Oracle® Linux 7 Release Notes for Oracle Linux 7.6
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Red Hat Enterprise Linux 7 7.1 Release Notes
Red Hat Enterprise Linux 7 7.1 Release Notes Release Notes for Red Hat Enterprise Linux 7 Red Hat Customer Content Services Red Hat Enterprise Linux 7 7.1 Release Notes Release Notes for Red Hat Enterprise Linux 7 Red Hat Customer Content Services Legal Notice Copyright © 2015 Red Hat, Inc. This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0 Unported License. If you distribute this document, or a modified version of it, you must provide attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat trademarks must be removed. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. Linux ® is the registered trademark of Linus Torvalds in the United States and other countries. Java ® is a registered trademark of Oracle and/or its affiliates. XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries. MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other countries. Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or endorsed by the official Joyent Node.js open source or commercial project. -
Ivoyeur: Inotify
COLUMNS iVoyeur inotify DAVE JOSEPHSEN Dave Josephsen is the he last time I changed jobs, the magnitude of the change didn’t really author of Building a sink in until the morning of my first day, when I took a different com- Monitoring Infrastructure bination of freeways to work. The difference was accentuated by the with Nagios (Prentice Hall T PTR, 2007) and is Senior fact that the new commute began the same as the old one, but on this morn- Systems Engineer at DBG, Inc., where he ing, at a particular interchange, I would zig where before I zagged. maintains a gaggle of geographically dispersed It was an unexpectedly emotional and profound metaphor for the change. My old place was server farms. He won LISA ‘04’s Best Paper off to the side, and down below, while my future was straight ahead, and literally under award for his co-authored work on spam construction. mitigation, and he donates his spare time to the SourceMage GNU Linux Project. The fact that it was under construction was poetic but not surprising. Most of the roads I [email protected] travel in the Dallas/Fort Worth area are under construction and have been for as long as anyone can remember. And I don’t mean a lane closed here or there. Our roads drift and wan- der like leaves in the water—here today and tomorrow over there. The exits and entrances, neither a part of this road or that, seem unable to anticipate the movements of their brethren, and are constantly forced to react. -
Speeding up Linux Disk Encryption Ignat Korchagin @Ignatkn $ Whoami
Speeding Up Linux Disk Encryption Ignat Korchagin @ignatkn $ whoami ● Performance and security at Cloudflare ● Passionate about security and crypto ● Enjoy low level programming @ignatkn Encrypting data at rest The storage stack applications @ignatkn The storage stack applications filesystems @ignatkn The storage stack applications filesystems block subsystem @ignatkn The storage stack applications filesystems block subsystem storage hardware @ignatkn Encryption at rest layers applications filesystems block subsystem SED, OPAL storage hardware @ignatkn Encryption at rest layers applications filesystems LUKS/dm-crypt, BitLocker, FileVault block subsystem SED, OPAL storage hardware @ignatkn Encryption at rest layers applications ecryptfs, ext4 encryption or fscrypt filesystems LUKS/dm-crypt, BitLocker, FileVault block subsystem SED, OPAL storage hardware @ignatkn Encryption at rest layers DBMS, PGP, OpenSSL, Themis applications ecryptfs, ext4 encryption or fscrypt filesystems LUKS/dm-crypt, BitLocker, FileVault block subsystem SED, OPAL storage hardware @ignatkn Storage hardware encryption Pros: ● it’s there ● little configuration needed ● fully transparent to applications ● usually faster than other layers @ignatkn Storage hardware encryption Pros: ● it’s there ● little configuration needed ● fully transparent to applications ● usually faster than other layers Cons: ● no visibility into the implementation ● no auditability ● sometimes poor security https://support.microsoft.com/en-us/help/4516071/windows-10-update-kb4516071 @ignatkn Block -
DM-Relay - Safe Laptop Mode Via Linux Device Mapper
