCE - 07 2.23E-08 8.SSE-10 3.74E- 12' 1.63£-14 .. l.38E-05 3. 75E-08 1.02E-10 5.40E- 15 2.BGE -1 9 ...0 ~J 67 C• -244 1,7&E+Ol 3.G4E-02 3.SOE-02 2.02E-02 5,0BE-03 7.09E- 04 O.OOE-01 'J.OOE -Ol •·t, •... &8 Ru-106 1.~lE+OO 3.67E-03 1.85£-03 l.24E-07 4.59E-l8 5.74E- 33 O.OOE-01 O.OOE-01 O.OOE-01 :; 69 Sb - 125 2.77E+OO 3.67E-Ol 2.86E-Ol 8.GOE-03 1.35E-06 4.97E-12 6.71E-23 O.OOE-01 O.OOE-01 O.OOE - 01 O.OOE - Ol ~a Cs - 134 2.0GE+O• 7.48E+OO 5.34E+OO 4.BlE-02 3.&9E-07 l.82E-lj 4.43E-;?9 O.OOE-01 O.OOE-01 71 Eu-154 8.50E+OO 9.liE-02 8.45E-02 2.70£-02 1.SSE-03 2,64E-0J 7.57E-v9 3.69E-14 1.BOE-19 gJ~f=~a ~=g ~~:g, m *********** HAXIHUM DOSES & DOHINANT NUCLIDES B'l PATHWAY********** "'m NAHE OF RUN 6 PWRHU - HD SE 3/86 HHHH PAtHWAY ********DUSt ATHOSPHERIC GAHMA WELL FOOD ANNUAL DOSE 2,15E-02 2.&0E-06 8.76E+OO 1.llE-01 4.84£-01 YEAR O O 0 50 1 DOUNANT NUCLIDE Aa-241 Aia-241 Co-60 C-14 Cs-137 9 7 PA ANR-459 United States Environmental Protection Agency Washington, DC 20460 Official Business Penalty for Private Use $300