Reductase Inhibitor Dutasteride on Localized Prostate CancerResults from a 4-Month Pre-Radical Prostatectomy Study

Total Page:16

File Type:pdf, Size:1020Kb

Reductase Inhibitor Dutasteride on Localized Prostate Cancer�Results from a 4-Month Pre-Radical Prostatectomy Study The Prostate 66:1674 ^1685 (2006) The Effects of the Dual 5a-Reductase Inhibitor Dutasteride on Localized Prostate CanceröResults From a 4-Month Pre-Radical Prostatectomy Study M. Gleave,1* J. Qian,2 C. Andreou,3 P. Pommerville,4 J. Chin,5 R. Casey,6 G. Steinhoff,7 N. Fleshner,8 D. Bostwick,2 L. Thomas,9 and R. Rittmaster10 on behalf of the ARI40010 Study Team{ 1Prostate Centre at Vancouver General Hospital,Vancouver,British Columbia,Canada 2Bostwick Laboratories,Inc.,Glen Allen,Virginia 3Surrey Memorial Hospital, Surrey,British Columbia,Canada 4Can-Med Clinical Research, Inc.,Victoria, British Columbia,Canada 5London Health Sciences Centre, London,Ontario,Canada 6The Female/Male Health Centre, Oakville, Ontario,Canada 7Dr. Steinhoff Clinical Research,Victoria, British Columbia,Canada 8Division of Urology,Princess Margaret Hospital,Toronto,Ontario,Canada 9Department of Biochemistryand Molecular Biology,Dalhousie University,Halifax, Nova Scotia,Canada 10Research and Development,GlaxoSmithKline, ResearchTriangle Park, North Carolina BACKGROUND. As dihydrotestosterone (DHT) is the most potent androgen in the prostate, inhibition of the 5a-reductase isoenzymes, which convert testosterone to DHT, could be an appropriate target for the treatment of prostate cancer. METHODS. Eighty-one men with clinically localized prostate cancer received daily dutaste- ride 3.5 or 0.5 mg, or no therapy for 4 months before radical prostatectomy. Histopathological assessments were conducted on prostatectomy specimens. RESULTS. Treatment with dutasteride was associated with reductions in serum and intraprostatic DHT of 90%, and a decrease in total prostate and tumor volumes. No effect of dutasteride was noted on Gleason grade. Histopathological effects on benign tissue were similar but less prominent than those seen with androgen ablation, whereas there was no significant difference in cancer histology among the groups. CONCLUSIONS. Dutasteride treatment results in similar but less marked changes compared with androgen ablation. Prostate 66: 1674–1685, 2006. # 2006 Wiley-Liss, Inc. KEY WORDS: 5 alpha reductase; prostate cancer; treatment; Gleason score; apoptosis; proliferation {ARI40010 Study Team Members: Lorne E Aaron, Charalambous Grant sponsor: GlaxoSmithKline. Andreou, Richard W. Casey, Joseph L. Chin, Angelo De Marzo, *Correspondence to: M. Gleave, MD, Prostate Centre at Vancouver Russell B. Egerdie, Neil E. Fleshner, Martin E. Gleave, Antonio General Hospital, D9 Heather Pavillion 2733 Heather Street, Hurtado-Coll, Lawrence Klotz, Jay C-H. Lee, M. Scott Lucia, Chris Vancouver, British Columbia, Canada V5Z 3J5. GL. Morash, PFA. Mulders, Indrani Nandy, Peter Nelson, Peter J. E-mail: [email protected] Pommerville, Nadia Romano, Fred Saad, Thomas Sebo, Darlene Received 9 June 2006; Accepted 13 July 2006 Steele-Norwood, Gary EJ. Steinhoff, Lynn Thomas, Donald Tindall, DOI 10.1002/pros.20499 Catherine Too, Lawrence True, Timothy Wilson. Published online 22 August 2006 in Wiley InterScience (www.interscience.wiley.com). 2006Wiley-Liss,Inc. The Effects of Dutasteride on Prostate Cancer 1675 INTRODUCTION with 5 mg daily dutasteride versus placebo [17,18]. The objective of the current study was to further explore From the late nineteenth century it has been these findings by assessing the effect of 4 months hypothesized that ‘testicular factors’ promoted benign therapy with dutasteride before radical prostatectomy prostatic growth [1]. In the early 1940s, serum acid compared with surgery alone on histopathological phosphatase levels were demonstrated to be decreased assessments of prostatic tissue in men with biopsy- by castration and increased by androgens [2], and proven, clinically localized prostate cancer. castration was shown to result in clinical and serolo- gical improvements in men with prostate cancer [3]. Clinical studies have since established androgen MATERIALS AND METHODS ablation as a key component of prostate cancer Study Population management. Given the knowledge that dihydrotes- tosterone (DHT) and not testosterone is the most potent Eligible men for this study were aged 45 and androgen in the prostate [4], inhibition of the 5a- 80 years with a serum PSA of 2.5–10 ng/ml and reductase isoenzymes could be an appropriate target biopsy-proven, localized