' $ DM-Relay - Safe Laptop Mode via Linux Device Mapper Study Thesis by cand. inform. Fabian Franz at the Faculty of Informatics Supervisor: Prof. Dr. Frank Bellosa Supervising Research Assistant: Dipl.-Inform. Konrad Miller Day of completion: 04/05/2010 &KIT – Universitat¨ des Landes Baden-Wurttemberg¨ und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu % I hereby declare that this thesis is my own original work which I created without illegitimate help by others, that I have not used any other sources or resources than the ones indicated and that due acknowledgment is given where reference is made to the work of others. Karlsruhe, April 5th, 2010 Contents Deutsche Zusammenfassung xi 1 Introduction 1 1.1 Problem Definition . .1 1.2 Objectives . .1 1.3 Methodology . .1 1.4 Contribution . .2 1.5 Thesis Outline . .2 2 Background 3 2.1 Problems of Disk Power Management . .3 2.2 State of the Art . .4 2.3 Summary of this chapter . .8 3 Analysis 9 3.1 Pro and Contra . .9 3.2 A new approach . 13 3.3 Analysis of Proposal . 15 3.4 Summary of this chapter . 17 4 Design 19 4.1 Common problems . 19 4.2 System-Design . 21 4.3 Summary of this chapter . 21 5 Implementation of a dm-module for the Linux kernel 23 5.1 System-Architecture . 24 5.2 Log suitable for Flash-Storage . 28 5.3 Using dm-relay in practice . 31 5.4 Summary of this chapter . 31 vi Contents 6 Evaluation 33 6.1 Methodology . 33 6.2 Benchmarking setup . -
A Hybrid Swapping Scheme Based on Per-Process Reclaim for Performance Improvement of Android Smartphones (August 2018)
Received August 19, 2018, accepted September 14, 2018, date of publication October 1, 2018, date of current version October 25, 2018. Digital Object Identifier 10.1109/ACCESS.2018.2872794 A Hybrid Swapping Scheme Based On Per-Process Reclaim for Performance Improvement of Android Smartphones (August 2018) JUNYEONG HAN 1, SUNGEUN KIM1, SUNGYOUNG LEE1, JAEHWAN LEE2, AND SUNG JO KIM2 1LG Electronics, Seoul 07336, South Korea 2School of Software, Chung-Ang University, Seoul 06974, South Korea Corresponding author: Sung Jo Kim ([email protected]) This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education under Grant 2016R1D1A1B03931004 and in part by the Chung-Ang University Research Scholarship Grants in 2015. ABSTRACT As a way to increase the actual main memory capacity of Android smartphones, most of them make use of zRAM swapping, but it has limitation in increasing its capacity since it utilizes main memory. Unfortunately, they cannot use secondary storage as a swap space due to the long response time and wear-out problem. In this paper, we propose a hybrid swapping scheme based on per-process reclaim that supports both secondary-storage swapping and zRAM swapping. It attempts to swap out all the pages in the working set of a process to a zRAM swap space rather than killing the process selected by a low-memory killer, and to swap out the least recently used pages into a secondary storage swap space. The main reason being is that frequently swap- in/out pages use the zRAM swap space while less frequently swap-in/out pages use the secondary storage swap space, in order to reduce the page operation cost. -
Sbadmin Device-Mapper Multipath Devices
DM-Multipath Guide Version 8.2 SBAdmin and DM-Multipath Guide The purpose of this guide is to provide the steps necessary to use SBAdmin in an environment where SAN storage is used in conjunction with device-mapper multipath devices. When a system is using dm-multipath devices, there are several considerations that need to be addressed. The device naming, tools available, and device modules loaded become critical issues in discovery of devices and recreation of those devices upon restore. The information in this guide should provide the necessary information to create backups from systems using dm-multipath devices or for users who want to migrate a system backup to multipath devices. This guide is not intended to assist users in the initial setup of dm-multipath devices. For information on initially setting up dm-multipath devices, contact your Linux OS support vendors directly. Requirements for DM-Multipath support Software requirements Support for dm-multipath devices has been available to Linux users for years, however, how the devices are created and supported by distributions has changed greatly over time as the technology matures. Below is the minimal level of the tools and file sets that SBAdmin has tested and will support. dm-multipath-tools version 0.4.5 (also known as device-mapper-multipath) device-mapper version 1.02 udev version 039-10 Device detection requirements Device naming If you plan on creating backups from a system using dm-multipath devices, the SBAdmin software must be able to recognize the devices by name prior to creating the backup. Multipath devices can be named several different ways such as by the World Wide Identifier (WWID), dm-[0-9], mpath[a-z], and mpath[0-9]. -
Monitoring File Events
