Phylogenetic Analysis in Myrcia Section Aulomyrcia and Inferences on Plant Diversity in the Atlantic Rainforest

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Analysis in Myrcia Section Aulomyrcia and Inferences on Plant Diversity in the Atlantic Rainforest Annals of Botany Page 1 of 15 doi:10.1093/aob/mcv005, available online at www.aob.oxfordjournals.org Phylogenetic analysis in Myrcia section Aulomyrcia and inferences on plant diversity in the Atlantic rainforest Vanessa Graziele Staggemeier1,2,*, Jose´Alexandre Felizola Diniz-Filho1,Fe´lix Forest2 and Eve Lucas2,3 1Departamento de Ecologia, Laborato´rio de Ecologia Teo´rica e Sı´ntese, ICB, Universidade Federal de Goia´s, 74001-970, Goiaˆnia, GO, Brazil, 2Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK and 3Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK * For correspondence. E-mail [email protected] Received: 21 June 2014 Returned for revision: 31 July 2014 Accepted: 23 December 2014 Downloaded from Background and Aims Myrcia section Aulomyrcia includes 120 species that are endemic to the Neotropics and disjunctly distributed in the moist Amazon and Atlantic coastal forests of Brazil. This paper presents the first comprehensive phylogenetic study of this group and this phylogeny is used as a basis to evaluate recent classifica- tion systems and to test alternative hypotheses associated with the history of this clade. http://aob.oxfordjournals.org/ Methods Fifty-three taxa were sampled out of the 120 species currently recognized, plus 40 outgroup taxa, for one nuclear marker (ribosomal internal transcribed spacer) and four plastid markers (psbA-trnH, trnL-trnF, trnQ-rpS16 and ndhF). The relationships were reconstructed based on Bayesian and maximum likelihood analyses. Additionally, a likelihood approach, ‘geographic state speciation and extinction’, was used to estimate region- dependent rates of speciation, extinction and dispersal, comparing historically climatic stable areas (refugia) and unstable areas. Key Results Maximum likelihood and Bayesian inferences indicate that Myrcia and Marlierea are polyphyletic, and the internal groupings recovered are characterized by combinations of morphological characters. Phylogenetic relationships support a link between Amazonian and north-eastern species and between north-eastern and south- eastern species. Lower extinction rates within glacial refugia suggest that these areas were important in maintaining at University of Maryland on March 20, 2015 diversity in the Atlantic forest biodiversity hotspot. Conclusions This study provides a robust phylogenetic framework to address important ecological questions for Myrcia s.l. within an evolutionary context, and supports the need to unite taxonomically the two traditional genera Myrcia and Marlierea in an expanded Myrcia s.l. Furthermore, this study offers valuable insights into the diversifi- cation of plant species in the highly impacted Atlantic forest of South America; evidence is presented that the lowest extinction rates are found inside refugia and that range expansion from unstable areas contributes to the highest levels of plant diversity in the Bahian refugium. Key words: Aulomyrcia, Atlantic forest, diversification rates, diversity patterns, extinction, GeoSSE, Marlierea, Myrcia, Myrtaceae, speciation. INTRODUCTION section occurs primarily in rainforests from two of the most ‘The distinction between Myrcia and Marlierea is a somewhat threatened biomes in the world, with 80 species in Amazonia nebulous one, and it is probable that Marlierea comprises a and related forests of Central and northern South America and phylogenetically diverse assemblage of species which have 40 species in the Atlantic coastal rainforests of Brazil (Lucas been arbitrarily assigned to the genus because of the character et al., unpubl. res.). According to Lucas et al. (2011),represen- of the irregularly splitting calyx.’ (McVaugh, 1956,page166). tatives of this clade are characterized by a closed calyx and a Myrcia s.l. (sensu Lucas et al., 2007) comprises 753 species combination of flower, inflorescence and venation characters (Govaerts et al.,2014); representing the second-largest (Supplementary Data Fig. S1), such as: (1) inflorescence axes Neotropical genus of Myrtaceae after Eugenia (1038 species; emerging from a single terminal whorl and primary axes irregu- Govaerts et al.,2014). Taxonomic classification in Myrcia has larly or asymmetrically branched; (2) calyx lobes free to par- traditionally emphasized characters of the calyx and mode of tially fused, irregularly tearing vertically through the opening of the flower (McVaugh, 1956; Berg, 1855–1856); as hypanthium; (3) hypanthium extended into a tube flared beyond described, molecular studies show that these traits do not group the ovary, but inconspicuous after deep tearing; and (4) a (usu- species naturally (Lucas et al.,2007, 2011). ally) bilocular ovary, with two ovules per locule. The most recent phylogenetic analysis of Myrcia s.l. (Lucas As currently circumscribed, Myrcia s.l. encompasses four et al., 2011) recovered nine major clades that have been treated genera that were recognized during most of the 20th century: as nine informal groups. Myrcia section Aulomyrcia (Lucas Calyptranthes, Gomidesia, Myrcia and Marlierea. However, et al., unpubl. res.) represents one of these groupings. This earlier studies (Lucas et al.,2011) have shown that the first VC The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: [email protected] Page 2 of 15 Staggemeier et al. — Phylogeny and diversity of Myrcia section Aulomyrcia two genera are monophyletic and nested in the paraphyletic obtained from other studies (Lucas et al.,2007, 2011;MF Myrcia and Marlierea, indicating that the current circumscrip- Santos, USP, Sa˜o Paulo, Brazil, unpubl. res.; C. Wilson, RBG tion of these genera needs to be re-evaluated. McVaugh (1956) Kew, UK, unpubl. res.). suspected the artificiality of Marlierea but maintained the ge- nus in his studies on Tropical American Myrtaceae based on the presence of persistent bracts and the abortion of the primary DNA sequencing axis of the inflorescence. Total DNA was extracted mainly from 0Á3 g of silica- The importance of Myrcia s.l. as a structural and ecological gel-dried leaf material (in some cases from 0Á2 g when using component of the Atlantic rainforest of Brazil makes this group herbarium specimens) using a modified version 2Â cetyltri- a good proxy for the diversity of other important angiosperm methyl ammonium bromide (CTAB) protocol (Doyle and groups in the Atlantic rainforest (Murray-Smith et al., 2009), Doyle, 1987). Total DNA was further purified for long-term stor- one of the biodiversity hotspots (Myers et al.,2000). Within age in the RBG Kew DNA and Tissue Collections by equilib- this hotspot there are areas of higher angiosperm diversity and rium centrifugation in caesium chloride–ethidium bromide areas of elevated Myrcia diversity (Murray-Smith et al.,2009) gradients (1Á55 g ml–1)followedbybutanolextraction of ethid- that may correspond to refugia (Carnaval and Moritz, 2008). ium bromide and dialysis to remove caesium chloride. Downloaded from Refugia (Haffer, 1969) are thought to act as ‘museums’ for the Amplification and purification of target DNA regions were exe- maintenance of biodiversity due to their expected lower extinc- cuted according to the protocols outlined in Lucas et al. (2007, tion rates and/or higher speciation rates, when compared with 2011) using internal primers for some regions when necessary unstable areas, resulting in a positive net diversification bal- (Appendix). PCR conditions are listed in Supplementary Data