Plinia Trunciflora
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supercritical Fluid Extraction with a Modifier of Antioxidant Compounds from Jabuticaba (Myrciaria Cauliflora) By- Products: Economic Viability
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Procedia Food Science 1 (2011) 1672 – 1678 11th International Congress on Engineering and Food (ICEF11) Supercritical fluid extraction with a modifier of antioxidant compounds from jabuticaba (Myrciaria cauliflora) by- products: economic viability Rodrigo N. Cavalcanti, Priscilla C. Veggi, Maria Angela A. Meireles*a aLASEFI/DEA/FEA (School of Food Engineering)/UNICAMP (University of Campinas) – R. Monteiro Lobato, 80; 13083-862, Campinas, SP, Brazil ([email protected]) Abstract Jabuticaba (Myrciaria cauliflora) is a grape-like fruit that is found extensively throughout Brazil. In spite of the very few studies done on its chemical constituents, some authors have reported the potential use of jabuticaba as a source of antioxidant compounds, which are believed to play an important role in the prevention of many oxidative and inflammatory diseases. Local populations enjoy jabuticaba as a favorite fruit, but the majority of these crops are wasted during harvesting and processing. Thus, the application of innovative technologies such as supercritical fluid extraction (SFE) for processing by-products is important to obtain high quality yields, which increases the value of the product. In addition, processing by-products currently represents an increasing niche market, which is mainly due to their ecological, economic and social implications. In order to evaluate their industrial applicability, it is essential to perform a critical analysis of the chemical composition and economic viability of the extracts obtained. The objective of this study is to evaluate the feasibility of antioxidant recovery by SFE with a co-solvent using varying conditions of pressure and temperature. -
Eugenia Uniflora L. Essential Oil As a Potential Anti-Leishmania Agent: Effects on Leishmania Amazonensis and Possible Mechanisms of Action
Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2013, Article ID 279726, 10 pages http://dx.doi.org/10.1155/2013/279726 Research Article Eugenia uniflora L. Essential Oil as a Potential Anti-Leishmania Agent: Effects on Leishmania amazonensis and Possible Mechanisms of Action Klinger Antonio da Franca Rodrigues,1 Layane Valéria Amorim,1 Jamylla Mirck Guerra de Oliveira,1 Clarice Noleto Dias,2 Denise Fernandes Coutinho Moraes,2 Eloisa Helena de Aguiar Andrade,3 Jose Guilherme Soares Maia,3 Sabrina Maria Portela Carneiro,1 and Fernando Aécio de Amorim Carvalho1 1 Medicinal Plants Research Center, Federal University of Piau´ı, 64049-550 Teresina, PI, Brazil 2 Laboratory of Pharmacognosy II, Department of Pharmacy, Federal University of Maranhao,˜ 65085-580 Sao˜ Lu´ıs, MA, Brazil 3 Postgraduate Program in Chemistry, Federal University of Para,´ 66075-900 Belem,´ PA, Brazil Correspondence should be addressed to Klinger Antonio da Franca Rodrigues; [email protected] Received 13 October 2012; Revised 14 December 2012; Accepted 17 January 2013 Academic Editor: Liliana V. Muschietti Copyright © 2013 Klinger Antonio da Franca Rodrigues et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Eugenia uniflora L. is a member of the Myrtaceae family and is commonly known as Brazilian cherry tree. In this study, we evaluated the chemical composition of Eugenia uniflora L. essential oil (EuEO) by using gas chromatography-mass spectrometry (GC-MS) and assessed its anti-Leishmania activity. We also explored the potential mechanisms of action and cytotoxicity of EuEO. -
Myrciaria Floribunda, Le Merisier-Cerise, Source Dela Guavaberry, Liqueur Traditionnelle De L’Ile De Saint-Martin Charlélie Couput
Myrciaria floribunda, le Merisier-Cerise, source dela Guavaberry, liqueur traditionnelle de l’ile de Saint-Martin Charlélie Couput To cite this version: Charlélie Couput. Myrciaria floribunda, le Merisier-Cerise, source de la Guavaberry, liqueur tradi- tionnelle de l’ile de Saint-Martin. Sciences du Vivant [q-bio]. 2019. dumas-02297127 HAL Id: dumas-02297127 https://dumas.ccsd.cnrs.fr/dumas-02297127 Submitted on 25 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE DE BORDEAUX U.F.R. des Sciences Pharmaceutiques Année 2019 Thèse n°45 THESE pour le DIPLOME D'ETAT DE DOCTEUR EN PHARMACIE Présentée et soutenue publiquement le : 6 juin 2019 par Charlélie COUPUT né le 18/11/1988 à Pau (Pyrénées-Atlantiques) MYRCIARIA FLORIBUNDA, LE MERISIER-CERISE, SOURCE DE LA GUAVABERRY, LIQUEUR TRADITIONNELLE DE L’ILE DE SAINT-MARTIN MEMBRES DU JURY : M. Pierre WAFFO-TÉGUO, Professeur ........................ ....Président M. Alain BADOC, Maitre de conférences ..................... ....Directeur de thèse M. Jean MAPA, Docteur en pharmacie ......................... ....Assesseur ! !1 ! ! ! ! ! ! ! !2 REMERCIEMENTS À monsieur Alain Badoc, pour m’avoir épaulé et conseillé tout au long de mon travail. Merci pour votre patience et pour tous vos précieux conseils qui m’ont permis d’achever cette thèse. -