prostate cancer (clinical stage for the treatment of prostate cancer. T1c–T2b, N0/NX, M0) with a Gleason score 7. Those A number of lines of evidence support this hypoth- who had received prior treatment for prostate cancer esis. Firstly, studies with 5a-reductase inhibitors have were excluded. Other principal exclusion criteria inclu- demonstrated that they inhibit proliferation of human ded the use of 5a-reductase inhibitors or agents with LNCaP and PC-82 prostate cancer cells in vitro [5,6], as androgenic or anti-androgenic properties within the well as tumor growth in the Dunning rat model [7–9]. last 12 months, recent use of selenium (>75 mg), vitamin Secondly, several small-scale studies of finasteride in E(>100 IU) or Saw Palmetto (a washout period men with advanced prostate cancer demonstrated of 2 weeks was acceptable for the latter two), or serological improvements, albeit without evidence of prior prostatic surgery (including minimally invasive tumor regression or prevention of recurrence [10,11]. techniques). Lastly, the Prostate Cancer Prevention Trial (PCPT) demonstrated that daily therapy with finasteride Study Design significantly reduced the prevalence of prostate cancer versus placebo over a 7-year period [12]. Given that the This was a randomized, parallel-group study rates of prostate cancer in men treated with finasteride (Fig. 1). Prior to randomization, baseline assessments and placebo diverged early in the study, it seems were conducted including examination of prostate plausible that finasteride treated sub-clinical, micro- biopsy cores to confirm Gleason score (for comparison scopic tumors that were not clinically apparent at with prostatectomy specimens), medical history, phy- baseline [12]. sical examination, and free and total serum PSA levels. If 5a-reductase inhibitors confer a treatment benefit Following a screening visit, subjects were randomized in prostate cancer, an in vitro effect at the histological, to one of three treatment arms in a 1:1:1 ratio: 0.5 mg as well as clinical level, would be expected. A number dutasteride once daily for 4 months after a loading dose of studies have examined the effects of 5a-reductase of 7 mg (to ensure that steady-state was achieved more inhibitors on the histology of the benign and hyper- rapidly), 3.5 mg dutasteride once daily for 4 months, or plastic human prostate [13], but data on their effects in surgery alone at the earliest convenient time. The prostate cancer are less comprehensive. For the Type 2- 0.5 mg dose is the approved dose for the treatment of selective agent finasteride, a single needle biopsy study benign prostatic hyperplasia, and is also being exam- failed to demonstrate any effect beyond atrophy [14], ined in the REDUCE prostate cancer prevention study while two radical prostatectomy studies demonstrated [19]. The 3.5 mg dose was chosen to evaluate whether apoptosis and atrophy: [15] the effects of finasteride a larger dose of dutasteride would have more pro- were similar but less pronounced than those of nounced anti-tumor effects. leuprolide and flutamide [16]. For subjects receiving dutasteride, the subjects and A prospective, randomized pilot study in men investigators were blinded as to dutasteride dose. with prostate cancer undergoing radical prostatectomy For those randomized to surgery without dutasteride has also examined the histological effects of the dual therapy, patients and investigators were aware of treat- 5a-reductase inhibitor dutasteride. This study demon- ment allocation. Subjects randomized to dutasteride strated significantly increased atrophy and decreased were required to return to the clinic for clinical tumor volume, trends towards increased apoptosis and assessments at 2 weeks (Visit 3), 2 months (Visit 4), a higher treatment alteration score, and decreased and 4 months (Visit 5) after randomization. The microvessel density, for men treated for 6–10 weeks 4-month post-randomization visit (Visit 5) occurred The Prostate DOI 10.1002/pros 1676 Gleave et al. Fig. 1. Summary of study protocol. within 1 week before radical prostatectomy. At undergoing apoptosis as assessed by tissue transglu- surgery, prostatectomy samples were obtained for taminase (tTG) staining [20], which was conducted histological analysis. All subjects returned for a using unstained slides cut from blocks of prostate tissue follow-up visit 4 months after prostatectomy (Visit 6). taken on the day of surgery. In addition to tTG staining, All laboratory and histological assessments were TUNEL staining (percentage of prostatic