ance. Refugia can act as ‘safe havens’ (Keppel et al.,2012) Table S2. Sequencing was performed according to Lucas et al. where biota would be protected for a long time, contributing (2007). DNA sequences were assembled using MUSCLE http://aob.oxfordjournals.org/ important pieces of information for a better understanding (Edgar, 2004) and edited in GENEIOUS 7.0.2 with subsequent of the evolutionary processes that may have driven modern manual adjustments when necessary. Any doubtful base calls species diversity. and all phylogenetically informative base changes were com- This study aimed to test the monophyly of Myrcia section pared with the general consensus and individually checked. A Aulomyrcia and further test its phylogenetic placement in the paralogous copy of ITS was identified in Myrcia riodocensis and genus and to examine phylogenetic relationships within this this sequence was excluded. All sequences have been deposited section. This phylogenetic framework was then used as a basis in GenBank and the DNA samples are deposited in the RBG to make inferences on the evolutionary history of Myrcia Kew DNA and Tissue Collections (Appendix). Due to the inheri- at University of Maryland on March 20, 2015 section Aulomyrcia, especially concerning speciation and tance of the plastid genome as a single linked unit, the resulting extinction dynamics along the Atlantic forest. four plastid DNA matrices were combined into a single dataset of 3477 bp. The molecular datasets, nuclear and combined plastid regions, were then analysed independently and simultaneously. MATERIAL AND METHODS Taxonomic and molecular sampling Phylogenetic analyses We sampled 93 taxa of tribe Myrteae, including 83 Myrcia s.l., of which 55 were from Myrcia section Aulomyrcia, encompass- Phylogenetic reconstruction using maximum likelihood ing as much as possible of the morphological and geographical (ML) and Bayesian inference was performed on all datasets. variation observed in the group (Appendix; Supplementary
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Constituents and Pharmacological Activities of Myrcia (Myrtaceae): a Review of an Aromatic and Medicinal Group of Plants
    Int. J. Mol. Sci. 2015, 16, 23881-23904; doi:10.3390/ijms161023881 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Constituents and Pharmacological Activities of Myrcia (Myrtaceae): A Review of an Aromatic and Medicinal Group of Plants Márcia Moraes Cascaes 1, Giselle Maria Skelding Pinheiro Guilhon 1,*, Eloisa Helena de Aguiar Andrade 1, Maria das Graças Bichara Zoghbi 2 and Lourivaldo da Silva Santos 1 1 Programa de Pós-graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; E-Mails: [email protected] (M.M.C.); [email protected] (E.H.A.A.); [email protected] (L.S.S.) 2 Museu Paraense Emílio Goeldi, Belém 66040-170, PA, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +5591-3201-8099; Fax: +5591-3201-7635. Academic Editor: Marcello Iriti Received: 13 August 2015 / Accepted: 25 September 2015 / Published: 9 October 2015 Abstract: Myrcia is one of the largest genera of the economically important family Myrtaceae. Some of the species are used in folk medicine, such as a group known as “pedra-hume-caá” or “pedra-ume-caá” or “insulina vegetal” (insulin plant) that it is used for the treatment of diabetes. The species are an important source of essential oils, and most of the chemical studies on Myrcia describe the chemical composition of the essential oils, in which mono- and sesquiterpenes are predominant. The non-volatile compounds isolated from Myrcia are usually flavonoids, tannins, acetophenone derivatives and triterpenes. Anti-inflammatory, antinociceptive, antioxidant, antimicrobial activities have been described to Myrcia essential oils, while hypoglycemic, anti-hemorrhagic and antioxidant activities were attributed to the extracts.
