Mortality of Discarded Spanner Crabs Ranina Ranina (Linnaeus) in a Tangle-Net Fishery - Laboratory and Field Experiments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Queensland Spanner Crab Fishery : Commercial Quota Setting for June
Queensland Spanner Crab Fishery Commercial quota setting for June 2015 – May 2016 Species: Ranina ranina This publication has been compiled by MJ Campbell and MF O’Neill of Agri-Science Queensland and JG McGilvray of Fisheries Queensland, Department of Agriculture and Fisheries. © State of Queensland, 2016 The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence. Under this licence you are free, without having to seek our permission, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. Note: Some content in this publication may have different licence terms as indicated. For more information on this licence, visit http://creativecommons.org/licenses/by/3.0/au/deed.en The information contained herein is subject to change without notice. The Queensland Government shall not be liable for technical or other errors or omissions contained herein. The reader/user accepts all risks and responsibility for losses, damages, costs and other consequences resulting directly or indirectly from using this information. Summary The Australian fishery for spanner crabs is the largest in the world, with the larger Queensland (QLD) sector’s landings primarily exported live overseas and GVP valued ~A$5 million per year. Spanner crabs are unique in that they may live up to 15 years, significantly more than blue swimmer crabs (Portunus armatus) and mud crabs (Scylla serrata), the two other important crab species caught in Queensland. -
Downloaded from Brill.Com09/30/2021 02:14:49PM Via Free Access B.M
Contributions to Zoology, 72 (2-3) 83-84 (2003) SPB Academic Publishing bv, The Hague An interesting case of homonymy: Notopus de Haan, 1841 (Crustacea, Raninidae; Recent) and Notopus Leonardi, 1983 (ichnofossil; Devonian) ³ Barry+W.M. van Bakel¹, John+W.M. Jagt² & René+H.B. Fraaije 1 2 Schepenhoek 235, NL-5403 GB Uden, the Netherlands; Natuurhistorisch Museum Maastricht, de 3 Bosquetplein 6-7, P.O. Box 882, NL-6200 AW Maastricht, the Netherlands; Oertijdmuseum de Groene Poort, Bosscheweg 80, NL-5283 WB Boxtel, the Netherlands Keywords: Homonymy, Crustacea, ichnofossils, Notopus Abstract N. petri, involves an ichnofossil from the Devonian of Paran-, Brazil (Leeonardi, 1983: 236). Leonard! Upper Cretaceous strata in the type area of the Maastrichtian interpreted this as the imprint of the left front limb Stage Netherlands, NE have yielded (SE Belgium) compara- of an amphibian. Roek & Rage (1994), who restudied tively abundant and diverse raninid assemblages (Collins et al., Leonardos .original material, were of the opinion 1995; Fraaye & van Bakel, 1998). To date, seven species are that this ichnofossil taxon did not represent part of known: Eumorphocorystes sculptus, Pseudoraninella muelleri, but rather similar to Lyreidinapyriformis, Raninoides? quadrispinosus,Raniliformis an amphibian trackway, was asteroid chevrona, Raniliformis prebaltica and Raniliformis occlusa. traces of an or ophiuroid, comparable to These Maastricht occur mainly from the portion of the Asteriacites upper the ichnofossil genus von Schlotheim. Formation[Emael, Nekum andMeerssen members, Belemnitella Irrespective of the correct assignment of this junior and Belemnella (Neobelemnella) kazimiroviensis bio- ichnotaxon, Notopus Leonard!, 1983 (non de Haan, zones]. is in need of substitute the 1841) a name, more so with since ichnotaxon names compete (palaeo)zoo- taxa June Introduction logical (A.K. -
Reducing Uncertainty in the Assessment of the Australian Spanner Crab Fishery
