Mucoadhesive Drug Delivery Devices and Methods Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Study Protocol: LPCN 1021-18-001
Oral Testosterone Undecanoate Protocol No. LPCN 1021-18-001 Lipocine Inc. TU, LPCN 1021 675 Arapeen Drive, Suite 202 Salt Lake City, UT-84108 1.0 TITLE PAGE Clinical Study Protocol: LPCN 1021-18-001 Ambulatory Blood Pressure Monitoring in Oral Testosterone Undecanoate (TU, LPCN 1021) Treated Hypogonadal Men. Investigational Product : Testosterone Undecanoate (TU, LPCN 1021) Date of Protocol : 19 February 2019 FDA IND No. : 106476 Development Phase : Phase 3 Testosterone replacement therapy in adult, 18 years or older, males for conditions associated with a deficiency or absence of endogenous Indication : testosterone – primary hypogonadism (congenital or acquired) or secondary hypogonadism (congenital or acquired) Investigator : Multi-Center, US Sponsor : Lipocine Inc. 675 Arapeen Drive, Suite 202, Salt Lake City, Utah – 84108 Tel: +1-801-994-7383 Fax: +1-801-994-7388 Sponsor / : Nachiappan Chidambaram Emergency Contact 675 Arapeen Drive, Suite 202, Salt Lake City, Utah – 84108 Tel: +1-801-994-7383, Ext 2188 Fax: +1-801-994-7388 Email: [email protected] Protocol Version : 06 Confidentiality Statement This document is a confidential communication of Lipocine Inc. Acceptance of this document signifies agreement by the recipient that no unpublished information contained within will be published or disclosed to a third party without prior written approval, except that this document may be disclosed to an Institutional Review Board under the same conditions of confidentiality. Date: 19 February 2019 Confidential Page 1 of 50 Oral Testosterone Undecanoate Protocol No. LPCN 1021-18-001 Lipocine Inc. TU, LPCN 1021 675 Arapeen Drive, Suite 202 Salt Lake City, UT-84108 2.0 SUMMARY OF CHANGES TO PROTOCOL VERSION 2 Version 02 of the LPCN 1021-18-001 study protocol was developed to make the following changes to the study: • Added sexual desire and sexual distress questions to pre-treatment and post-treatment phases of the study. -
Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017
Q UO N T FA R U T A F E BERMUDA PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 BR 111 / 2017 The Minister responsible for health, in exercise of the power conferred by section 48A(1) of the Pharmacy and Poisons Act 1979, makes the following Order: Citation 1 This Order may be cited as the Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017. Repeals and replaces the Third and Fourth Schedule of the Pharmacy and Poisons Act 1979 2 The Third and Fourth Schedules to the Pharmacy and Poisons Act 1979 are repealed and replaced with— “THIRD SCHEDULE (Sections 25(6); 27(1))) DRUGS OBTAINABLE ONLY ON PRESCRIPTION EXCEPT WHERE SPECIFIED IN THE FOURTH SCHEDULE (PART I AND PART II) Note: The following annotations used in this Schedule have the following meanings: md (maximum dose) i.e. the maximum quantity of the substance contained in the amount of a medicinal product which is recommended to be taken or administered at any one time. 1 PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 mdd (maximum daily dose) i.e. the maximum quantity of the substance that is contained in the amount of a medicinal product which is recommended to be taken or administered in any period of 24 hours. mg milligram ms (maximum strength) i.e. either or, if so specified, both of the following: (a) the maximum quantity of the substance by weight or volume that is contained in the dosage unit of a medicinal product; or (b) the maximum percentage of the substance contained in a medicinal product calculated in terms of w/w, w/v, v/w, or v/v, as appropriate. -
Pharmacy and Poisons Act 1979
Q UO N T FA R U T A F E BERMUDA PHARMACY AND POISONS ACT 1979 1979 : 26 TABLE OF CONTENTS PART I PRELIMINARY 1 Short title 2 Interpretation PART II THE PHARMACY COUNCIL 3 The Pharmacy Council 4 Membership of the Council 4A Functions of the Council 4B Protection from personal liability 4C Annual Report 5 Proceedings of the Council, etc PART III REGISTRATION OF PHARMACISTS 6 Offence to practise pharmacy if not registered 7 Registration as a pharmacist 7A Re-registration as non-practising member 7AA Period of validity of registration 8 Code of Conduct 9 Pharmacy Profession Complaints Committee 10 Investigation of complaint by Committee 10A Inquiry into complaint by Council 10B Inquiry by Council of its own initiative 11 Surrender of registration 12 Restoration of name to register 1 PHARMACY AND POISONS ACT 1979 13 Proof of registration 14 