Astronomia Poetas Vol 3

Total Page:16

File Type:pdf, Size:1020Kb

Astronomia Poetas Vol 3 A Beleza dos Cometas Tirando a Terra do Centro do Universo O Universo mais rápido que a luz Ondas Gravitacionais, uma previsão de 1916 de Albert Einstein Galáxias: fábricas de estrelas no Cosmos Censo do espaço: de Hiparco a HIPPARCOS e além Planetas fora do Sistema Solar O que é Astrobiologia? O que esse termo significa? Meteoritos: mensageiros do espaço Silvia Lorenz Martins (Org.) Volume 3 Volume Astronomia para Poetas foi idealizada Rio de Janeiro, 2018 pelo Observatório do Valongo da 1°edição UFRJ,com todo o seu conteúdo gestado pelo corpo docente desta unidade, em março de 2018. Silvia Lorenz Martins (Org.) Volume 3 Volume Editorial SumÁrio “Nada do que foi será De novo do jeito que já foi um dia A beleza dos cometas.............................................................................07 Tudo passa Tudo sempre passará Tirando a Terra do centro do Universo......................................................17 ... como uma onda no mar O Universo mais rápido que a luz..........................................................25 como uma onda no mar...” Ondas gravitacionais, uma previsão de 1916 de Albert Einstein..............31 No mar não, no espaço! Neste terceiro volume da revista Astronomia para Galáxias: fábricas de estrelas no cosmos.................................................43 Poetas, a poesia vem na forma de ondas gravitacionais, ampliando ainda mais o conhecimento a respeito do nosso vasto Universo. Em termos de progresso científico, Censo do espaço: de Hiparco a HIPPARCOS e além...............................49 a detecção dessas ondas pode ser comparada às imagens captadas pelos primei- ros telescópios construídos, como na época em que Galileu, observando Júpiter e Planetas fora do sistema solar.................................................................65 seus satélites galileanos, tirou a Terra do centro do Universo. O projeto Astronomia para Poetas iniciou em 2002 na Casa da Ciência/ O que é Astrobiologia? O que esse termo significa?...............................75 UFRJ, integrando o projeto Ciência para Poetas, e desde 2011 temos apresentado Meteoritos: mensageiros do espaço.......................................................85 regularmente o ciclo de seminários. A cada edição, novos temas são abordados e a ideia é levar o conhecimento científico em linguagem não especializada a um público diverso, apresentando de maneira lúdica e dinâmica resultados das mais diversas áreas da Astronomia, Astrofísica, Cosmologia e História das Ciências. Neste volume, além das ondas gravitacionais, são abordados outros temas igualmente interessantes, tais como a existência de outros sistemas planetários ou a beleza dos cometas, a importância dos meteoritos e das galáxias. Apresentamos também tópicos como a busca de formas de vida fora da Terra e a expansão do Universo. Não ficou de fora a história da Astronomia e de observações astronômi- cas. Então aproveitem este volume para viajar nas ondas da Astronomia. Agradecimentos à CoordCOM, em especial à Anna Bayer pela produção da revista e a Andréa Rua pela ajuda com a diagramação dos textos. Silvia Lorenz Martins Astronomia para poetas. vol.3 4 5 Astronomia para poetas. vol.3 Mas a minha mais remota recordação só muito tempo depois eu vim a saber que era um cometa e precisamente o cometa de Halley - maravilhoso Cavalo Celestial! - com a sua longa cauda vermelha atravessando, ondulante, de lado a lado, bem sobre o meio do mundo, A Beleza dos Cometas a noite misteriosa do pátio... Jamais esquecerei a sua aparição Daniel R. C. Mello porque naquele tempo de espantos e encantos o cometa de Halley não se contentava em parecer em cavalo, apenas: o cometa de Halley era um cavalo! (Mario Quintana) este capítulo, o leitor será convidado a conhecer um pouco das características dos mais belos astros do sistema solar: os cometas. Quem nunca ouviu falar do cometa Halley que, Nde tempos em