Queensland the Smart State Reducing uncertainty in the assessment of the Australian spanner crab fishery I. W. Brown1, J. Scandol2, D. Mayer3, M. Campbell1, S. Kondylas1, M. McLennan1, A. Williams4, K. Krusic-Golub5, and T. Treloar6 1 Southern Fisheries Centre, Dept Primary Industries and Fisheries, Deception Bay, Qld 2 NSW DPI Fisheries, Cronulla, NSW 3 Animal Research Institute, Dept Primary Industries and Fisheries, Yeerongpilly, Qld 4 Queensland Climate Change Centre of Excellence, Nambour, Qld 5 Central Ageing Facility, Queenscliff, Victoria 6 Food Technology Institute, Dept Primary Industries and Fisheries, Hamilton, Brisbane Qld PROJECT REPORT PR07-3314 FRDC Project No. 2003/046 July 2008 Reducing uncertainty in the assessment of the Australian spanner crab fishery I.W. Brown1, J. Scandol2, D Mayer3, M. Campbell1, S. Kondylas1, M. McLennan1, A. Williams4, K. Krusic-Golub5 and T. Treloar6. 1 Southern Fisheries Centre, Deception Bay, Qld 2 NSW DPI Fisheries, Cronulla, NSW 3 Animal Research Institute, Yeerongpilly, Qld 4 Queensland Climate Change Centre of Excellence, Nambour, Qld 5 Central Ageing Facility, Queenscliff, Victoria 6 Food Technology Institute, Hamilton, Brisbane, Qld Project No. 2003/046 July 2008 Reducing uncertainty in the assessment of the Australian spanner crab fishery (FRDC 2003/046) I.W. Brown, J. Scandol, D. Mayer, M. Campbell, S. Kondylas, M. McLennan, A. Williams, K Krusic- Golub, and T. Treloar. Published by the Department of Primary Industries and Fisheries, Queensland. © Fisheries Research and Development Corporation and the Queensland Department of Primary Industries and Fisheries (2008). This work is copyright. Except as permitted by the Copyright Act 1968 (Commonwealth), reproduction by any means (photocopying, electronic, mechanical, recording or otherwise), making available on-line, electronic transmission or other publication of this material is prohibited without the specific prior written permission of the copyright owners. -
Relative Growth and Sexual Dimorphism in the Red Frog Crab Ranina Ranina (Decapoda: Raninidae)
Nippon Suisan Gakkaishi 59(12), 2025-2030 (1993) Relative Growth and Sexual Dimorphism in the Red Frog Crab Ranina ranina (Decapoda: Raninidae) Megumi Minagawa* (Received July 9, 1993) The relative growth of several body parts and the morphology of pleopods were examined in reared and captured individuals of Ranina ranina. Sexual dimorphism occurred in the pleopods at instar I, on the abdomen of individuals over 34mm carapace length, and on the cheliped in individuals over 70mm carapace. In females puberty molt was estimated to occur at 40-45mm carapace length, using the relative growth of abdomen width . In males the relationship between dactylus or propodus length of the cheliped and the carapace length was described by two or three power regression equations. The point of contact of the logarithmical ly transformed linear equations was 26 and 74mm in dactylus length and 73mm in propodus length. A growth-reproduction model of R. ranina based on changes in the relative growth is discussed. The red frog crab Ranina ranina Linnaeus is a commercially important crab found on sandy bot toms in the Indo-West Pacific.1,2) Some aspects of the reproductive biology of R. ranina have been reported, including information on the reproduc tive cycle, ovigerous season, and minimum size to maturity in Hawaii, Japan, the Philippines, and Australia.3-8) However, information on the re lationship between growth and reproduction is fragmentary. The relative growth of several body parts shows different patterns, associated with sex and maturity in Decapoda.9,10) Hartnoll11) summarized relative Fig. 1. Definition of the measurement of several body parts in Ranina ranina. -
Notopus Dorsipes (Linnaeus) in Singapore: First Record of the Brachyuran Superfamily Raninoidea (Crustacea: Decapoda) on the Sunda Shelf
NATURE IN SINGAPORE 2012 5: 19–25 Date of Publication: 27 January 2012 © National University of Singapore NOTOPUS DORSIPES (LINNAEUS) IN SINGAPORE: FIRST RECORD OF THE BRACHYURAN SUPERFAMILY RANINOIDEA (CRUSTACEA: DECAPODA) ON THE SUNDA SHELF Martyn E. Y. Low1* and S. K. Tan2 1Department of Marine and Environmental Sciences, Graduate School of Engineering and Science University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan 2Raffles Museum of Biodiversity Research, National University of Singapore 6 Science Drive 2, Singapore 117546, Republic of Singapore (*Corresponding author: [email protected]) INTRODUCTION Recently, a brachyuran crab identified as Notopus dorsipes (Linnaeus, 1758), was found at Changi (north-east Singapore). This represents the first record of the superfamily Raninoidea de Haan, 1839, in Singapore and on the Sunda Shelf (Figs. 1, 2). The superfamily Raninoidea has a worldwide distribution and its members inhabit marine habitats from the intertidal zone to over 300 