    [Show full text]
  • A Família Myrtaceae Na Reserva Particular Do Patrimônio Natural Da Serra Do Caraça, Catas Altas, Minas Gerais, Brasil*
    Lundiana 7(1):3-32, 2006 © 2005 Instituto de Ciências Biológicas - UFMG ISSN 1676-6180 A Família Myrtaceae na Reserva Particular do Patrimônio Natural da Serra do Caraça, Catas Altas, Minas Gerais, Brasil* Patrícia Oliveira Morais1 & Julio Antonio Lombardi2 1 Mestre em Biologia Vegetal. Departamento de Botânica, Instituto de Ciências Biológicas, UFMG, Caixa Postal 486, 30123-970, Belo Horizonte, MG, Brasil. E-mail: [email protected]. 2 Departamento de Botânica, Instituto de Biociências de Rio Claro, UNESP - campus de Rio Claro, Caixa Postal 199, 13506-900, Rio Claro, SP, Brasil. Abstract The family Myrtaceae in the Reserva Particular do Patrimônio Natural da Serra do Caraça, Catas Al- tas, Minas Gerais, Brazil. This is a floristic survey of Myrtaceae in the Serra do Caraça, Minas Gerais. Fifty two species were found belonging to 12 genera - Myrcia with 17 species, Eugenia with nine, Campomanesia and Myrciaria with five species each, Psidium with four, Siphoneugena with three, Blepharocalyx, Calyptranthes, Marlierea and Myrceugenia with two species each, and Accara and Plinia with one species each. Descriptions of the genera and species, identification keys, geographical distributions, illustrations and comments are provided. Keywords: Taxonomy, Myrtaceae, Serra do Caraça, Minas Gerais. Introdução citada em trabalhos de florística e fitossociologia em formações florestais, estando entre as mais importantes em riqueza de O Maciço do Caraça está inserido em três regiões do estado espécies e gêneros (Lima & Guedes-Bruni, 1997). de Minas Gerais, importantes do ponto de vista biológico e As Myrtaceae compreendem ca. 1000 espécies no Brasil econômico: a Área de Proteção Ambiental ao Sul da Região (Landrum & Kawasaki, 1997) e constituem uma tribo – Metropolitana de Belo Horizonte (APA Sul - RMBH) cuja área Myrteae – dividida em três subtribos, distintas pela coincide grandemente com a região do Quadrilátero Ferrífero.
    [Show full text]
  • Reporton the Rare Plants of Puerto Rico
    REPORTON THE RARE PLANTS OF PUERTO RICO tii:>. CENTER FOR PLANT CONSERVATION ~ Missouri Botanical Garden St. Louis, Missouri July 15, l' 992 ACKNOWLEDGMENTS The Center for Plant Conservation would like to acknowledge the John D. and Catherine T. MacArthur Foundation and the W. Alton Jones Foundation for their generous support of the Center's work in the priority region of Puerto Rico. We would also like to thank all the participants in the task force meetings, without whose information this report would not be possible. Cover: Zanthoxy7um thomasianum is known from several sites in Puerto Rico and the U.S . Virgin Islands. It is a small shrub (2-3 meters) that grows on the banks of cliffs. Threats to this taxon include development, seed consumption by insects, and road erosion. The seeds are difficult to germinate, but Fairchild Tropical Garden in Miami has plants growing as part of the Center for Plant Conservation's .National Collection of Endangered Plants. (Drawing taken from USFWS 1987 Draft Recovery Plan.) REPORT ON THE RARE PLANTS OF PUERTO RICO TABLE OF CONTENTS Acknowledgements A. Summary 8. All Puerto Rico\Virgin Islands Species of Conservation Concern Explanation of Attached Lists C. Puerto Rico\Virgin Islands [A] and [8] species D. Blank Taxon Questionnaire E. Data Sources for Puerto Rico\Virgin Islands [A] and [B] species F. Pue~to Rico\Virgin Islands Task Force Invitees G. Reviewers of Puerto Rico\Virgin Islands [A] and [8] Species REPORT ON THE RARE PLANTS OF PUERTO RICO SUMMARY The Center for Plant Conservation (Center) has held two meetings of the Puerto Rlco\Virgin Islands Task Force in Puerto Rico.
    [Show full text]
  • National List of Vascular Plant Species That Occur in Wetlands 1996
    National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt.