Eucalyptus Study Group Article
Association of Societies for Growing Australian Plants Eucalyptus Study Group ISSN 1035-4603 Eucalyptus Study Group Newsletter December 2012 No. 57 Study Group Leader Warwick Varley Eucalypt Study Group Website PO Box 456, WOLLONGONG, NSW 2520 http://asgap.org.au/EucSG/index.html Email: [email protected] Membership officer Sue Guymer 13 Conos Court, DONVALE, VICTORIA 3111 Email: [email protected] Contents Do Australia's giant fire-dependent trees belong in the rainforest? By EurekAlert! Giant Eucalypts sent back to the rainforest By Rachel Sullivan Abstract: Dual mycorrhizal associations of jarrah (Eucalyptus marginata) in a nurse-pot system The Eucalypt's survival secret By Danny Kingsley Plant Profile; Corymbia gummifera By Tony Popovich Eucalyptus ×trabutii By Warwick Varley SUBSCRIPTION TIME Do Australia's giant fire-dependent trees belong in the rainforest? By EurekAlert! Australia's giant eucalyptus trees are the tallest flowering plants on earth, yet their unique relationship with fire makes them a puzzle for ecologists. Now the first global assessment of these giants, published in New Phytologist, seeks to end a century of debate over the species' classification and may change the way it is managed in future. Gigantic trees are rare. Of the 100,000 global tree species only 50, less than 0.005 per cent, reach over 70 metres in height. While many of the giants live in Pacific North America, Borneo and similar habitats, 13 are eucalypts endemic to Southern and Eastern Australia. The tallest flowering plant in Australia is Eucalyptus regnans, with temperate eastern Victoria and Tasmania being home to the six tallest recorded species of the genus. -
Jabuticaba Residues (Myrciaria Jaboticaba (Vell.) Berg) Are Rich Sources of T Valuable Compounds with Bioactive Properties Bianca R
Food Chemistry 309 (2020) 125735 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Jabuticaba residues (Myrciaria jaboticaba (Vell.) Berg) are rich sources of T valuable compounds with bioactive properties Bianca R. Albuquerquea,b, Carla Pereiraa, Ricardo C. Calhelhaa, Maria José Alvesa, ⁎ ⁎ Rui M.V. Abreua, Lillian Barrosa, , M. Beatriz P.P. Oliveirab, Isabel C.F.R. Ferreiraa, a Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal b REQUIMTE – Science Chemical Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal ARTICLE INFO ABSTRACT Keywords: Jabuticaba (Myrciaria jaboticaba (Vell.) Berg) is a Brazilian berry, very appreciated for in natura consumption. Anthocyanins However, its epicarp is not normally consumed due to its stiffness and astringent taste, and in manufacture of Hydrolysable tannins products from jabuticaba fruit, it is responsible for the generation of large amounts of residues. The exploration Anti-proliferative of by-products is becoming important for the obtainment of valuable bioactive compounds for food and phar- Antimicrobial maceutical industries. In this context, jabuticaba epicarp was studied regarding its chemical composition, Antioxidant activity namely in terms of phenolic compounds, tocopherols, and organic acids, and its bioactive properties, such as antioxidant, anti-proliferate, anti-inflammatory, and antimicrobial activities. A total of sixteen phenolic com- pounds, four tocopherols and six organic acids were identified in jabuticaba epicarp. Regarding bioactive properties, it showed high antioxidant activity, also presenting moderate anti-inflammatory, anti-proliferative, and antimicrobial activities. The extract did not present hepatotoxicity, confirming the possibility of its appli- cations without toxicity issues. -
Northern Beaches 2019 June Caleyi