cells per unit conducted in a blinded fashion. area undergoing apoptosis) was also conducted, and further assessments of proliferation, atrophy, micro- Serum and Intraprostatic Androgen vessel density, tumor grade (Gleason score), nuclear and PSA Measurements and architectural changes (none, mild, moderate, or severe), stromal/epithelial ratio, and prostate cancer Serum levels of DHT, testosterone, and PSA were lesion number and size were also performed on all measured at Visits 2, 4, 5, and 6. Intraprostatic DHT and prostatectomy specimens. These are summarized in testosterone were measured in the benign portion of the Table I. resected prostate tissue. Androgens were measured by
Recommended publications
  • Nonsurgical Hair Restoration Treatment
    COSMETIC DERMATOLOGY Nonsurgical Hair Restoration Treatment Roya S. Nazarian, BA; Aaron S. Farberg, MD; Peter W. Hashim, MD, MHS; Gary Goldenberg, MD androgenic alopecia (AGA).3 Currently, minoxidil and PRACTICE POINTS finasteride are the only US Food and Drug Administration • Hair loss is a common phenomenon in both men (FDA)–approved medications for the treatment of hair and women and can seriously impact psychosocial loss; however, other nonsurgical treatment options have functioning. gained popularity, including dutasteride, spironolactone, • There are numerous US Food and Drug Administration– low-level laser therapy (LLLT), platelet-rich plasma (PRP), approved and off-label nonsurgical treatment options microneedling, stemcopy cells, and nutraceutical supplements. for alopecia. Dermatologists should be well versed in We provide an overview of these treatment options to these treatment modalities and the associated side- help dermatologists select appropriate therapies for the effect profiles to select the appropriate therapy for treatment of alopecia (Table). each patient. Minoxidilnot Minoxidil has been known to improve hair growth for more than 40 years. Oral minoxidil was first introduced Patterned hair loss is common and can negatively impact quality of for hypertension in the 1970s with a common adverse life. Patients often seek nonsurgical treatment options as a first-lineDo measure to avoid undue risks and expense associated with surgery. effect of hypertrichosis; the 2% solution was marketed for 4 This article discusses these noninvasive treatment options, with a AGA shortly thereafter in 1986. Minoxidil is a biologic focus on minoxidil, finasteride, dutasteride, spironolactone, low-level response modifier that is thought to promote hair growth laser therapy (LLLT), platelet-rich plasma (PRP), microneedling, and through vasodilation and stimulation of hair follicles into oral supplements.
    [Show full text]
  • Health Risks Associated with Long-Term Finasteride and Dutasteride Use: It’S Time to Sound the Alarm
    Review Article Health promotion, disease prevention, and lifestyle pISSN: 2287-4208 / eISSN: 2287-4690 World J Mens Health 2020 Jul 38(3): 323-337 https://doi.org/10.5534/wjmh.200012 Health Risks Associated with Long-Term Finasteride and Dutasteride Use: It’s Time to Sound the Alarm Abdulmaged M. Traish Department of Urology, Boston University School of Medicine, Boston, MA, USA 5α-dihydrotestosterone (5α-DHT) is the most potent natural androgen. 5α-DHT elicits a multitude of physiological actions, in a host of tissues, including prostate, seminal vesicles, hair follicles, skin, kidney, and lacrimal and meibomian glands. How- ever, the physiological role of 5α-DHT in human physiology, remains questionable and, at best, poorly appreciated. Recent emerging literature supports a role for 5α-DHT in the physiological function of liver, pancreatic β-cell function and survival, ocular function and prevention of dry eye disease and kidney physiological function. Thus, inhibition of 5α-reductases with finasteride or dutasteride to reduce 5α-DHT biosynthesis in the course of treatment of benign prostatic hyperplasia (BPH) or male pattern hair loss, known as androgenetic alopecia (AGA) my induces a novel form of tissue specific androgen deficien- cy and contributes to a host of pathophysiological conditions, that are yet to be fully recognized. Here, we advance the con- cept that blockade of 5α-reductases by finasteride or dutasteride in a mechanism-based, irreversible, inhabitation of 5α-DHT biosynthesis results in a novel state of androgen deficiency, independent of circulating testosterone levels. Finasteride and dutasteride are frequently prescribed for long-term treatment of lower urinary tract symptoms in men with BPH and in men with AGA.