tempos, passa bem próximo do nosso planeta? Quem nunca viu imagens desses astros de longa cauda, seja em jornais, na televisão ou na internet? Tal como os outros astros, os cometas impressionam por sua beleza. Entretanto, iremos entender, nos próximos parágrafos, como eles são bem diferentes dos planetas, das estrelas, das galáxias e dos buracos (FIGURA A SER ENVIADA) negros. Veremos também como eles podem representar um perigo para a Terra e, de outro modo, como a presença de vida em nosso planeta pode estar conectada com os cometas que nos visitaram no passado. Todos estão convidados a descobrir os mistérios que guardam a beleza dos cometas. Os cometas Têm um tal espaço para atravessar, Tanta frieza , esquecimento. Assim, seus gestos a descamar ---- Calorosa e humana, então a sua luz rosa Sangra e desvanece Através das obscuras amnésias do céu. (Sylvia Plath) Figura 1 - Cometa McNaughty, exibindo uma belíssima cauda, fotografado Astronomia para poetas. vol.3 6 pelo astrônomo David O’Carrol na Austrália, em 2007. 7 Astronomia para poetas. vol.3 começaram com os filósofos gregos, Nem o cometa que veio sem aviso prévio do norte Os cometas no imaginário popular ainda no século II a.C. Nessa época, queimando no céu; muitos imaginavam que os cometas Na Antiguidade, em diversas culturas, a aparição de algum cometa era sinônimo de Nem a estranha procissão enorme do meteoro, não eram astros como as estrelas ou furor, admiração e muitas das vezes de temor e maus presságios. O sucumbir de um império, deslumbrante e claro, disparando sobre nossas cabeças. planetas, mas eram apenas emissões de uma catástrofe natural, a ocorrência de alguma epidemia, todos esses fatos tinham como causa gases da atmosfera da Terra. Quase mil (Walt Whitman) a aparição de algum grande cometa no céu. Por isso, a observação dos cometas mais brilhantes e oitocentos anos se passaram até que nunca passou despercebida para o ser humano. Em diversas culturas, em todo o mundo, o astrônomo dinamarquês Tycho Brahe encontramos relatos, gravuras ou pinturas, textos em prosa ou poesia e outras manifestações de fizesse estudos mais detalhados de um arte relacionadas a eles. Na pintura, podemos citar uma obra que se tornou célebre, intitulada A cometa observado no ano de 1577. Ele Adoração dos Magos (Figura 2), do pintor italiano renascentista Giotto di Bondone. Nessa obra, o mostrou definitivamente que os cometas pintor retrata o cometa Halley, observado por ele no ano de 1301 e associado à estrela guia dos eram astros que se encontravam mais reis magos. No campo da ficção científica, podemos citar o romance Uma Odisséia no Espaço III, distantes da Terra do que a Lua e que do escritor Arthur Clarke e o filme Impacto Profundo (Deep Impact), do diretor Mimi Leder, de 1998, não eram apenas manifestações da que aborda as consequências nefastas do impacto de um cometa com a Terra. atmosfera da Terra, como se pensava anteriormente. Mais tarde, nos séculos XVII O que são os cometas? e XVIII, couberam a dois astrônomos ingleses, Isaac Newton e Edmond Os cometas são astros comuns do nosso sistema solar e possivelmente de todos os sistemas Halley, os cálculos mais precisos que planetários do Universo. Do ponto de vista científico, podemos dizer que os primeiros estudos mostravam que os cometas, tal qual os planetas, também giravam ou orbitavam Figura 2 - em torno do Sol. Halley (Figura 3), em Adoração seus importantes cálculos, mostrou que dos Magos, os cometas observados nos anos de 1531, do pintor 1607 e 1682 tinham características muito italiano Giotto similares entre si. O astrônomo mostrou di Bondone, que se tratava de fato, neste caso, de um retrata a único cometa que passava próximo da aparição Terra aproximadamente a cada 76 anos do cometa e fez a previsão que este mesmo cometa Halley nos se aproximaria da Terra novamente em céus. Capela 1758. Halley acertou em cheio e, desde Scrovegni, essa data, o tal cometa passou a ser Pádua, Itália. conhecido como cometa Halley e ainda hoje é o mais