p CALEYI i c A n d r e P o r t e n e r s NORTHERN BEACHES G R O U P austplants.com.au/northern-beaches June 2019 Australian Plants Society Northern Beaches APS NORTHERN BEACHES MAY MEETING [email protected] Anne Gray President Dr Conny Harris 9451 3231 At our May meeting Eleanor continued our education on Plant Families by Vice-President David Drage 9949 5179 presenting the Araliaceae Family. Secretary Penny Hunstead 9999 1847 Minutes Secretary Eleanor Eakins 9451 1883 This family is made up of 52 genera and 700 species worldwide. Eleanor Treasurer Lindy Monson 9953 7498 looked at the Astrotricha (star-hair) genus which is found in the Sydney area Regiona Delegate Harry Loots 9953 7498 and is closely related to the Apiaceae Family (flannel flowers). The plants Librarian Jennifer McLean 9970 6528 usually have star hairs on most parts of theAsplenium plant except obtusatum. the pic:Richard upper surface Hunstead of Website Administrator David Drage 9949 5179 the mature leaf. Membership Officer Jan Carnes 0416 101 327 Talk Co-ordinator Russell Beardmore 0404 023 223 Walk Co-ordinator Anne Gray 9402 4797 Catering Officer Georgine Jakobi 9981 7471 Newsletter Editor Jane March 0407 220 380 CALENDAR APS Northern Beaches meeting Thursday June 6, 2019 at Stony Range Botanic Garden, Dee Why. 7.00 pm Plant family. Campanulaceae - Estelle Burrows. 7.15 pm Presentation: Katriona Wragg: NBC Community Nursery Supervisor. Growing A Community Native Plant Nursery. Northern Beaches Council Community Native Plant Nursery started in 2009 and produced less than 1000 plants. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
A Família Myrtaceae Na Reserva Particular Do Patrimônio Natural Da Serra Do Caraça, Catas Altas, Minas Gerais, Brasil*
Lundiana 7(1):3-32, 2006 © 2005 Instituto de Ciências Biológicas - UFMG ISSN 1676-6180 A Família Myrtaceae na Reserva Particular do Patrimônio Natural da Serra do Caraça, Catas Altas, Minas Gerais, Brasil* Patrícia Oliveira Morais1 & Julio Antonio Lombardi2 1 Mestre em Biologia Vegetal. Departamento de Botânica, Instituto de Ciências Biológicas, UFMG, Caixa Postal 486, 30123-970, Belo Horizonte, MG, Brasil. E-mail: [email protected]. 2 Departamento de Botânica, Instituto de Biociências de Rio Claro, UNESP - campus de Rio Claro, Caixa Postal 199, 13506-900, Rio Claro, SP, Brasil. Abstract The family Myrtaceae in the Reserva Particular do Patrimônio Natural da Serra do Caraça, Catas Al- tas, Minas Gerais, Brazil. This is a floristic survey of Myrtaceae in the Serra do Caraça, Minas Gerais. Fifty two species were found belonging to 12 genera - Myrcia with 17 species, Eugenia with nine, Campomanesia and Myrciaria with five species each, Psidium with four, Siphoneugena with three, Blepharocalyx, Calyptranthes, Marlierea and Myrceugenia with two species each, and Accara and Plinia with one species each. Descriptions of the genera and species, identification keys, geographical distributions, illustrations and comments are provided. Keywords: Taxonomy, Myrtaceae, Serra do Caraça, Minas Gerais. Introdução citada em trabalhos de florística e fitossociologia em formações florestais, estando entre as mais importantes em riqueza de O Maciço do Caraça está inserido em três regiões do estado espécies e gêneros (Lima & Guedes-Bruni, 1997). de Minas Gerais, importantes do ponto de vista biológico e As Myrtaceae compreendem ca. 1000 espécies no Brasil econômico: a Área de Proteção Ambiental ao Sul da Região (Landrum & Kawasaki, 1997) e constituem uma tribo – Metropolitana de Belo Horizonte (APA Sul - RMBH) cuja área Myrteae – dividida em três subtribos, distintas pela coincide grandemente com a região do Quadrilátero Ferrífero. -
Pollination and Quality of Seeds and Plantlets of Eugenia Uniflora L
Hoehnea 46(1): e052018, 4 tab., 4 fig., 2019 http://dx.doi.org/10.1590/2236-8906-05/2018 Pollination and quality of seeds and plantlets of Eugenia uniflora L. Adriana de Oliveira Fidalgo1,2, Aline Testoni Cécel1, Juliana Ferrari de Oliveira Mazzi1 and Claudio José Barbedo1 Received: 29 January 2018; accepted: 12 November 2018 How to cite: Fidalgo, A.O., Cécel, A.T., Mazzi, J.F.O. & Barbedo, C.J. 2019. Pollination and quality of seeds and plantlets of Eugenia uniflora L. Hoehnea 46: e052018. http://dx.doi.org/10.1590/2236-8906-05/2018. ABSTRACT - (Pollination and quality of seeds and plantlets of Eugenia uniflora L.). This work evaluated the effect of pollination on the quality of seeds and plantlets of Eugenia uniflora L., as well as on the regenerative capacity of the seeds. Twelve individuals were monitored for their phenology and their floral visitors. Recently-opened flowers were subjected to self-pollination (SP), cross-pollination (CP) and natural pollination/control (C) treatments. The seeds obtained were evaluated for their germination and the resulting seedlings were transferred to a greenhouse and evaluated for their height, stem diameter, number of leaves, leaf area and fresh and dry mass of root, stem, and leaves. SP, CP and C seeds were fractionated into two and four parts and evaluated for their ability to germinate and produce normal seedlings. Seeds and seedlings from manual cross-pollination were the most vigorous. The worst performance of the natural pollination (C) evidenced the pollen limitation caused by the scarcity of efficient pollinators in the study area. -
