Algebraic Enumeration
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mathematics I Basic Mathematics
Mathematics I Basic Mathematics Prepared by Prof. Jairus. Khalagai African Virtual university Université Virtuelle Africaine Universidade Virtual Africana African Virtual University NOTICE This document is published under the conditions of the Creative Commons http://en.wikipedia.org/wiki/Creative_Commons Attribution http://creativecommons.org/licenses/by/2.5/ License (abbreviated “cc-by”), Version 2.5. African Virtual University Table of ConTenTs I. Mathematics 1, Basic Mathematics _____________________________ 3 II. Prerequisite Course or Knowledge _____________________________ 3 III. Time ____________________________________________________ 3 IV. Materials _________________________________________________ 3 V. Module Rationale __________________________________________ 4 VI. Content __________________________________________________ 5 6.1 Overview ____________________________________________ 5 6.2 Outline _____________________________________________ 6 VII. General Objective(s) ________________________________________ 8 VIII. Specific Learning Objectives __________________________________ 8 IX. Teaching and Learning Activities ______________________________ 10 X. Key Concepts (Glossary) ____________________________________ 16 XI. Compulsory Readings ______________________________________ 18 XII. Compulsory Resources _____________________________________ 19 XIII. Useful Links _____________________________________________ 20 XIV. Learning Activities _________________________________________ 23 XV. Synthesis Of The Module ___________________________________ -
COMPSCI 501: Formal Language Theory Insights on Computability Turing Machines Are a Model of Computation Two (No Longer) Surpris
Insights on Computability Turing machines are a model of computation COMPSCI 501: Formal Language Theory Lecture 11: Turing Machines Two (no longer) surprising facts: Marius Minea Although simple, can describe everything [email protected] a (real) computer can do. University of Massachusetts Amherst Although computers are powerful, not everything is computable! Plus: “play” / program with Turing machines! 13 February 2019 Why should we formally define computation? Must indeed an algorithm exist? Back to 1900: David Hilbert’s 23 open problems Increasingly a realization that sometimes this may not be the case. Tenth problem: “Occasionally it happens that we seek the solution under insufficient Given a Diophantine equation with any number of un- hypotheses or in an incorrect sense, and for this reason do not succeed. known quantities and with rational integral numerical The problem then arises: to show the impossibility of the solution under coefficients: To devise a process according to which the given hypotheses or in the sense contemplated.” it can be determined in a finite number of operations Hilbert, 1900 whether the equation is solvable in rational integers. This asks, in effect, for an algorithm. Hilbert’s Entscheidungsproblem (1928): Is there an algorithm that And “to devise” suggests there should be one. decides whether a statement in first-order logic is valid? Church and Turing A Turing machine, informally Church and Turing both showed in 1936 that a solution to the Entscheidungsproblem is impossible for the theory of arithmetic. control To make and prove such a statement, one needs to define computability. In a recent paper Alonzo Church has introduced an idea of “effective calculability”, read/write head which is equivalent to my “computability”, but is very differently defined. -
The Cycle Polynomial of a Permutation Group
The cycle polynomial of a permutation group Peter J. Cameron and Jason Semeraro Abstract The cycle polynomial of a finite permutation group G is the gen- erating function for the number of elements of G with a given number of cycles: c(g) FG(x)= x , gX∈G where c(g) is the number of cycles of g on Ω. In the first part of the paper, we develop basic properties of this polynomial, and give a number of examples. In the 1970s, Richard Stanley introduced the notion of reciprocity for pairs of combinatorial polynomials. We show that, in a consider- able number of cases, there is a polynomial in the reciprocal relation to the cycle polynomial of G; this is the orbital chromatic polynomial of Γ and G, where Γ is a G-invariant graph, introduced by the first author, Jackson and Rudd. We pose the general problem of finding all such reciprocal pairs, and give a number of examples and charac- terisations: the latter include the cases where Γ is a complete or null graph or a tree. The paper concludes with some comments on other polynomials associated with a permutation group. arXiv:1701.06954v1 [math.CO] 24 Jan 2017 1 The cycle polynomial and its properties Define the cycle polynomial of a permutation group G acting on a set Ω of size n to be c(g) FG(x)= x , g∈G X where c(g) is the number of cycles of g on Ω (including fixed points). Clearly the cycle polynomial is a monic polynomial of degree n. -