    [Show full text]
  • Hormonal Treatment Strategies Tailored to Non-Binary Transgender Individuals
    Journal of Clinical Medicine Review Hormonal Treatment Strategies Tailored to Non-Binary Transgender Individuals Carlotta Cocchetti 1, Jiska Ristori 1, Alessia Romani 1, Mario Maggi 2 and Alessandra Daphne Fisher 1,* 1 Andrology, Women’s Endocrinology and Gender Incongruence Unit, Florence University Hospital, 50139 Florence, Italy; [email protected] (C.C); jiska.ristori@unifi.it (J.R.); [email protected] (A.R.) 2 Department of Experimental, Clinical and Biomedical Sciences, Careggi University Hospital, 50139 Florence, Italy; [email protected]fi.it * Correspondence: fi[email protected] Received: 16 April 2020; Accepted: 18 May 2020; Published: 26 May 2020 Abstract: Introduction: To date no standardized hormonal treatment protocols for non-binary transgender individuals have been described in the literature and there is a lack of data regarding their efficacy and safety. Objectives: To suggest possible treatment strategies for non-binary transgender individuals with non-standardized requests and to emphasize the importance of a personalized clinical approach. Methods: A narrative review of pertinent literature on gender-affirming hormonal treatment in transgender persons was performed using PubMed. Results: New hormonal treatment regimens outside those reported in current guidelines should be considered for non-binary transgender individuals, in order to improve psychological well-being and quality of life. In the present review we suggested the use of hormonal and non-hormonal compounds, which—based on their mechanism of action—could be used in these cases depending on clients’ requests. Conclusion: Requests for an individualized hormonal treatment in non-binary transgender individuals represent a future challenge for professionals managing transgender health care. For each case, clinicians should balance the benefits and risks of a personalized non-standardized treatment, actively involving the person in decisions regarding hormonal treatment.
    [Show full text]
  • Study Protocol: LPCN 1021-18-001
    Oral Testosterone Undecanoate Protocol No. LPCN 1021-18-001 Lipocine Inc. TU, LPCN 1021 675 Arapeen Drive, Suite 202 Salt Lake City, UT-84108 1.0 TITLE PAGE Clinical Study Protocol: LPCN 1021-18-001 Ambulatory Blood Pressure Monitoring in Oral Testosterone Undecanoate (TU, LPCN 1021) Treated Hypogonadal Men. Investigational Product : Testosterone Undecanoate (TU, LPCN 1021) Date of Protocol : 19 February 2019 FDA IND No. : 106476 Development Phase : Phase 3 Testosterone replacement therapy in adult, 18 years or older, males for conditions associated with a deficiency or absence of endogenous Indication : testosterone – primary hypogonadism (congenital or acquired) or secondary hypogonadism (congenital or acquired) Investigator : Multi-Center, US Sponsor : Lipocine Inc. 675 Arapeen Drive, Suite 202, Salt Lake City, Utah – 84108 Tel: +1-801-994-7383 Fax: +1-801-994-7388 Sponsor / : Nachiappan Chidambaram Emergency Contact 675 Arapeen Drive, Suite 202, Salt Lake City, Utah – 84108 Tel: +1-801-994-7383, Ext 2188 Fax: +1-801-994-7388 Email: [email protected] Protocol Version : 06 Confidentiality Statement This document is a confidential communication of Lipocine Inc. Acceptance of this document signifies agreement by the recipient that no unpublished information contained within will be published or disclosed to a third party without prior written approval, except that this document may be disclosed to an Institutional Review Board under the same conditions of confidentiality. Date: 19 February 2019 Confidential Page 1 of 50 Oral Testosterone Undecanoate Protocol No. LPCN 1021-18-001 Lipocine Inc. TU, LPCN 1021 675 Arapeen Drive, Suite 202 Salt Lake City, UT-84108 2.0 SUMMARY OF CHANGES TO PROTOCOL VERSION 2 Version 02 of the LPCN 1021-18-001 study protocol was developed to make the following changes to the study: • Added sexual desire and sexual distress questions to pre-treatment and post-treatment phases of the study.