conhecido deles. A grande maioria dos cometas, entretanto, possui órbitas bem diferentes dos planetas, por exemplo. Figura 3 - Edmond Halley em óleo Enquanto os planetas possuem órbitas sobre tela, de Thomas Murray quase circulares, os cometas possuem (Royal Society, Londres, 1687). órbitas bastante excêntricas. Órbita quase circular significa que o astro Astronomia para poetas. vol.3 Astronomia para poetas. vol.3 9 mantém, quase sempre, a mesma distância em relação ao Sol à medida que gira em torno dele. Isso ocorre com a Terra, por exemplo. Por outro lado, órbitas excêntricas indicam que a distância do astro até o Sol pode Figura 4 - Órbita dos planetas (quase circulares) e do variar bastante. A Figura 4 mostra a cometa Halley (excêntrica) em torno do Sol. Créditos: órbita dos planetas do sistema solar Wikipedia. em comparação com a órbita do cometa Halley. Repare que o cometa Halley, quando está mais próximo do Sol, está próximo da órbita de Vênus Figura 5 - Cometa Lovejoy, fotografado pelo astrônomo Gerald Rhemann em 2014, mostrando a e, quando está mais distante, está estrutura típica de um cometa com o núcleo (invisível), a coma e a cauda. próximo da órbita de Netuno. A Terra demora um ano para girar em torno próximo do Sol, o material que forma a coma pode ser impelido para longe do cometa formando a do Sol, ao passo que certos cometas cauda, novamente por efeito solar. A cauda é que dá o aspecto alongado do cometa e ela pode ter, podem demorar mais de mil anos. em alguns casos, milhões de quilômetros de extensão. Em geral, podem ser observados dois tipos Mas o que são realmente de caudas: uma mais retilínea, com aspecto mais azulado, formada por partículas eletricamente os cometas? Os cometas são astros carregadas do Sol e que interage com os gases do cometa; e outra mais curvada, de aspecto branco- de aspectos irregulares constituídos amarelado, formada pela radiação solar e que interage com a poeira emitida do núcleo. Apesar da basicamente de rochas, poeira e gelo. coma e da cauda dos cometas serem estruturas transitórias, são elas as responsáveis pelo brilho dos Do ponto de vista do formato ou da cometas.
Recommended publications
  • Arxiv:2007.09714V1 [Gr-Qc] 19 Jul 2020 Tem PSR J0737-3039A/B
    Probing Noncommutative Gravity with Gravitational Wave and Binary Pulsar Observations Leah Jenks,1 Kent Yagi,2 and Stephon Alexander1 1Brown Theoretical Physics Center and Department of Physics, Brown University, 182 Hope Street, Providence, Rhode Island, 02903 2Department of Physics, University of Virginia, P.O. Box 400714, Charlottesville, VA 22904-4714, USA (Dated: July 21, 2020) Noncommutative gravity is a natural method of quantizing spacetime by promoting the spacetime coordinates themselves to operators which do not commute. This approach is motivated, for exam- ple, from a quantum gravity perspective, among others. Noncommutative gravity has been tested against the binary black hole merger event GW150914. Here, we extend and improve upon such a previous analysis by (i) relaxing an assumption made on the preferred direction due to noncommuta- tivity, (ii) using posterior samples produced by the LIGO/Virgo Collaborations, (iii) consider other gravitational wave events, namely GW151226, GW170608, GW170814 and GW170817, and (iv) consider binary pulsar observations. Using Kepler's law that contains the noncommutative effect at second post-Newtonian order, we derive corrections to the gravitational waveform phase and the pericenter precession. Using the gravitational wave and double pulsar binary observations, we find bounds on a space-time noncommutative tensor θ0i in terms of the preferred frame direction with respect to the orientation of each binary. We find that the gravitational wave bounds are stronger than the binary pulsar one by an order of magnitude and the noncommutative tensor normalized by the Planck length and time is constrained to be of order unity. I. INTRODUCTION of noncommutative gravity stems from these theories.