MONITORING FILE EVENTS Some applications need to be able to monitor files or directories in order to deter- mine whether events have occurred for the monitored objects. For example, a graphical file manager needs to be able to determine when files are added or removed from the directory that is currently being displayed, or a daemon may want to monitor its configuration file in order to know if the file has been changed. Starting with kernel 2.6.13, Linux provides the inotify mechanism, which allows an application to monitor file events. This chapter describes the use of inotify. The inotify mechanism replaces an older mechanism, dnotify, which provided a subset of the functionality of inotify. We describe dnotify briefly at the end of this chapter, focusing on why inotify is better. The inotify and dnotify mechanisms are Linux-specific. (A few other systems provide similar mechanisms. For example, the BSDs provide the kqueue API.) A few libraries provide an API that is more abstract and portable than inotify and dnotify. The use of these libraries may be preferable for some applications. Some of these libraries employ inotify or dnotify, on systems where they are available. Two such libraries are FAM (File Alteration Monitor, http:// oss.sgi.com/projects/fam/) and Gamin (http://www.gnome.org/~veillard/gamin/). 19.1 Overview The key steps in the use of the inotify API are as follows: 1. The application uses inotify_init() to create an inotify instance. This system call returns a file descriptor that is used to refer to the inotify instance in later operations. -
Fsmonitor: Scalable File System Monitoring for Arbitrary Storage Systems
FSMonitor: Scalable File System Monitoring for Arbitrary Storage Systems Arnab K. Paul∗, Ryan Chardy, Kyle Chardz, Steven Tueckez, Ali R. Butt∗, Ian Fostery;z ∗Virginia Tech, yArgonne National Laboratory, zUniversity of Chicago fakpaul, [email protected], frchard, [email protected], fchard, [email protected] Abstract—Data automation, monitoring, and management enable programmatic management, and even autonomously tools are reliant on being able to detect, report, and respond manage the health of the system. Enabling scalable, reliable, to file system events. Various data event reporting tools exist for and standardized event detection and reporting will also be of specific operating systems and storage devices, such as inotify for Linux, kqueue for BSD, and FSEvents for macOS. How- value to a range of infrastructures and tools, such as Software ever, these tools are not designed to monitor distributed file Defined CyberInfrastructure (SDCI) [14], auditing [9], and systems. Indeed, many cannot scale to monitor many thousands automating analytical pipelines [11]. Such systems enable of directories, or simply cannot be applied to distributed file automation by allowing programs to respond to file events systems. Moreover, each tool implements a custom API and and initiate tasks. event representation, making the development of generalized and portable event-based applications challenging. As file systems Most storage systems provide mechanisms to detect and grow in size and become increasingly diverse, there is a need report data events, such as file creation, modification, and for scalable monitoring solutions that can be applied to a wide deletion. Tools such as inotify [20], kqueue [18], and FileSys- range of both distributed and local systems. -
Hitachi Cloud Accelerator Platform Product Manager HCAP V 1
HITACHI Inspire the Next 2535 Augustine Drive Santa Clara, CA 95054 USA Contact Information : Hitachi Cloud Accelerator Platform Product Manager HCAP v 1 . 5 . 1 Hitachi Vantara LLC 2535 Augustine Dr. Santa Clara CA 95054 Component Version License Modified 18F/domain-scan 20181130-snapshot-988de72b Public Domain Exact BSD 3-clause "New" or "Revised" a connector factory 0.0.9 Exact License BSD 3-clause "New" or "Revised" a connector for Pageant using JNA 0.0.9 Exact License BSD 3-clause "New" or "Revised" a connector for ssh-agent 0.0.9 Exact License a library to use jsch-agent-proxy with BSD 3-clause "New" or "Revised" 0.0.9 Exact sshj License Exact,Ma activesupport 5.2.1 MIT License nually Identified Activiti - BPMN Converter 6.0.0 Apache License 2.0 Exact Activiti - BPMN Model 6.0.0 Apache License 2.0 Exact Activiti - DMN API 6.0.0 Apache License 2.0 Exact Activiti - DMN Model 6.0.0 Apache License 2.0 Exact Activiti - Engine 6.0.0 Apache License 2.0 Exact Activiti - Form API 6.0.0 Apache License 2.0 Exact Activiti - Form Model 6.0.0 Apache License 2.0 Exact Activiti - Image Generator 6.0.0 Apache License 2.0 Exact Activiti - Process Validation 6.0.0 Apache License 2.0 Exact Addressable URI parser 2.5.2 Apache License 2.0 Exact Exact,Ma adzap/timeliness 0.3.8 MIT License nually Identified aggs-matrix-stats 5.5.1 Apache License 2.0 Exact agronholm/pythonfutures 3.3.0 3Delight License Exact ahoward's lockfile 2.1.3 Ruby License Exact Exact,Ma ahoward's systemu 2.6.5 Ruby License nually Identified GNU Lesser General Public License ai's -
Displaying and Watching Directories Using Lazarus