Appeals 14A Fees 14B Amendment of Seventh Schedule 15 Regulations for this part PART IV REGISTRATION OF PHARMACIES 16 Register of pharmacies 17 Registration of premises as registered pharmacies 18 Unfit premises: new applications 19 Unfit premises: registered pharmacies 20 Appeals 21 When certificates of unfitness take effect 22 Regulations for this Part PART V CONTROL OF PRESCRIPTIONS AND IMPORTATION 23 Prescriptions to be in a certain form 23A Validity of a prescription 24 Supply by registered pharmacist of equivalent medicines 25 Restrictions on the importation of medicines 26 Declaration relating to imported medicines [repealed] PART VI CONTROL OF DRUGS 27 Certain substances to be sold on prescription -
University of Groningen Multi-Residue Analysis of Growth Promotors In
University of Groningen Multi-residue analysis of growth promotors in food-producing animals Koole, Anneke IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 1998 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Koole, A. (1998). Multi-residue analysis of growth promotors in food-producing animals. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 25-09-2021 APPENDIX 1 OVERVIEW OF RELEVANT SUBSTANCES This appendix consists of two parts. First, substances that are relevant for the research presented in this thesis are given. For each substance CAS number (CAS), molecular weight (MW), bruto formula (formula) and if available UV maxima and alternative names are given. In addition, pKa values for the ß-agonists are listed, if they were available. -
有限公司 Testosterones
® 伊域化學藥業(香港)有限公司 YICK-VIC CHEMICALS & PHARMACEUTICALS (HK) LTD Rm 1006, 10/F, Hewlett Centre, Tel: (852) 25412772 (4 lines) No. 52-54, Hoi Yuen Road, Fax: (852) 25423444 / 25420530 / 21912858 Kwun Tong, E-mail: [email protected] YICK -VIC 伊域 Kowloon, Hong Kong. Site: http://www.yickvic.com Testosterones Product Code CAS Product Name MIS-42658 1043-10-3 (8S,9S,10R,11S,13S,14S,17S)-11,17-DIHYDROXY-10,13,17-TRIMETHYL-2,6,7,8,9,11,12,14,15,16-DECAHYDRO-1H-CYCLOPENTA[A]PHENA NTHREN-3-ONE UNIE-13864 564-35-2 11-KETOTESTOSTERONE PH-1081U 17-ALPHA-HYDROXYTESTOSTERONE ACETATE MIS-39218 51154-09-7 17ALPHA-METHYLTESTOSTERONE 4,5-EPOXIDE PH-1121 72-63-9 17BETA-HYDROXY-17-METHYLANDROSTA-1,4-DIEN-3-ONE MIS-34565 5585-85-3 17BETA-HYDROXY-17-METHYLANDROSTA-4,6-DIEN-3-ONE PH-1081S 17BETA-HYDROXYANDROST-1-ENE-3-ONE TETRAHYDROPYRANYL ETHER PH-1081VA 1-TESTOSTERONE ETHYL CARBONATE PH-1081VB 1-TESTOSTERONE METHYL CARBONATE PH-1081VC 1-TESTOSTERONE PROPYL CARBONATE PH-1081HB 1-TESTOSTERONE UNDECANOATE UNIE-15172 2141-17-5 4-HYDROXYTESTOSTERONE UNIE-13597 62-99-7 6BETA-HYDROXYTESTOSTERONE SPI-4361 14531-84-1 6-DEHYDRO-19-NORTESTOSTERONE PH-1081PK 1057-07-4 ANDROSTANOLONE 17-BENZOATE Copyright © 2018 YICK-VIC CHEMICALS & PHARMACEUTICALS (HK) LTD. All rights reserved. Page 1 of 3 Product Code CAS Product Name PH-1133 1605-89-6 BOLASTERONE UNIE-8525 CHLORDEHYDROMETHYLTESTOSTERONE PH-1081JA 1093-58-9 CLOSTEBOL PH-1081JB 855-19-6 CLOSTEBOL ACETATE SPI-0027GA 481-30-1 EPITESTOSTERONE SPI-0027GB EPITESTOSTERONE ACETATE PH-1081K 434-03-7 ETHISTERONE PH-1136B 76-43-7 -
Pharmaceutical Appendix to the Tariff Schedule 2
Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9 -
Poisons List (Jersey) Order 1986
POISONS LIST (JERSEY) ORDER 1986 Revised Edition 20.775.60 Showing the law as at 31 August 2004 This is a revised edition of the law Poisons List (Jersey) Order 1986 Arrangement POISONS LIST (JERSEY) ORDER 1986 Arrangement Article 1 Poisons List ..................................................................................................... 5 2 Citation ............................................................................................................ 5 SCHEDULE 6 THE POISONS LIST 6 PART 1 6 PART 2 50 PART 3 52 Supporting Documents ENDNOTES 53 Table of Legislation History......................................................................................... 53 Table of Renumbered Provisions ................................................................................. 53 Table of Endnote References ....................................................................................... 53 Revised Edition – 31 August 2004 Page - 3 20.775.60 Poisons List (Jersey) Order 1986 Article 1 POISONS LIST (JERSEY) ORDER 1986 THE HEALTH AND SOCIAL SERVICES COMMITTEE in pursuance of Article 8 of the Pharmacy and Poisons (Jersey) Law 1952,1 orders as follows – Commencement [see endnotes] 1 Poisons List The list of substances which are to be treated as poisons for the purposes of the Pharmacy and Poisons (Jersey) Law 1952,2 shall be as set out in the Schedule to this Order. 2 Citation This Order may be cited as the Poisons List (Jersey) Order 1986. Revised Edition – 31 August 2004 Page - 5 20.775.60 SCHEDULE Poisons List (Jersey) Order -