    [Show full text]
  • Supernova Physics with Gravitational Waves: Newborn Black Holes Are “Kicked”
    Supernova physics with gravitational waves: Newborn black holes are “kicked” Richard O’Shaughnessy [email protected] 614 906 9649 Davide Gerosa [email protected] 626 395 6829 Daniel Wysocki [email protected] ! ! Accepted for publication in Physical Review Letters Poster 317.07 [see iPoster] June 5, AAS 2 3 GW151226: Gravitational waves from a black hole binary B. P.• ABBOTTGW151226et al. is the second, less massive binary black hole confidently detectedPHYS. by REV. LIGO X 6, 041015 (2016) GW151226 Abbott et al, PRX 6, 041015 (2016) ; PRL 118 221101 (2017) FIG. 4. Posterior probability densities of the masses, spins, and distance to the three events GW150914, LVT151012, and GW151226. source For the two-dimensional distributions, the contours show 50% and 90% credible regions. Top left panel: Component masses m1 and source source source m2 for the three events. We use the convention that m1 ≥ m2 , which produces the sharp cut in the two-dimensional source 0.3 distribution. For GW151226 and LVT151012, the contours follow lines of constant chirp mass (M 8.9−þ0.3 M and source 1.4 ¼ ⊙ M 15:1−þ1.1 M , respectively). In all three cases, both masses are consistent with being black holes. Top right panel: The mass and¼ dimensionless⊙ spin magnitude of the final black holes. Bottom left panel: The effective spin and mass ratios of the binary components. Bottom right panel: The luminosity distance to the three events. following section and are consistent with our expect- closely mirror the original analysis of GW150914, as ations for an astrophysical BBH source.
    [Show full text]
  • MY SO October Showdown Rules
    S P A C E - O C T O B E R 2 0 2 0 MY SO STEM SHOWDOWN C O N T E N T , R E C O M M E N D E D M A T E R I A L S & S C O R I N G STEM SHOWDOWN CONTENT The STEM Showdown will consist of a series of online multiple-choice questions. Middle school (Grade 6-9) participant questions will center around the properties and evolution of stars and galaxies as well as their observation using different portions of the electromagnetic spectrum (e.g., Radio, Infrared, Visible, Ultraviolet, X-Ray, Gamma Ray). While high school (Grades 9-12) participants will focus on Star and Galaxy Formation and Evolution. A Showdown participant will have 55- minutes to answer as many questions as possible. The middle school (Grades 6-9) content and skills covered by the Showdown this month is as follows: 1.Stellar and galactic evolution 2.Spectral classification of stars 3.Hubble classification of galaxies 4.Observation using multiple portions of the electromagnetic spectrum 5.The relationship between stellar temperature, radius, and luminosity 6.Magnitude and luminosity scales, distance modulus, inverse square law 7.Identification of the stars, constellations, and deep sky objects included in the list below as they appear on star charts, H-R diagrams, portable star labs, photos, or planetariums. Note: Constellations are underlined; Stars are boldface; Deep Sky Objects are italicized. a.Andromeda: M31 (Andromeda Galaxy) b.Aquila: Altair c.Auriga: Capella d.Bootes: Arcturus e.Cancer: DLA0817g f.Canis Major: Sirius g.Canis Minor: Procyon h.Centaurus: NGC5128 i.Coma Berenices: NGC4676, NGC4555 j.Corvus: NGC4038/NGC4039 k.Crux: Dragonfish Nebula l.Cygnus: Deneb m.Dorado: 30 Doradus, LMC n.Gemini: Castor, Pollux o.Lyra: Vega p.Ophiuchus: Zeta Ophiuchi, Rho Ophiuchi cloud complex q.Orion: Betelgeuse, Rigel & M42 (Orion Nebula) r.Perseus: Algol, NGC1333 Science Olympiad, Inc.