    [Show full text]
  • Universidade Federal Do Rio Grande Do Sul Instituto De Biociências Programa De Pós-Graduação Em Ecologia
    UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE BIOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA Dissertação de Mestrado Um lugar ao Sol: A influência do fator histórico sobre o nicho de luz e respostas ecofisiológicas de plantas com semente da Floresta Ombrófila Mista Paula Braga Fagundes Porto Alegre, Junho de 2013 Um lugar ao Sol: A influência do fator histórico sobre o nicho de luz e respostas ecofisiológicas de plantas com semente da Floresta Ombrófila Mista Paula Braga Fagundes Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Ecologia, do Instituto de Biociências da Universidade Federal do Rio Grande do Sul, como parte dos requisitos para obtenção do título de Mestre em Ecologia. Orientador: Dra. Lúcia Rebello Dillenburg Coorientador: Dr. Leandro da Silva Duarte Comissão Examinadora Prof. Dr. João André Jarenkow Prof. Dr. Luís Mauro Gonçalves Rosa Profa. Dra. Sandra Cristina Müller Porto Alegre, Junho de 2013 ii “A tree says: I am life from eternal life. The attempt and the risk that the eternal mother took with me are unique. Unique the form and veins of my skin, Unique the smallest play of leaves in my branches And the smallest scar on my bark. I was made to form and reveal the eternal in my smallest special detail.” Hermann Hesse Bäume: Betrachtungen und Gedichte [Trees: Reflections and Poems ] iii AGRADECIMENTOS Sou imensamente agradecida a todas as pessoas que de alguma forma contribuíram e fizeram possível a realização deste trabalho. À minha orientadora Lúcia Dillenburg pela confiança, orientação e paciência de explorar áreas desconhecidas junto comigo. Ao meu coorientador Leandro Duarte que me apresentou o mundo vegetal pelas lentes das relações filogenéticas.
    [Show full text]
  • (Myrtaceae) from Bahia, Brazil, with Molecular Highlights
    Phytotaxa 181 (4): 229–237 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.181.4.3 Morphological diagnosis of a new species in Myrcia sensu lato (Myrtaceae) from Bahia, Brazil, with molecular highlights VANESSA GRAZIELE STAGGEMEIER1* & EVE LUCAS2,3 1 Departamento de Ecologia, Laboratório de Ecologia Teórica e Síntese, ICB, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil; [email protected] 2 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom 3 Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, United Kingdom; [email protected] Abstract Myrcia marianae, a new species endemic from southern Bahia is described and compared to the related species Marlierea sucrei and Marlierea glabra using molecular and morphological analyses. Key words: Atlantic Forest, Aulomyrcia, Myrteae, taxonomy, Una Resumo Myrcia marianae, uma nova espécie endêmica do sul da Bahia é descrita e comparada através de análises morfológicas e moleculares com as espécies mais próximas: Marlierea sucrei e Marlierea glabra. Palavras chave: Aulomyrcia, Floresta Atlântica, Myrteae, taxonomia, Una Introduction Myrcia De Candolle (1827: 378) s.l. (Lucas et al. 2007) is the second-largest Neotropical Myrtaceae genus [after Eugenia Linnaeus (1753: 470)] and the second most diverse in the Atlantic Forest (after Eugenia) with 226 species (Stehmann et al. 2009). The center of diversity of Myrcia s.l. is the Atlantic Forest (Murray-Smith et al. 2009) although it is widespread in Central and South America and the Caribbean with c.700 spp (Govaerts et al.