Axioms and Algebraic Systems*
Axioms and algebraic systems* Leong Yu Kiang Department of Mathematics National University of Singapore In this talk, we introduce the important concept of a group, mention some equivalent sets of axioms for groups, and point out the relationship between the individual axioms. We also mention briefly the definitions of a ring and a field. Definition 1. A binary operation on a non-empty set S is a rule which associates to each ordered pair (a, b) of elements of S a unique element, denoted by a* b, in S. The binary relation itself is often denoted by *· It may also be considered as a mapping from S x S to S, i.e., * : S X S ~ S, where (a, b) ~a* b, a, bE S. Example 1. Ordinary addition and multiplication of real numbers are binary operations on the set IR of real numbers. We write a+ b, a· b respectively. Ordinary division -;- is a binary relation on the set IR* of non-zero real numbers. We write a -;- b. Definition 2. A binary relation * on S is associative if for every a, b, c in s, (a* b) * c =a* (b *c). Example 2. The binary operations + and · on IR (Example 1) are as sociative. The binary relation -;- on IR* (Example 1) is not associative smce 1 3 1 ~ 2) ~ 3 _J_ - 1 ~ (2 ~ 3). ( • • = -6 I 2 = • • * Talk given at the Workshop on Algebraic Structures organized by the Singapore Mathemat- ical Society for school teachers on 5 September 1988. 11 Definition 3. A semi-group is a non-€mpty set S together with an asso ciative binary operation *, and is denoted by (S, *). -
Generalized Inverse Limits and Topological Entropy
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of Faculty of Science, University of Zagreb FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS Goran Erceg GENERALIZED INVERSE LIMITS AND TOPOLOGICAL ENTROPY DOCTORAL THESIS Zagreb, 2016 PRIRODOSLOVNO - MATEMATICKIˇ FAKULTET MATEMATICKIˇ ODSJEK Goran Erceg GENERALIZIRANI INVERZNI LIMESI I TOPOLOŠKA ENTROPIJA DOKTORSKI RAD Zagreb, 2016. FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS Goran Erceg GENERALIZED INVERSE LIMITS AND TOPOLOGICAL ENTROPY DOCTORAL THESIS Supervisors: prof. Judy Kennedy prof. dr. sc. Vlasta Matijevic´ Zagreb, 2016 PRIRODOSLOVNO - MATEMATICKIˇ FAKULTET MATEMATICKIˇ ODSJEK Goran Erceg GENERALIZIRANI INVERZNI LIMESI I TOPOLOŠKA ENTROPIJA DOKTORSKI RAD Mentori: prof. Judy Kennedy prof. dr. sc. Vlasta Matijevic´ Zagreb, 2016. Acknowledgements First of all, i want to thank my supervisor professor Judy Kennedy for accept- ing a big responsibility of guiding a transatlantic student. Her enthusiasm and love for mathematics are contagious. I thank professor Vlasta Matijevi´c, not only my supervisor but also my role model as a professor of mathematics. It was privilege to be guided by her for master's and doctoral thesis. I want to thank all my math teachers, from elementary school onwards, who helped that my love for math rises more and more with each year. Special thanks to Jurica Cudina´ who showed me a glimpse of math theory already in the high school. I thank all members of the Topology seminar in Split who always knew to ask right questions at the right moment and to guide me in the right direction. I also thank Iztok Baniˇcand the rest of the Topology seminar in Maribor who welcomed me as their member and showed me the beauty of a teamwork. -
Primitive Recursive Functions Are Recursively Enumerable
AN ENUMERATION OF THE PRIMITIVE RECURSIVE FUNCTIONS WITHOUT REPETITION SHIH-CHAO LIU (Received April 15,1900) In a theorem and its corollary [1] Friedberg gave an enumeration of all the recursively enumerable sets without repetition and an enumeration of all the partial recursive functions without repetition. This note is to prove a similar theorem for the primitive recursive functions. The proof is only a classical one. We shall show that the theorem is intuitionistically unprovable in the sense of Kleene [2]. For similar reason the theorem by Friedberg is also intuitionistical- ly unprovable, which is not stated in his paper. THEOREM. There is a general recursive function ψ(n, a) such that the sequence ψ(0, a), ψ(l, α), is an enumeration of all the primitive recursive functions of one variable without repetition. PROOF. Let φ(n9 a) be an enumerating function of all the primitive recursive functions of one variable, (See [3].) We define a general recursive function v(a) as follows. v(0) = 0, v(n + 1) = μy, where μy is the least y such that for each j < n + 1, φ(y, a) =[= φ(v(j), a) for some a < n + 1. It is noted that the value v(n + 1) can be found by a constructive method, for obviously there exists some number y such that the primitive recursive function <p(y> a) takes a value greater than all the numbers φ(v(0), 0), φ(y(Ϋ), 0), , φ(v(n\ 0) f or a = 0 Put ψ(n, a) = φ{v{n), a). -