    [Show full text]
  • Searching for Gravitational Waves from Scorpius X-1 with a Cross- Correlation Method: from Mock Data to Advanced LIGO
    Rochester Institute of Technology RIT Scholar Works Theses 8-11-2017 Searching for Gravitational Waves from Scorpius X-1 with a Cross- correlation Method: from Mock Data to Advanced LIGO Yuanhao Zhang [email protected] Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Zhang, Yuanhao, "Searching for Gravitational Waves from Scorpius X-1 with a Cross-correlation Method: from Mock Data to Advanced LIGO" (2017). Thesis. Rochester Institute of Technology. Accessed from This Dissertation is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Rochester Institute of Technology Ph.D. Dissertation Searching for Gravitational Waves from Scorpius X-1 with a Cross-correlation Method: from Mock Data to Advanced LIGO Author: Advisor: Yuanhao Zhang Dr. John T. Whelan A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Astrophysical Sciences and Technology in the College of Science, School of Physics and Astronomy August 11, 2017 Rochester Institute of Technology Ph.D. Dissertation Searching for Gravitational Waves from Scorpius X-1 with a Cross-correlation Method: from Mock Data to Advanced LIGO Author: Advisor: Yuanhao Zhang Dr. John T. Whelan A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Astrophysical Sciences and Technology in the College of Science, School of Physics and Astronomy Approved by Dr. Joel Kastner Date Director, Astrophysical Sciences and Technology Certificate of Approval Astrophysical Sciences and Technologies R I T College of Science · · Rochester, NY, USA The Ph.D.
    [Show full text]
  • LIGO Magazine Issue #14 !
    LIGO Scientific Collaboration Scientific LIGO issue 14 3/2019 LIGO MAGAZINE The Gravitational Weather Forecast: Predicting sources for O3 Upgrades to Hanford, Livingston and Virgo sites Getting ready for O3 p.12 The LVC‘s first Gravitational Wave Transient Catalog Inventorizing the dark side p. 15 ... and an interview with Sir James Hough on the early days p.19 Front cover A new study using Chandra data of GW170817 indicates that the event that produced gravitational waves likely created the lowest mass black hole known. The artist’s illustration shows the black hole that resulted from the merger, along with a disk of infalling matter and a jet of high-energy particles. (Credit: NASA/CXC/M.Weiss) The top inset shows the view from below the ‘north input test mass’ of Virgo. The bottom inset shows a schematic of binary mergers observed by LIGO and Virgo so far. Image credits Photos and graphics appear courtesy of Caltech/MIT LIGO Laboratory and LIGO Scientific Collaboration unless otherwise noted. Cover: Main illustration from NASA/CXC/M.Weiss. Top inset from M. Perciballi / The Virgo collaboration. Bottom inset from LIGO-Virgo / Frank Elavsky / Northwestern University p. 3 Comic strip by Nutsinee Kijbunchoo p. 6-9 Colliding neutron stars illustration by NASA/CXC/M.Weiss. Gravitational wave sources by Chris Messenger. Sensitivity curves from LIGO/Virgo/KAGRA p. 12-14 Livingston photo by Matthew Heintze. Hanford photo by Nutsinee Kijbunchoo, Virgo photo by M. Perciballi / The Virgo Collaboration. p. 15-18 Time frequency plots and waveforms by S. Ghonge, K. Janu / Georgia Tech. Masses in the Stellar Graveyard by LIGO-Virgo / Frank Elavsky / Northwestern University.
    [Show full text]
  • GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence
    week ending PRL 116, 241103 (2016) PHYSICAL REVIEW LETTERS 17 JUNE 2016 GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence B. P. Abbott et al.* (LIGO Scientific Collaboration and Virgo Collaboration) (Received 31 May 2016; published 15 June 2016) We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3 4þ0.7 10−22 14 2þ8.3M 7 5þ2.3M . −0.9 × . The inferred source-frame initial black hole masses are . −3.7 ⊙ and . −2.3 ⊙, 20 8þ6.1M and the final black hole mass is . −1.7 ⊙. We find that at least one of the component black holes has spin þ180 greater than 0.2. This source is located at a luminosity distance of 440−190 Mpc corresponding to a redshift 0 09þ0.03 of . −0.04 . All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.