Downloading Or Purchasing Online At
On-farm Evaluation of Grafted Wildflowers for Commercial Cut Flower Production OCTOBER 2012 RIRDC Publication No. 11/149 On-farm Evaluation of Grafted Wildflowers for Commercial Cut Flower Production by Jonathan Lidbetter October 2012 RIRDC Publication No. 11/149 RIRDC Project No. PRJ-000509 © 2012 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-328-4 ISSN 1440-6845 On-farm Evaluation of Grafted Wildflowers for Commercial Cut Flower Production Publication No. 11/149 Project No. PRJ-000509 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. This publication is copyright. -
Evolutionary Relationships in Eucalyptus Sens. Lat. – a Synopsis
Euclid - Online edition Evolutionary relationships in Eucalyptus sens. lat. – a synopsis This article complements the introductory essay about eucalypts included in the "Learn about Eucalypts" section. Its aim is to provide an up-to-date account of the outcomes of research derived from different groups during the past 5 years relating to relationships within Eucalyptus s.s. As such it includes only those publications and hypotheses relating to higher level relationships of major groupings within the eucalypts. Some of the research reported below also provides insights into biogeographic relationships of the eucalypt group – in large part these are not the focus of this article and are not discussed in detail. Introduction The first comprehensive classification of the eucalypts was published by Blakely in 1934, in which he treated more than 600 taxa, building on earlier work of Maiden and Mueller. Blakely's classification remained the critical reference for Eucalyptus taxonomists for the next 37 years when a new but informal classification was published by Pryor and Johnson (1971). In this work the authors divided the genus into seven subgenera, and although of an informal nature, presented a system of great advance on Blakely's treatment. The small genus Angophora was retained. The next 20 years saw much debate about the naturalness of Eucalyptus and whether other genera should be recognized (e.g., Johnson 1987). Based on morphological data, Hill and Johnson in 1995 proposed a split in the genus and recognition of the genus Corymbia. This new genus of c. 113 species, comprised the ghost gums and the bloodwoods, and Hill and Johnson concluded that Corymbia is the sister group to Angophora, with the synapomorphy of the distinctive cap cells on bristle glands (Ladiges 1984) being unambiguous. -
National Recovery Plan for Triplarina Nowraensis, Office of Environment and Heritage, Hurstville, (NSW)
NATIONAL RECOVERY PLAN FOR THE NOWRA HEATH MYRTLE Triplarina nowraensis © Office of Environment and Heritage (NSW), 2011. This work is copyright. However, material presented in this plan may be copied for personal use or published for educational purposes, providing that any extracts are fully acknowledged. Apart from this and any other use as permitted under the Copyright Act 1968, no part may be reproduced without prior written permission from the Office of Environment and Heritage (NSW). Prepared by: Biodiversity Conservation Section Environment Protection and Regulation Group Office of Environment and Heritage (NSW) PO Box 2115 Queanbeyan NSW 2620 Tel: 02 6298 9700 Prepared in accordance with the Commonwealth Environment Protection and Biodiversity Conservation Act 1999 and the New South Wales Threatened Species Conservation Act, 1995 in consultation with Environment ACT. This plan should be cited as follows: Office of Environment and Heritage (NSW) 2011, National Recovery Plan for Triplarina nowraensis, Office of Environment and Heritage, Hurstville, (NSW). ISBN: 978 1 74232 842 3 OEH 2010/571 Cover Photo: © Geoff Robertson DISCLAIMER The attainment of objectives and the provision of funds may be subject to budgetary and other constraints affecting the parties involved, and may also be constrained by the need to address other conservation priorities. Approved recovery actions may be subject to modifications due to changes in knowledge and changes in conservation status. Summary This document constitutes the formal National and New South Wales State Recovery Plan for the Nowra Heath-myrtle (Triplarina nowraensis). It considers the conservation requirements of the species across its known range, identifies the future actions to be taken to ensure the long-term viability of the Nowra Heath-myrtle in nature and the parties who will carry these out.