    [Show full text]
  • New Species of Myrcia Sl (Myrtaceae)
    Phytotaxa 222 (2): 100–110 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.222.2.2 New species of Myrcia s.l. (Myrtaceae) from Campo Rupestre, Atlantic Forest and Amazon Forest MATHEUS F. SANTOS1,2, EVE LUCAS3, MARCOS SOBRAL4 & PAULO T. SANO1 1Universidade de São Paulo, Departamento de Botânica, Laboratório de Sistemática Vegetal, Rua do Matão 277, São Paulo, SP 05508- 090, Brazil. 2Corresponding author: [email protected] 3Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, United Kingdom. 4Universidade Federal de São João del Rei, Departamento de Ciências Naturais, Praça Dom Helvécio, 74, São João del-Rei, MG 36301-160, Brazil. Abstract The present study describes four new species of the exclusively Neotropical Myrcia s.l., which includes the genera Calyp- tranthes, Marlierea and Myrcia. The new species are named Myrcia cataphyllata (related to Myrcia bicolor), Myrcia elevata (related to Marlierea velutina), Myrcia megaphylla (very distinct from other species of Myrcia) and Myrcia sessilissima (related to Myrcia tomentosa). They are endemic to their respective biomes: one endemic to the Amazon forest (M. elevata); one from the Campo Rupestre (‘Rocky Fields’) vegetation (M. sessilissima); and two from the Atlantic Forest (M. cataphyl- lata and M. megaphylla). In addition to the descriptions, the study provides illustrations and comments about the distribu- tion, habitat, phenology and taxonomic affinities of these species. Introduction Myrtaceae comprises about 2,500 species in the Neotropical region (Murray-Smith et al. 2008); this diversity is concentrated in the eastern portion of South America, in the Guiana Highlands and in the Caribbean (McVaugh 1968, 1969).
    [Show full text]
  • Pdf (Last Access on 14/02/2018)
    Biota Neotropica 18(4): e20180590, 2018 www.scielo.br/bn ISSN 1676-0611 (online edition) Inventory Floristic and structure of the arboreal community of an Ombrophilous Dense Forest at 800 m above sea level, in Ubatuba/SP, Brazil Ana Cláudia Oliveira de Souza1* , Luís Benacci2 & Carlos Alfredo Joly3 1Universidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Botânica, Campus de Rio Claro, Av. 24 A, 1515, 13506-900, Rio Claro, SP, Brasil 2Instituto Agronômico, 13020-902, Campinas, SP, Brasil 3Universidade de Campinas, Instituto de Biologia, Campinas, SP, Brasil *Corresponding author: Ana Cláudia Oliveira de Souza, e-mail: [email protected] SOUZA, A. C. O., BENACCI, L., JOLY, C. A. Floristic and structure of the arboreal community of an Ombrophilous Dense Forest at 800 m above sea level, in Ubatuba/SP, Brazil. Biota Neotropica. 18(4): e20180590. http://dx.doi.org/10.1590/1676-0611-BN-2018-0590 Abstract: Undoubtedly, the publication of floristic lists and phytosociological studies are important tools for metadata generation, quantification and characterization of the megadiversity of Brazilian forests. In this sense, this work had the objective of describing the composition and the structure of the tree community of one hectare of Dense Atlantic Rainforest, at an altitude of 800 m. All individuals, including trees, palm trees, arborescent ferns and dead and standing stems, with a diameter at breast height (DBH) of ≥ 4.8 cm were sampled. After the identification of the botanical material, we proceeded to calculate the usual phytosociological parameters, besides the Shannon diversity index (H’) and Pielou equability index (J). A total of 1.791 individuals were sampled, of which 1.729 were alive, belonging to 185 species, 100 genera and 46 families.
    [Show full text]
  • Structures and Bioactive Properties of Myrtucommulones and Related Acylphloroglucinols from Myrtaceae
    molecules Review Structures and Bioactive Properties of Myrtucommulones and Related Acylphloroglucinols from Myrtaceae Rosario Nicoletti 1,2 , Maria Michela Salvatore 3 , Pasquale Ferranti 2 and Anna Andolfi 3,* 1 Council for Agricultural Research and Economics, Research Centre for Olive, Citrus and Tree Fruit, 81100 Caserta, Italy; [email protected] 2 Department of Agriculture, University of Naples ‘Federico II’, 80055 Portici, Italy; [email protected] 3 Department of Chemical Sciences, University of Naples ‘Federico II’, 80126 Naples, Italy; [email protected] * Correspondence: andolfi@unina.it; Tel.: +39-081-2539179 Academic Editors: Francesco Vinale and Maria Luisa Balestrieri Received: 2 December 2018; Accepted: 17 December 2018; Published: 19 December 2018 Abstract: Myrtaceae are a group of plants that include a number of renowned species used in ethnomedicine in many areas worldwide. Their valuable therapeutic properties have stimulated a fruitful research activity addressed to the identification of the bioactive components of their extracts yielding a great diversity of terpenes; polyphenols; and other exclusive products. Among the latter, starting with the discovery of myrtucommulone A from myrtle (Myrtus communis), a series of structurally-related acylphloroglucinol compounds have been characterized from several species that represent the basic active principles to be considered in view of possible drug development. Aspects concerning chemical and biological properties of these products are reviewed in the present paper. Keywords: myrtucommulone; acylphloroglucinols; Myrtaceae; plant extracts; biological activities 1. Introduction Myrtle (Myrtus communis) is a typical shrub of maquis and coastal bushes native of the Mediterranean area and Western Asia. It is well-known in traditional medicine, and for centuries its leaves and berries have found ethnomedical application in the treatment of several disorders of the digestive apparatus, as well as pulmonary and skin diseases [1,2].