    [Show full text]
  • Jonathan Gair, Albert Einstein Institute Potsdam from Einstein and Eddington to LIGO: 100 Years of Gravitational Light Deflection, Principe, May 28Th 2019 Talk Outline
    The Hubble Constant after GW170817 Jonathan Gair, Albert Einstein Institute Potsdam From Einstein and Eddington to LIGO: 100 years of gravitational light deflection, Principe, May 28th 2019 Talk outline ❖ Eddington and Cosmology ❖ Eddington and Gravitational Waves ❖ GW170817 ❖ Gravitational wave sources as cosmological probes ❖ GW170817: first gravitational wave constraint on H0; ❖ statistical H0 measurements with ground-based detectors; ❖ prospects for improved cosmological measurements using future observations; ❖ sources of systematics in GW constraints on cosmology. Cosmological models ❖ Standard cosmological model starts with homogeneous and isotropic line element 2 2 2 2 2 2 2 2 dr 2 2 2 2 ds = c d⌧ =dt a (t)d⌃ ,d⌃ = 2 + r d✓ +sin ✓dφ <latexit sha1_base64="i9PyHZkExmT8HqDxYCOmkNfxTJo=">AAACm3icdZFta9swEMdl76nLHppubwZjcCwMUroG24y2g20U+mJl7EXHlrYQJ0GW5VhEkl3pPAgmX2ofZe/2bSYnbtjjgXSn391x0l9JKYXFIPjh+Tdu3rp9Z+tu5979Bw+3uzuPzm1RGcaHrJCFuUyo5VJoPkSBkl+WhlOVSH6RzE+a/MVXbqwo9BdclHys6EyLTDCKDk273+rYKEiXdhLBW2Bub0GMtFqx9ozusA90EvVxd1PzWcyUQy8hvrqqaArpNXF9cWYoq9tKM4mWdbg/bzzsgXMQS55hfzMt59j07UFshZ5Ea7AZVObCMSNmOe5Ou71gEL4+CA6P4O8gHAQr65HWzqbd73FasEpxjUxSa0dhUOK4pgYFk3zZiSvLS8rmdMZHLtRUcTuuV9ou4YUjKWSFcUsjrOivHTVV1i5U4ioVxdz+mWvgv3KjCrOjcS10WSHXbD0oqyRgAc1HQSoMZygXLqDMCHdXYDl1mqL7zo4T4fql8P/gPBqETplPr3rHb1o5tshT8pz0SUgOyTE5JWdkSJj3xHvnvfdO/Wf+if/B/7gu9b225zH5zfzhTzxAx4I=</latexit> − 1 kr − ❖ and stress-energy tensor of perfect fluid Tµ⌫ =(⇢ + p)uµu⌫ + pgµ⌫ ❖ Einstein’s equations then yield the (Friedmann) equations a˙ 2 k ⇤ 8⇡ + = ⇢ a a2 − 3
    [Show full text]
  • Observatory Science with Extp
    in ’t Zand J.J.M., Bozzo E., Li X., Qu J., etSCIENCE al. Sci. China-Phys. Mech. CHINA Astron. February (2019) Vol. 62 No. 2 029506-1 Physics, Mechanics & Astronomy Print-CrossMark . Invited Review . February 2019 Vol.62 No. 2: 029506 doi: 10.1007/s11433-017-9186-1 The X-ray Timing and Polarimetry Frontier with eXTP Observatory science with eXTP Jean J.M. in ’t Zand1, Enrico Bozzo2, Jinlu Qu3, Xiang-Dong Li4, Lorenzo Amati5, Yang Chen4, Immacolata Donnarumma6;7, Victor Doroshenko8, Stephen A. Drake9, Margarita Hernanz10, Peter A. Jenke11, Thomas J. Maccarone12, Simin Mahmoodifar9, Domitilla de Martino13, Alessandra De Rosa7, Elena M. Rossi14, Antonia Rowlinson15;16, Gloria Sala17, Giulia Stratta18, Thomas M. Tauris19, Joern Wilms20, Xuefeng Wu21, Ping Zhou15;4, Ivan´ Agudo22, Diego Altamirano23, Jean-Luc Atteia24, Nils A. Andersson25, M. Cristina Baglio26, David R. Ballantyne27, Altan Baykal28, Ehud