m deep (reviewed in Ahyong et al., 2009; see also Dawson & Yaldwyn, 1994). Fifty species of raninoids are currently assigned to 12 genera in six subfamilies (Ng et al., 2008). Notopus dorsipes belongs to a monotypic genus currently assigned to the subfamily Notopodinae Serène & Umali, 1972 (see Ng et al., 2008). Originally described as Cancer dorsipes by Linnaeus (1758), this species has had a confused nomenclatural history (see Holthuis, 1962). In order to stabilise the name Cancer dorsipes Linnaeus, Holthuis (1962: 55) designated a figure in Rumphius (1705: pl. 10: Fig. 3) as the lectotype of Notopus dorsipes (reproduced as Fig. 3). De Haan (1841) established the genus Notopus for Cancer dorsipes Linnaeus, the type species by monotypy. -
How to Become a Crab: Phenotypic Constraints on a Recurring Body Plan
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 December 2020 doi:10.20944/preprints202012.0664.v1 How to become a crab: Phenotypic constraints on a recurring body plan Joanna M. Wolfe1*, Javier Luque1,2,3, Heather D. Bracken-Grissom4 1 Museum of Comparative Zoology and Department of Organismic & Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA 2 Smithsonian Tropical Research Institute, Balboa–Ancon, 0843–03092, Panama, Panama 3 Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA 4 Institute of Environment and Department of Biological Sciences, Florida International University, Biscayne Bay Campus, 3000 NE 151 Street, North Miami, FL 33181, USA * E-mail: [email protected] Summary: A fundamental question in biology is whether phenotypes can be predicted by ecological or genomic rules. For over 140 years, convergent evolution of the crab-like body plan (with a wide and flattened shape, and a bent abdomen) at least five times in decapod crustaceans has been known as ‘carcinization’. The repeated loss of this body plan has been identified as ‘decarcinization’. We offer phylogenetic strategies to include poorly known groups, and direct evidence from fossils, that will resolve the pattern of crab evolution and the degree of phenotypic variation within crabs. Proposed ecological advantages of the crab body are summarized into a hypothesis of phenotypic integration suggesting correlated evolution of the carapace shape and abdomen. Our premise provides fertile ground for future studies of the genomic and developmental basis, and the predictability, of the crab-like body form. Keywords: Crustacea, Anomura, Brachyura, Carcinization, Phylogeny, Convergent evolution, Morphological integration 1 © 2020 by the author(s). -
Downloaded from Brill.Com10/07/2021 01:08:16PM Via Free Access 120 - R.H.B
Contributions to Zoology, 72 (2-3) 119-130 (2003) SPB Academic Publishing bv, The Hague Evolution of reef-associated decapod crustaceans through time, with particular reference to the Maastrichtian type area René+H.B. Fraaije Oertijdmuseum de Groene Poort, Bosscheweg 80, NL-5283 WB Boxtel, the Netherlands Keywords: Decapod crustacean evolution, K/T boundary, biostratigraphy Abstract prior to 1987 by various authors (Bosquet, 1854; van Binkhorst, 1857; Binkhorst van den Binkhorst, The result of of some twenty years intensive collecting from 1861; Noetling, 1881; Pelseneer, 1886;Forir, 1887a- in the strata Maastrichtian type area is a collection ofmore than c, 1889; Mulder, 1981) suffer from a lack of strati- 1,200 generally small-sized anomuranand brachyuran remains. graphic control. A taxonomic revision of most of The of the stratigraphical ranges thirty-one species known to these was carried out Collins al. date species by et (1995). from the Maastricht Formation (Late Maastrichtian) are shown Since 1987, new from the Maastrichtian and five successive decapod assemblages are discussed. species For the first time, crustacean to decapod remains now turn out type area were described and discussed by Fraaye be useful biostratigraphic tools on a local to regional scale. & Collins (1987), Feldmann et al. (1990), Jagt et al. (1991, 1993), Collins et al. (1995), Fraaye (1996 a-c, 2002), Fraaye & van Bakel (1998) and Jagt et Introduction al. (2000). Rigid collecting from six key sections (see Collins Brachyurans utilize a broad of feeding types, array et al. 1995, p. 168, fig. 1) during the past two de- including deposit feeding, filter feeding, seaweed cades has resulted in an extensive, stratigraphically grazing, and have been scavenging predation. -