The 5 Alpha-Reductase Isozyme Family: a Review of Basic Biology and Their Role in Human Diseases
Hindawi Publishing Corporation Advances in Urology Volume 2012, Article ID 530121, 18 pages doi:10.1155/2012/530121 Review Article The 5 Alpha-Reductase Isozyme Family: A Review of Basic Biology and Their Role in Human Diseases Faris Azzouni, Alejandro Godoy, Yun Li, and James Mohler Department of Urology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA Correspondence should be addressed to Faris Azzouni, [email protected] Received 15 July 2011; Revised 11 September 2011; Accepted 27 September 2011 Academic Editor: Colleen Nelson Copyright © 2012 Faris Azzouni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Despite the discovery of 5 alpha-reduction as an enzymatic step in steroid metabolism in 1951, and the discovery that dihydrotestosterone is more potent than testosterone in 1968, the significance of 5 alpha-reduced steroids in human diseases was not appreciated until the discovery of 5 alpha-reductase type 2 deficiency in 1974. Affected males are born with ambiguous external genitalia, despite normal internal genitalia. The prostate is hypoplastic, nonpalpable on rectal examination and approximately 1/10th the size of age-matched normal glands. Benign prostate hyperplasia or prostate cancer does not develop in these patients. At puberty, the external genitalia virilize partially, however, secondary sexual hair remains sparse and male pattern baldness and acne develop rarely. Several compounds have been developed to inhibit the 5 alpha-reductase isozymes and they play an important role in the prevention and treatment of many common diseases. -
Role of 5 Alpha-Reductase Inhibitors in the Management of Prostate Cancer
REVIEW Role of 5 alpha-reductase inhibitors in the management of prostate cancer Steven J Hudak1 Abstract: Prostate cancer is one of the most complex and enigmatic oncologic problems in Javier Hernandez1 medicine. It is highly prevalent, particularly in elderly males. Unfortunately, its generally Ian M Thompson2 protracted and variable clinical course and high association with treatment-related morbidity raise serious questions about the ideal treatment strategy for the individual patient. 5 alpha- 1Urology Service, Department of Surgery, Brooke Army Medical reductase (5AR) inhibitors have a dramatic effect on benign prostatic disease with low toxicity. Center, Fort Sam Houston, TX, USA; Thus, there is much interest in the potential role of 5AR inhibitors in the prevention and 2 Department of Urology, University treatment of prostate cancer. Finasteride is the only agent that has been shown in a randomized of Texas Health Science Center at San Antonio, San Antonio, TX, USA clinical trial to decrease the risk of prostate cancer with a reduction of almost 25%. Additionally, a recent analysis of the Prostate Cancer Prevention Trial (PCPT) has found that finasteride improves the performance characteristics of prostate-specific antigen (PSA) blood test as a screening tool for prostate cancer, for both cancer detection as well as for detection of high risk disease. Finally, 5AR inhibitors have been studied as a component of multimodal therapy for all stages of prostate cancer, with the goal of improving oncologic outcomes while avoiding the toxicity of medical and surgical castration. Keywords: prostate cancer, 5-α-reductase inhibitors, finasteride, dutasteride, chemoprevention Introduction Prostate cancer is the most common noncutaneous malignancy in males. -
Alltech® Drug Standards for the Forensic, Clinical & Pharmaceutical Industries OH
Alltech® Drug Standards For the Forensic, Clinical & Pharmaceutical Industries OH H3C H H H3C H HO Catalog #505B Our Company Welcome to the Grace's Alltech® Drug Standards Catalog W. R. Grace has manufactured high-quality silica for over 150 years. Grace has been behind the scenes for the past 30 years supplying silica to the chromatography industry. Now we’re in the forefront moving beyond silica, developing and delivering innovative complementary products direct to the customer. Grace Davison Discovery Sciences was founded on Grace’s core strength as a premier manufacturer of differentiated media for SPE, Flash, HPLC, and Process chromatography. This core competency is further enhanced by