Behar29, Tomaso Belloni30, Sudip Bhattacharyya31, Stefano Bianchi32, Anna Bilous15, Pere Blay33, Joao˜ Braga34, Søren Brandt35, Edward F. Brown36, Niccolo` Bucciantini37, Luciano Burderi38, Edward M. Cackett39, Ric- cardo Campana5, Sergio Campana30, Piergiorgio Casella40, Yuri Cavecchi41;25, Frank Chambers15, Liang Chen42, Yu-Peng Chen3,Jer´ omeˆ Chenevez35, Maria Chernyakova43, Jin Chichuan44, Riccardo Ciolfi45;46, Elisa Costantini1;15, Andrew Cumming47, Antonino D’A`ı48, Zi-Gao Dai4, Filippo D’Ammando49, Massi- miliano De Pasquale50, Nathalie Degenaar15, Melania Del Santo48, Valerio D’Elia40, Tiziana Di Salvo51, Gerry Doyle52, Maurizio Falanga53, Xilong Fan54;55, Robert D. Ferdman56, Marco Feroci7, Federico Fraschetti57, Duncan K. Galloway58, Angelo F. Gambino51, Poshak Gandhi59, Mingyu Ge3, Bruce Gendre60, Ramandeep Gill61, Diego Gotz¨ 62, Christian Gouiffes` 62, Paola Grandi5, Jonathan Granot61, Manuel Gudel¨ 63, Alexander Heger58;64;121, Craig O.
    [Show full text]
  • Biography Employment Research Outputs
    Associate Professor. David Coward Physics Postal address: The University of Western Australia (M013), 35 Stirling Highway, Room 2.63, Physics Building, Perth campus 6009 Perth Western Australia Australia Email: [email protected] Phone: +61 8 6488 4563 Biography His early work on gravitational waves focused on modelling and simulation of gravitational wave background noise. This work evolved in new directions, including the development of a new data analysis algorithm that uses records of the temporal and spatial pattern of rare events in data to predict the occurrence of even rarer events. The methods found novel applications well beyond their original focus, such as predicting the occurrence of very bright gamma ray bursts. Coward has received a broad mentorship that reflects his refusal to be restricted to a single research niche. In 2004, Coward took the bold step of branching out into gamma ray burst and optical transient astronomy, receiving mentorship from experts in this field including the highly cited Tsvi Piran. Following this Coward received mentorship from B. Schmidt, UWA ICRA leaders, and a team of leading French astronomers, Boer and Klotz, for the installation and operation of the Zadko Telescope (Australia’s premier facility for gamma ray burst follow-up). Coward is a member of the LIGO Scientific Community (burst group), and participates in the E.M. follow-up of gravitational wave events as an “advocate” and is named on an MoU for a joint France/Zadko follow-up. He is also named as an investigator on the high-energy detector satellite mission XMM-Newton. In 2013, Coward was invited to collaborate with the Chinese Academy of Sciences in Antarctic astronomy.