Polya Enumeration Theorem
Polya Enumeration Theorem Sasha Patotski Cornell University [email protected] December 11, 2015 Sasha Patotski (Cornell University) Polya Enumeration Theorem December 11, 2015 1 / 10 Cosets A left coset of H in G is gH where g 2 G (H is on the right). A right coset of H in G is Hg where g 2 G (H is on the left). Theorem If two left cosets of H in G intersect, then they coincide, and similarly for right cosets. Thus, G is a disjoint union of left cosets of H and also a disjoint union of right cosets of H. Corollary(Lagrange's theorem) If G is a finite group and H is a subgroup of G, then the order of H divides the order of G. In particular, the order of every element of G divides the order of G. Sasha Patotski (Cornell University) Polya Enumeration Theorem December 11, 2015 2 / 10 Applications of Lagrange's Theorem Theorem n! For any integers n ≥ 0 and 0 ≤ m ≤ n, the number m!(n−m)! is an integer. Theorem (ab)! (ab)! For any positive integers a; b the ratios (a!)b and (a!)bb! are integers. Theorem For an integer m > 1 let '(m) be the number of invertible numbers modulo m. For m ≥ 3 the number '(m) is even. Sasha Patotski (Cornell University) Polya Enumeration Theorem December 11, 2015 3 / 10 Polya's Enumeration Theorem Theorem Suppose that a finite group G acts on a finite set X . Then the number of colorings of X in n colors inequivalent under the action of G is 1 X N(n) = nc(g) jGj g2G where c(g) is the number of cycles of g as a permutation of X . -
A List of Arithmetical Structures Complete with Respect to the First
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 257 (2001) 115–151 www.elsevier.com/locate/tcs A list of arithmetical structures complete with respect to the ÿrst-order deÿnability Ivan Korec∗;X Slovak Academy of Sciences, Mathematical Institute, Stefanikovaà 49, 814 73 Bratislava, Slovak Republic Abstract A structure with base set N is complete with respect to the ÿrst-order deÿnability in the class of arithmetical structures if and only if the operations +; × are deÿnable in it. A list of such structures is presented. Although structures with Pascal’s triangles modulo n are preferred a little, an e,ort was made to collect as many simply formulated results as possible. c 2001 Elsevier Science B.V. All rights reserved. MSC: primary 03B10; 03C07; secondary 11B65; 11U07 Keywords: Elementary deÿnability; Pascal’s triangle modulo n; Arithmetical structures; Undecid- able theories 1. Introduction A list of (arithmetical) structures complete with respect of the ÿrst-order deÿnability power (shortly: def-complete structures) will be presented. (The term “def-strongest” was used in the previous versions.) Most of them have the base set N but also structures with some other universes are considered. (Formal deÿnitions are given below.) The class of arithmetical structures can be quasi-ordered by ÿrst-order deÿnability power. After the usual factorization we obtain a partially ordered set, and def-complete struc- tures will form its greatest element. Of course, there are stronger structures (with respect to the ÿrst-order deÿnability) outside of the class of arithmetical structures. -
Supplement on the Symmetric Group
SUPPLEMENT ON THE SYMMETRIC GROUP RUSS WOODROOFE I presented a couple of aspects of the theory of the symmetric group Sn differently than what is in Herstein. These notes will sketch this material. You will still want to read your notes and Herstein Chapter 2.10. 1. Conjugacy 1.1. The big idea. We recall from Linear Algebra that conjugacy in the matrix GLn(R) corresponds to changing basis in the underlying vector space n n R . Since GLn(R) is exactly the automorphism group of R (check the n definitions!), it’s equivalent to say that conjugation in Aut R corresponds n to change of basis in R . Similarly, Sn is Sym[n], the symmetries of the set [n] = {1, . , n}. We could think of an element of Sym[n] as being a “set automorphism” – this just says that sets have no interesting structure, unlike vector spaces with their abelian group structure. You might expect conjugation in Sn to correspond to some sort of change in basis of [n]. 1.2. Mathematical details. Lemma 1. Let g = (α1, . , αk) be a k-cycle in Sn, and h ∈ Sn be any element. Then h g = (α1 · h, α2 · h, . αk · h). h Proof. We show that g has the same action as (α1 · h, α2 · h, . αk · h), and since Sn acts faithfully (with trivial kernel) on [n], the lemma follows. h −1 First: (αi · h) · g = (αi · h) · h gh = αi · gh. If 1 ≤ i < m, then αi · gh = αi+1 · h as desired; otherwise αm · h = α1 · h also as desired. -