Displaying and Watching directories using Lazarus Michaël Van Canneyt October 31, 2011 Abstract Using Lazarus, getting the contents of a directory can be done in 2 ways: a portable, and a unix-specific way. This article shows how to get the contents of a directory and show it in a window. Additionally, it shows how to get notifications of the Linux kernel if the contents of the directory changes. 1 Introduction Examining the contents of a directory is a common operation, both using command-line tools or a GUI file manager. Naturally, Free/Pascal and Lazarus offer an API to do this. In fact, there are 2 API’s to get the contents of a directory: one which is portable and will work on all platforms supported by Lazarus. The other is not portable, but resembles closely the POSIX API for dealing with files and directories. Each API has its advantages and disadvantages. Often, it is desirable to be notified if the contents of a directory changes: in a file manager, this can be used to update the display - showing new items or removing items as needed. This can also be done by scanning the contents of the directory at regular intervals, but it should be obvious that this is not as efficient. There are other scenarios when a notification of a change in a directory is interesting: for instance, in a FTP server, one may want to move incoming files to a location outside the FTP tree, or to a new location based on some rules (e.g. images to one directory, sound files to another). -
Battle-Hardened Upstart Linux Plumbers 2013
Battle-Hardened Upstart Linux Plumbers 2013 James Hunt <[email protected]> and Dmitrijs Ledkovs <[email protected]> September, 2013 Table of Contents Utilities 1. Overview 3. Enablements 2. Design and Architecture cloud-init Event-based Design friendly-recovery Example Job gpg-key-compose SystemV Support Summary SystemV Runlevels 4. Quality Checks Bridges 5. Areas of Friction More Events 6. Links . 2 / 31 Overview of Upstart Revolutionary event-based /sbin/init system. Written by Scott James Remnant (Canonical, Google). Maintained by Canonical. Developed by Canonical and the community. PID 1 on every Ubuntu system since 2006 (introduced in Ubuntu 6.10 "Edgy Eft"). Systems booted using native Upstart jobs (not SysVinit compat) since Ubuntu 9.10 ("Karmic Koala") in 2009. Handles system boot and shutdown and supervises services. Provides legacy support for SystemV services. Upstart is a first-class citizen in Debian ([Debian Policy]). 3 / 31 Availability and Usage Runs on any modern Linux system. Used by... 6.10 ! 11.3/11.4 RHEL6 ChromeOS Now available in... 4 / 31 Platform Presence Upstart runs on all types of systems: Desktop systems Servers Embedded devices Thin clients (such as ChromeBooks, Edubuntu) Cloud instances Tablets Phones (Ubuntu Touch) . 5 / 31 Cloud Upstart is the #1 init system used in the cloud (through Ubuntu). Ubuntu, and thus Upstart, is used by lots of large well-known companies such as: HP AT&T Wikipedia Ericsson Rackspace Instagram twitpic … Companies moving to Ubuntu... Netflix . Hulu eBay 6 / 31 Versatility Upstart is simple and versatile The /sbin/init daemon only knows about events and processes: it doesn't dictate runlevel policy. -
I.MX Encrypted Storage Using CAAM Secure Keys Rev
AN12714 i.MX Encrypted Storage Using CAAM Secure Keys Rev. 1 — 11/2020 Application Note Contents 1 Preface 1 Preface............................................1 Devices often contain highly sensitive information which is consistently at risk 1.1 Intended audience and scope......1 1.2 References...................................1 to get physically lost or stolen. Setting user passwords does not guarantee data 2 Overview......................................... 1 protection against unauthorized access. The attackers can simply bypass the 2.1 DM-Crypt......................................1 software system of a device and access the data storage directly. Only the 2.2 DM-Crypt accelerated by CAAM use of encryption can guarantee data confidentiality in the case where storage .....................................................2 media is directly accessed. 2.3 DM-Crypt using CAAM's Secure Key...............................................3 This document provides steps to run a transparent storage encryption at block 3 Hands-On........................................4 level using DM-Crypt taking advantage of the secure key feature provided 3.1 Installation....................................4 by i.MXs Cryptographic Accelerator and Assurance Module (CAAM). The 3.2 Usage...........................................6 document applies to all i.MX SoCs having CAAM module. The feature is not 3.3 Performance................................ 9 available on i.MX SoCs with DCP. 4 Revision History............................ 10 5 Appendix A. Configuration...........