    [Show full text]
  • BIOLOGY and HOST SPECIFICITY of Tectococcus
    BIOLOGY AND HOST SPECIFICITY OF Tectococcus ovatus (HEMIPTERA: ERIOCOCCIDAE), A POTENTIAL BIOLOGICAL CONTROL AGENT OF THE INVASIVE STRAWBERRY GUAVA, Psidium cattleianum (MYRTACEAE), IN FLORIDA By FRANCIS JAMES WESSELS IV A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2005 Copyright 2005 by Frank J. Wessels This document is dedicated to my parents, for their support and generosity throughout my educational career. Without them, this work would not have been possible. ACKNOWLEDGMENTS I would like to thank my major professor Dr. James P. Cuda for his invaluable guidance and help throughout my degree program. I also thank my other committee members, Dr. Kenneth A. Langeland and Dr. William A. Overholt, for their comments and suggestions on my research and this manuscript. iv TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................................................................................. iv LIST OF TABLES............................................................................................................ vii LIST OF FIGURES ......................................................................................................... viii ABSTRACT....................................................................................................................... ix CHAPTER 1 INTRODUCTION ........................................................................................................1
    [Show full text]
  • Forest Inventory and Analysis National Core Field Guide
    National Core Field Guide, Version 5.1 October, 2011 FOREST INVENTORY AND ANALYSIS NATIONAL CORE FIELD GUIDE VOLUME I: FIELD DATA COLLECTION PROCEDURES FOR PHASE 2 PLOTS Version 5.1 National Core Field Guide, Version 5.1 October, 2011 Changes from the Phase 2 Field Guide version 5.0 to version 5.1 Changes documented in change proposals are indicated in bold type. The corresponding proposal name can be seen using the comments feature in the electronic file. • Section 8. Phase 2 (P2) Vegetation Profile (Core Optional). Corrected several figure numbers and figure references in the text. • 8.2. General definitions. NRCS PLANTS database. Changed text from: “USDA, NRCS. 2000. The PLANTS Database (http://plants.usda.gov, 1 January 2000). National Plant Data Center, Baton Rouge, LA 70874-4490 USA. FIA currently uses a stable codeset downloaded in January of 2000.” To: “USDA, NRCS. 2010. The PLANTS Database (http://plants.usda.gov, 1 January 2010). National Plant Data Center, Baton Rouge, LA 70874-4490 USA. FIA currently uses a stable codeset downloaded in January of 2010”. • 8.6.2. SPECIES CODE. Changed the text in the first paragraph from: “Record a code for each sampled vascular plant species found rooted in or overhanging the sampled condition of the subplot at any height. Species codes must be the standardized codes in the Natural Resource Conservation Service (NRCS) PLANTS database (currently January 2000 version). Identification to species only is expected. However, if subspecies information is known, enter the appropriate NRCS code. For graminoids, genus and unknown codes are acceptable, but do not lump species of the same genera or unknown code.
    [Show full text]