bringing seven well-known global separations companies together, creating a powerful new single source for all your chromatography needs. A Full Portfolio of Chromatography Products to Support Drug Standards: • HPLC Columns • HPLC Accessories • Flash Products • TLC Products • GC Columns • GC Accessories • SPE and Filtration • Equipment • Syringes • Tubing • Vials For complete details, download the Chromatography Essentials catalog from the Grace web site or contact your customer service representative. Alltech - Part of the Grace Family of Products In 2004, Alltech Associates Inc. was acquired by Grace along with the Alltech® Drug Standards product line. Through investment in research and strategic acquisitions, Grace has expanded our product range and global reach while drawing upon the support of the Grace corporate infrastructure and more than 6000 employees globally to support scientific research and analysis worldwide. With key manufacturing sites in North and South America, Europe, and Asia, plus an extensive international sales and distribution network, separation scientists throughout the world can count on timely delivery and expert local technical service. -
Available Online Through ISSN 2229-3566
Dasgupta Debjani et al / IJRAP 2011, 2 (3) 839-844 Research Article Available online through www.ijrap.net ISSN 2229-3566 INHIBITION OF TYPE I 5α-REDUCTASE BY MEDICINAL PLANT EXTRACTS 1 2 2 2 1* Patil Vijaya , Samuel Grace , Mirapurkar Shubhangi , R. Krishna Mohan , Dasgupta Debjani 1Department of Biochemistry, The Institute of Science, Mumbai - 400032, India 2Board of Radiation and Isotope Technology, Navi Mumbai-400705, India Received on: 12/05/2011 Revised on: 10/06/2011 Accepted on: 16/06/2011 ABSTRACT Type I 5α-reductase has been implicated in skin disorders such as acne, hirsutism and male pattern baldness and its inhibition offers a potential treatment for these disorders. The aim of this study was to investigate the inhibition of type I 5α-reductase activity by extracts from Indian medicinal plants. Plant extracts were screened and selected based on their ability to inhibit Propionibacterium acnes and Staphylococcus epidermidis. Since type I 5α-reductase metabolises testosterone to Δ4-androstene-3, 17-dione, the activity of enzyme was determined using RIA for testosterone and Δ4-androstene-3, 17-dione. It was found that methanolic extract of Embelia ribes was a potent inhibitor of type I 5α-reductase (IC50:100μg/mL). Extracts of Vitex negundo, Terminalia chebula, and Terminalia bellerica which also inhibited type I 5α-reductase (IC50: 200-390 μg /mL). Therefore herbal formulation of these plant extracts may be used in the treatment of skin disorders involving type I 5α-reductase. KEYWORDS: Type I 5α-reductase; acne; MBC; medicinal plants *Corresponding author Debjani Dasgupta, Department of Biochemistry, The Institute of Science, 15 Madame Cama Road, Mumbai - 400032, India E-mail: [email protected] INTRODUCTION growth of P. -
Georgia State Forensic Drugs
Comprehensive Forensic FT-IR Collection Library Listing – 4,286 spectra This extensive library contains materials not only of forensic interest but also for general problem solving and identification of unknown substances in industry and academia. The wide range of items include drugs, clandestine lab chemicals, explosives, paints, fabrics, dyes, polymers, inorganic compounds, pigments, adhesives, and other common materials. The library consists of 4,286 spectra that were acquired from a wide range of laboratories involved in forensic investigations. The collection includes the following classes of compounds: • Drugs of abuse, scheduled materials • Pharmaceuticals, vitamins and excipients • Clandestine lab materials and intermediates • Solvents, organic chemicals and hazardous chemicals • Accelerants • Lubricants and natural oils • Explosives, pyrotechnics, primers, powders and boosters • Herbal and plant material and fibers • Automobile paint vehicles, pigments, primers and clear coats • Textiles, natural and man-made fibers, carpet materials • Paints, coatings, varnishes, oils • Dyes and stains • Polymers, monomers, copolymers, plasticizers and rubbers • Inorganics, pigments, minerals and clays • Tape, adhesives, sealants, glues, caulks and putties • Crystal test derivatives and intermediates • Household chemicals, cleaning agents, surfactants and pesticide All spectra were measured using micro or macro Diamond ATR, thin films on salt windows or KBr pellets at 4 cm-1 spectral resolution. Comprehensive Forensic FT-IR Collection Index