    [Show full text]
  • Gender-Affirming Hormone Therapy
    GENDER-AFFIRMING HORMONE THERAPY Julie Thompson, PA-C Medical Director of Trans Health, Fenway Health March 2020 fenwayhealth.org GOALS AND OBJECTIVES 1. Review process of initiating hormone therapy through the informed consent model 2. Provide an overview of masculinizing and feminizing hormone therapy 3. Review realistic expectations and benefits of hormone therapy vs their associated risks 4. Discuss recommendations for monitoring fenwayhealth.org PROTOCOLS AND STANDARDS OF CARE fenwayhealth.org WPATH STANDARDS OF CARE, 2011 The criteria for hormone therapy are as follows: 1. Well-documented, persistent (at least 6mo) gender dysphoria 2. Capacity to make a fully informed decision and to consent for treatment 3. Age of majority in a given country 4. If significant medical or mental health concerns are present, they must be reasonably well controlled fenwayhealth.org INFORMED CONSENT MODEL ▪ Requires healthcare provider to ▪ Effectively communicate benefits, risks and alternatives of treatment to patient ▪ Assess that the patient is able to understand and consent to the treatment ▪ Informed consent model does not preclude mental health care! ▪ Recognizes that prescribing decision ultimately rests with clinical judgment of provider working together with the patient ▪ Recognizes patient autonomy and empowers self-agency ▪ Decreases barriers to medically necessary care fenwayhealth.org INITIAL VISITS ▪ Review history of gender experience and patient’s goals ▪ Document prior hormone use ▪ Assess appropriateness for gender affirming medical
    [Show full text]
  • Basics of Hormone Therapy for Transgender Patients Julie K
    Basics of Hormone Therapy for Transgender Patients Julie K. Prussack, MD Northern Michigan Family Medicine Update June 27, 2019 Disclosures None Disclaimer: No medications are currently FDA-approved for gender alteration or affirmation. Discussion of treatment is based on expert opinion. Objectives 1. Understand the difference between informed consent and referral letter models for initiating hormone therapy. 2. Access UCSF Guidelines for the Primary and Gender- Affirming Care of Transgender and Gender Nonbinary People. 3. Understand the medications, routes, and doses typically used for feminizing and masculinizing therapy. 4. Understand typical expectations and monitoring for patients on feminizing or masculinizing therapy. Hormone Therapy • Goal to suppress endogenous hormones by providing exogenous hormones • Affects secondary sex characteristics • Masculinizing: testosterone • Feminizing: estrogen, anti-androgen, ?progesterone • Patients may desire surgery of body contours and genitalia • Referral letter vs. informed consent models Stroumsa et al. Gender affirming treatment ant transition-related care. URL: https://www.youtube.com/watch?v=3ixr0YgB0As WPATH • Incorporated in 1979 as the Harry Benjamin International Gender Dysphoria Association, changed name to World Professional Association for Transgender Health in 2007 • 7th version of Standards of Care (SOC) published in 2012 • Mission to promote evidence based care, education, research, advocacy, public policy, and respect in transgender health. World Professional Association for Transgender Health, 2016. URL: www.wpath.org WPATH Criteria for Hormone Therapy 1. Persistent, well-documented gender dysphoria 2. Capacity to make a fully informed decision and to consent for treatment 3. Age of majority in a given country (if younger, follow SOC for Puberty-Suppressing Hormones) 4. If significant medical or mental health concerns are present, they must be reasonably well-controlled.