Basic Concepts of Set Theory, Functions and Relations 1. Basic
Ling 310, adapted from UMass Ling 409, Partee lecture notes March 1, 2006 p. 1 Basic Concepts of Set Theory, Functions and Relations 1. Basic Concepts of Set Theory........................................................................................................................1 1.1. Sets and elements ...................................................................................................................................1 1.2. Specification of sets ...............................................................................................................................2 1.3. Identity and cardinality ..........................................................................................................................3 1.4. Subsets ...................................................................................................................................................4 1.5. Power sets .............................................................................................................................................4 1.6. Operations on sets: union, intersection...................................................................................................4 1.7 More operations on sets: difference, complement...................................................................................5 1.8. Set-theoretic equalities ...........................................................................................................................5 Chapter 2. Relations and Functions ..................................................................................................................6 -
Axiomatic Set Teory P.D.Welch
Axiomatic Set Teory P.D.Welch. August 16, 2020 Contents Page 1 Axioms and Formal Systems 1 1.1 Introduction 1 1.2 Preliminaries: axioms and formal systems. 3 1.2.1 The formal language of ZF set theory; terms 4 1.2.2 The Zermelo-Fraenkel Axioms 7 1.3 Transfinite Recursion 9 1.4 Relativisation of terms and formulae 11 2 Initial segments of the Universe 17 2.1 Singular ordinals: cofinality 17 2.1.1 Cofinality 17 2.1.2 Normal Functions and closed and unbounded classes 19 2.1.3 Stationary Sets 22 2.2 Some further cardinal arithmetic 24 2.3 Transitive Models 25 2.4 The H sets 27 2.4.1 H - the hereditarily finite sets 28 2.4.2 H - the hereditarily countable sets 29 2.5 The Montague-Levy Reflection theorem 30 2.5.1 Absoluteness 30 2.5.2 Reflection Theorems 32 2.6 Inaccessible Cardinals 34 2.6.1 Inaccessible cardinals 35 2.6.2 A menagerie of other large cardinals 36 3 Formalising semantics within ZF 39 3.1 Definite terms and formulae 39 3.1.1 The non-finite axiomatisability of ZF 44 3.2 Formalising syntax 45 3.3 Formalising the satisfaction relation 46 3.4 Formalising definability: the function Def. 47 3.5 More on correctness and consistency 48 ii iii 3.5.1 Incompleteness and Consistency Arguments 50 4 The Constructible Hierarchy 53 4.1 The L -hierarchy 53 4.2 The Axiom of Choice in L 56 4.3 The Axiom of Constructibility 57 4.4 The Generalised Continuum Hypothesis in L. -
Enumeration of Finite Automata 1 Z(A) = 1
INFOI~MATION AND CONTROL 10, 499-508 (1967) Enumeration of Finite Automata 1 FRANK HARARY AND ED PALMER Department of Mathematics, University of Michigan, Ann Arbor, Michigan Harary ( 1960, 1964), in a survey of 27 unsolved problems in graphical enumeration, asked for the number of different finite automata. Re- cently, Harrison (1965) solved this problem, but without considering automata with initial and final states. With the aid of the Power Group Enumeration Theorem (Harary and Palmer, 1965, 1966) the entire problem can be handled routinely. The method involves a confrontation of several different operations on permutation groups. To set the stage, we enumerate ordered pairs of functions with respect to the product of two power groups. Finite automata are then concisely defined as certain ordered pah's of functions. We review the enumeration of automata in the natural setting of the power group, and then extend this result to enumerate automata with initial and terminal states. I. ENUMERATION THEOREM For completeness we require a number of definitions, which are now given. Let A be a permutation group of order m = ]A I and degree d acting on the set X = Ix1, x~, -.. , xa}. The cycle index of A, denoted Z(A), is defined as follows. Let jk(a) be the number of cycles of length k in the disjoint cycle decomposition of any permutation a in A. Let al, a2, ... , aa be variables. Then the cycle index, which is a poly- nomial in the variables a~, is given by d Z(A) = 1_ ~ H ~,~(°~ . (1) ~$ a EA k=l We sometimes write Z(A; al, as, ..