Decapod Crustacea : Raninidae
CAMPAGNES MUSORSTOM. I & II. PHILIPPINES, TOME 2 — RÉSULTATS DES CAMPAGNES MUSORSTOM. I & II. PHILIPPINES, 6 Decapod Crustacea : Raninidae Gary D. GOEKE * ABSTRACT Nine species of frog crabs of the family Raninidae were collected during the 1976 and 1980 MUSORSTOM cruises to the Philippines and the 1980 CORINDON II cruise in Makassar Strait. A proposed new genus, Lysirude (containing 3 species) is described and separated from the closely related genus Lyreidus. Five species (Raninoides hendersoni, R. personatus, Lyreidus tridentatus, L. stenops and Lysirude channeri) are represented by numerous specimens with far fewer specimens of Cosmonotus grayi, Notopoides latus, Lyreidus brevifrons and Lysirude grif- fini sp. nov. present. RÉSUMÉ Neuf espèces de Crabes de la famille des Raninidae ont été récoltées au cours des campagnes MUSORSTOM 1976 et 1980 aux Philippines et de la campagne CORINDON II dans le détroit de Macassar. Un nouveau genre Lysirude (avec trois espèces) est décrit et séparé du genre très proche Lyreidus. Cinq espèces (Raninoides hender soni, R. personatus, Lyreidus tridentatus, L. stenops et Lysirude channeri) sont représentées par de nombreux spé cimens, tandis que d'autres (Cosmonotus grayi, Notopoides latus, Lyreidus brevifrons et Lysirude griffini sp. nov.) ne comprennent qu'un nombre moins élevé d'échantillons. The Raninidae of the Philippines are a diverse group well represented in the MUSORSTOM col lections. Species of this fossorial group collected in the Philippines were most recently detailed by SERENE and UMALI (1972) and SERENE and VADON (1981). This contribution presents a systematic review of the Philippine species with an updated key to the recognized species of frog crabs known from the region. -
South Australian Giant Crab (Pseudocarcinus Gigas) Fishery Status Report 2014/15
McLeay, L. (2016) SA Giant Crab Fishery 2014/15 South Australian Giant Crab (Pseudocarcinus gigas) Fishery Status Report 2014/15 L. McLeay SARDI Publication No. F2011/000332-6 SARDI Research Report Series No. 895 SARDI Aquatic Sciences PO Box 120 Henley Beach SA 5022 June 2016 Fishery Status Report to PIRSA Fisheries and Aquaculture McLeay, L. (2016) SA Giant Crab Fishery 2014/15 South Australian Giant Crab (Pseudocarcinus gigas) Fishery Status Report 2014/15 Fishery Status Report to PIRSA Fisheries and Aquaculture L. McLeay SARDI Publication No. F2011/000332-6 SARDI Research Report Series No. 895 June 2016 ii McLeay, L. (2016) SA Giant Crab Fishery 2014/15 This publication may be cited as: McLeay, L. (2016). South Australian Giant Crab (Pseudocarcinus gigas) Fishery Status Report 2014/15. Fishery Status Report to PIRSA Fisheries and Aquaculture. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2011/000332-6. SARDI Research Report Series No. 895. 16pp. South Australian Research and Development Institute SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 Telephone: (08) 8207 5400 Facsimile: (08) 8207 5406 http://www.pir.sa.gov.au/research DISCLAIMER The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI internal review process, and has been formally approved for release by the Research Chief, Aquatic Sciences. Although all reasonable efforts have been made to ensure quality, SARDI does not warrant that the information in this report is free from errors or omissions. SARDI does not accept any liability for the contents of this report or for any consequences arising from its use or any reliance placed upon it. -
Report of the ICES-FAO Working Group on Fishing Technology and Fish Behaviour (WGFTFB)