    [Show full text]
  • Mucoadhesive Drug Delivery Devices and Methods Of
    (19) TZZ___T (11) EP 1 691 746 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61F 13/00 (2006.01) A61K 9/00 (2006.01) 27.05.2015 Bulletin 2015/22 A61K 9/16 (2006.01) A61K 38/38 (2006.01) A61K 47/10 (2006.01) (21) Application number: 04813308.6 (86) International application number: (22) Date of filing: 08.12.2004 PCT/US2004/040975 (87) International publication number: WO 2005/055945 (23.06.2005 Gazette 2005/25) (54) MUCOADHESIVE DRUG DELIVERY DEVICES AND METHODS OF MAKING AND USING THEREOF MUKOADHÄSIVE ARZNEIMITTELABGABEVORRICHTUNGEN UND VERFAHREN ZU IHRER HERSTELLUNG UND VERWENDUNG DISPOSITIFS D’ADMINISTRATION DE MEDICAMENTS MUCOADHESIFS ET PROCEDES DE FABRICATION ET D’UTILISATION ASSOCIES (84) Designated Contracting States: • BERG, Eric, P. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Plymouth, MN 55447 (US) HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR (74) Representative: Robertson, James Alexander et al (30) Priority: 08.12.2003 US 527962 P Marks & Clerk LLP 90 Long Acre (43) Date of publication of application: London WC2E 9RA (GB) 23.08.2006 Bulletin 2006/34 (56) References cited: (73) Proprietor: Gel-Del Technologies, Inc. WO-A1-01/28524 WO-A1-99/32107 St. Paul, MN 55114 (US) WO-A1-02/058735 US-A- 5 385 606 US-A- 5 863 554 US-A1- 2002 141 945 (72) Inventors: US-A1- 2003 215 515 • MASTERS, David, B. Hastings, MN 55033 (US) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]
  • Risk of Depression After 5 Alpha Reductase Inhibitor Medication: Meta-Analysis
    Original Article Prostate and male voiding dysfunctions pISSN: 2287-4208 / eISSN: 2287-4690 World J Mens Health Published online May 23, 2019 https://doi.org/10.5534/wjmh.190046 Risk of Depression after 5 Alpha Reductase Inhibitor Medication: Meta-Analysis Jae Heon Kim1,2 , Sung Ryul Shim3,4 , Yash Khandwala1 , Francesco Del Giudice5 , Simon Sorensen6 , Benjamin I. Chung1 1Department of Urology, Stanford University Medical Center, Stanford, CA, USA, 2Department of Urology and 3Urological Biomedicine Research Institute, Soonchunhyang University Seoul Hospital, Soon Chun Hyang University College of Medicine, Seoul, 4Department of Preventive Medicine, Korea University College of Medicine, Seoul, Korea, 5Department of Urology, Sapienza University of Rome, Rome, Italy, 6Department of Urology, Aarhus University Hospital, Aarhus, Denmark Purpose: Although five-alpha reductase inhibitor (5-ARI) is one of standard treatment for benign prostatic hyperplasia (BPH) or alopecia, potential complications after 5-ARI have been issues recently. This study aimed to investigate the risk of depres- sion after taking 5-ARI and to quantify the risk using meta-analysis. Materials and Methods: A total of 209,940 patients including 207,798 in 5-ARI treatment groups and 110,118 in control groups from five studies were included for final analysis. Inclusion criteria for finial analysis incudes clinical outcomes re- garding depression risk in BPH or alopecia patients. Overall hazard ratio (HR) and odds ratio (OR) for depression were ana- lyzed. Moderator analysis and sensitivity analysis were performed to determine whether HR or OR could be affected by any variables, including number of patients, age, study type, and control type. Results: The pooled overall HRs for the 5-ARI medication was 1.23 (95% confidence interval [CI], 0.99–1.54) in a random effects model.
    [Show full text]
  • Endocrine Therapy for Transgender Youth
    Endocrine Therapy for Transgender Youth Daniel L. Metzger, MD www.transyouthla.com Normal puberty girls breast development starts at 10 (8–12) growth spurt peak at 11½ (9½–12½) first period at 12½ (10½–14½) boys testicular enlargement starts at 11 (9–13) growth spurt peak at 13½ (11½–15½) considerable variability The overarching treatment goal “The general goal of psychotherapeutic, endocrine, or surgical therapy for persons with gender identity disorders is lasting personal comfort with the gendered self in order to maximize overall psychological well-being and self-fulfillment.” WPATH Standards of Care, 6th version Why treat kids under age 18? studies show less post-operative function is related to the “ability to pass” physical outcomes much better if patient treated before breast development, beard growth, deepening of the voice prevent developmental problems related to discrepancy between body and mind patients are suffering! How are kids different? still growing still accruing bone-mineral content still going through the physical changes of puberty still going through the psychological and developmental changes of puberty their GID may not be as “solidified” they have to deal with the school system Our approach to treating youth different from treating adults more of an attempt to mirror natural puberty therefore, end results appear more gradually use available guidelines and published experience (Netherlands!) WPATH Standards of Care, 6th version Vancouver Coastal Health, Transgender Health Program Endocrine Society CPG: Endocrine
    [Show full text]
  • The 5 Alpha-Reductase Isozyme Family: a Review of Basic Biology and Their Role in Human Diseases
    Hindawi Publishing Corporation Advances in Urology Volume 2012, Article ID 530121, 18 pages doi:10.1155/2012/530121 Review Article The 5 Alpha-Reductase Isozyme Family: A Review of Basic Biology and Their Role in Human Diseases Faris Azzouni, Alejandro Godoy, Yun Li, and James Mohler Department of Urology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA Correspondence should be addressed to Faris Azzouni, [email protected] Received 15 July 2011; Revised 11 September 2011; Accepted 27 September 2011 Academic Editor: Colleen Nelson Copyright © 2012 Faris Azzouni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Despite the discovery of 5 alpha-reduction as an enzymatic step in steroid metabolism in 1951, and the discovery that dihydrotestosterone is more potent than testosterone in 1968, the significance of 5 alpha-reduced steroids in human diseases was not appreciated until the discovery of 5 alpha-reductase type 2 deficiency in 1974. Affected males are born with ambiguous external genitalia, despite normal internal genitalia. The prostate is hypoplastic, nonpalpable on rectal examination and approximately 1/10th the size of age-matched normal glands. Benign prostate hyperplasia or prostate cancer does not develop in these patients. At puberty, the external genitalia virilize partially, however, secondary sexual hair remains sparse and male pattern baldness and acne develop rarely. Several compounds have been developed to inhibit the 5 alpha-reductase isozymes and they play an important role in the prevention and treatment of many common diseases.
    [Show full text]
  • Role of 5 Alpha-Reductase Inhibitors in the Management of Prostate Cancer
    REVIEW Role of 5 alpha-reductase inhibitors in the management of prostate cancer Steven J Hudak1 Abstract: Prostate cancer is one of the most complex and enigmatic oncologic problems in Javier Hernandez1 medicine. It is highly prevalent, particularly in elderly males. Unfortunately, its generally Ian M Thompson2 protracted and variable clinical course and high association with treatment-related morbidity raise serious questions about the ideal treatment strategy for the individual patient. 5 alpha- 1Urology Service, Department of Surgery, Brooke Army Medical reductase (5AR) inhibitors have a dramatic effect on benign prostatic disease with low toxicity. Center, Fort Sam Houston, TX, USA; Thus, there is much interest in the potential role of 5AR inhibitors in the prevention and 2 Department of Urology, University treatment of prostate cancer. Finasteride is the only agent that has been shown in a randomized of Texas Health Science Center at San Antonio, San Antonio, TX, USA clinical trial to decrease the risk of prostate cancer with a reduction of almost 25%. Additionally, a recent analysis of the Prostate Cancer Prevention Trial (PCPT) has found that finasteride improves the performance characteristics of prostate-specific antigen (PSA) blood test as a screening tool for prostate cancer, for both cancer detection as well as for detection of high risk disease. Finally, 5AR inhibitors have been studied as a component of multimodal therapy for all stages of prostate cancer, with the goal of improving oncologic outcomes while avoiding the toxicity of medical and surgical castration. Keywords: prostate cancer, 5-α-reductase inhibitors, finasteride, dutasteride, chemoprevention Introduction Prostate cancer is the most common noncutaneous malignancy in males.
    [Show full text]