ICES WGFTFB REPORT 2010 SCICOM STEERING GROUP ON ECOSYSTEM SURVEYS SCIENCE AND TECHNOLOGY ICES CM 2010/SSGESST:14 REF. SCICOM, ACOM Report of the ICES-FAO Working Group on Fishing Technology and Fish Behaviour (WGFTFB) 31 May - 4 June 2010 ICES Headquarters, Copenhagen International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 2010. Report of the ICES-FAO Working Group on Fishing Technology and Fish Behaviour (WGFTFB), 31 May - 4 June 2010, ICES Headquarters, Copenhagen. ICES CM 2010/SSGESST :14. 252 pp. For permission to reproduce material from this publication, please apply to the Gen- eral Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. © 2010 International Council for the Exploration of the Sea ICES WGFTFB REPORT 2010 | i Contents Executive summary ................................................................................................................ 1 1 Directive .......................................................................................................................... 6 2 Introduction .................................................................................................................... 6 3 Terms of Reference ....................................................................................................... -
On a Rare Species of Spanner Crab Ranina Ranina (Crustacea: Brachyura: Raninidae) from Gulf of Mannar, India
On a rare speciesJ. Mar. ofBiol. Spanner Ass. India, Crab 49 Ranina (1) : 89 ranina - 90, Januaryfrom Gulf - June of 2007Mannar, India 89 Note On a rare species of Spanner crab Ranina ranina (Crustacea: Brachyura: Raninidae) from Gulf of Mannar, India C.Kasinathan, Sandhya Sukumaran, A.Gandhi, N.Boominathan and M.Rajamani Regional Centre of Central Marine Fisheries Research Institute, Marine Fisheries P.O., Mandapam Camp - 623 520, Tamil Nadu, India Abstract A rare species of the Spanner crab Ranina ranina (Linnaeus, 1758) is reported from Gulf of Mannar, in India. The description of the morphological features of the species is given. Spanner crabs inhabit coastal waters of several coun- tries in the Indian and Pacific oceans, from the east coasts of southern Africa to Hawaii and the Great Barrier Reef. They prefer bare sandy areas and inhabit intertidal waters to depths more than 100m. They aggregate to spawn during the warmer months and mate at any stage in the moult cycle (Brown, 1986) and females store the sperm until the eggs are extruded.During spawning the females often bury themselves to incubate and protect the eggs. Large females produce at least 2 batches of eggs, each season with an average number of 1,20,000 per batch. The eggs remain attached to the female for 4 – 5 weeks before hatching (Brown, 1986). They pass through 8 larval stages during the following 5 to 8 (longest in higher latitudes) weeks of their life, and then they settle before metamorphosis to the recognizable spanner crab form Fig. 1. Ranina ranina landed at Pamban (Brown, 1986). -
From Mangroves to Coral Reefs; Sea Life and Marine Environments in Pacific Islands by Michael King Apia, Samoa: SPREP 2004
SPREP fromto coral mangroves reefs sea life and marine environments in Pacific islands Michael King South Pacific Regional Environment Programme SPREP Cataloguing-in-Publication King, Michael From mangroves to coral reefs; sea life and marine environments in Pacific islands by Michael King Apia, Samoa: SPREP 2004 This handbook was commissioned by the South Pacific Regional Environment Programme with funding from the Canada South Pacific Ocean Development Program (C-SPODP) and the UN Foundation through the International Coral Reef Action Network (ICRAN) SPREP PO Box 240 Apia, Samoa Phone (685) 21929 Fax (685) 20231 Email: [email protected] Web site: www.sprep.org.ws From mangroves to coral reefs sea life and marine environments in Pacific islands ____________________________________________________________________________________________________ 1. Introduction 1 6. The classification and diversity of marine life 29 Biological classification – naming things 2. Coastal wetlands - estuaries and mangroves 5 Diversity – the numbers of species Estuaries – where rivers meet the sea 7. Crustaceans – shrimps to coconut crabs 33 Mangroves – coastal forests Smaller crustaceans 3. Shorelines – beaches and seaplants 9 Shrimps and prawns Beaches – rivers of sand Lobsters and slipper lobsters Seaweeds – large plants of the sea Crabs Seagrasses – underwater pastures Hermit crabs and stone crabs 4. Corals - from coral polyps to reefs 15 8. Molluscs – clams to octopuses 41 Stony corals and coral polyps Clams, oysters, and mussels (bivalves) Fire corals – stinging hydroids Sea snails (gastropods) Corals in deepwater Octopuses and their relatives (cephalopods) Soft corals and gorgonians - octocorals 9. Echinoderms – sea cucumbers to sand dollars 51 Coral reefs – the world’s Sea cucumbers largest natural structures Sea stars 5.