    [Show full text]
  • LETTERA N. 154 444444°°° AAANNNNNNOOO Gennaio-Febbraio 2018 a Tutti I Soci
    GGRRUUPPPPOO AASSTTRROONNOOMMIICCOO TTRRAADDAATTEESSEE LETTERA N. 154 444444°°° AAANNNNNNOOO Gennaio-Febbraio 2018 http://www.gruppoastronomicotradatese.it A tutti i soci Il 3 Ottobre 2017 l’ Accademia svedese delle scienze ha ufficializzato l’ assegnazione del Premio Nobel 2017 per la Fisica ai tre scienziati americani (S. Thonre, B. Barish e R. Weiss) che, con il progetto LIGO-VIRGO, hanno permesso la prima rivelazione di onde gravitazionali. Mai Premio Nobel fu più meritato ed atteso! Anche perché gli eventi gravitazionali sono ormai arrivati a 7 e l’ ultimo (GW170817) del 17 Agosto 2017 ha assunto risonanza epocale, essendo stata per la prima volta scoperta anche una controparte ottica (fusione esplosiva di due pulsar a formare una Kilonova). Inevitabile che a questa scoperta, una delle massime di sempre, sia dedicata quasi tutta questa lettera. Altrettanto obbligatoria è la serata del 5 Marzo 2018 che abbiamo organizzato su questo tema. E in questa occasione non si può dimenticare la grave ingiustizia di 50 anni fa (era il 28 Novembre 1967) quando Joselyn Bell scoprì la prima Pulsar ma il (doveroso) Nobel venne assegnato nel 1974 a A. Hewish suo professore, ma non a lei che, oltre che donna, al momento della scoperta era ancora studentessa. In tema di spazio ‘vicino’ (e in un periodo in cui la NASA si è vista ridotta i fondi per i satelliti di controllo terrestre) è molto importante il positivo lancio a 824 km di altezza, del satellite europeo Sentinel-5P (il 5° del programma Copernicus, voluto nel 1998 dall’ ESA per lo studio della Terra) avvenuta il 13 Ottobre 2017.
    [Show full text]
  • Annualreport2017.Pdf
    Wigner RCP 2017 Annual Report Wigner Research Centre for Physics Hungarian Academy of Sciences Budapest, Hungary 2018 Wigner Research Centre for Physics Hungarian Academy of Sciences Budapest, Hungary 2018 Published by the Wigner Research Centre for Physics, Hungarian Academy of Sciences Konkoly Thege Miklós út 29-33 H-1121 Budapest Hungary Mail: POB 49, H-1525 Budapest, Hungary Phone: +36 (1) 392-2512 Fax: +36 (1) 392-2598 E-mail: [email protected] http://wigner.mta.hu © Wigner Research Centre for Physics ISSN: 2064-7336 Source of the lists of publications: MTMT, http://www.mtmt.hu This yearbook is accessible at the Wigner RCP Homepage, http://wigner.mta.hu/en/yearbook Wigner RCP 2017 – Annual Report Edited by T.S. Biró, V. Kozma-Blázsik, B. Selmeci Proofreaders: I. Bakonyi, P. Ván Closed on 15. April, 2018 List of contents Foreword from the Director of the Institute for Solid State Physics and Optics .................. 6 Awards and prizes ............................................................................................................ 9 Key figures and organizational chart ............................................................................... 11 Most important events of the year 2017 ......................................................................... 13 International scientific cooperation ................................................................................ 16 Rogante Engineering Office and the Budapest Neutron Centre — 20 years of cooperation .....................................................................................................................................
    [Show full text]
  • API Publications 2016-2019
    2016 King, A. and Muldrew, S. I., Black hole winds II: Hyper-Eddington winds and feedback, 2016, MNRAS, 455, 1211 Carbone, D., Exploring the transient sky: from surveys to simulations, 2016, AAS, 227, 421.03 van den Heuvel, E., The Amazing Unity of the Universe, 2016 (book), Springer Ellerbroek, L. E. ., Planet Hunters: the Search for Extraterrestrial Life, 2016 (book), Reak- tion Books Lef`evre, C., Pagani, L., Min, M., Poteet, C., and Whittet, D., On the importance of scattering at 8 µm: Brighter than you think, 2016, A&A, 585, L4 Min, M., Rab, C., Woitke, P., Dominik, C., and M´enard, F., Multiwavelength optical prop- erties of compact dust aggregates in protoplanetary disks, 2016, A&A, 585, A13 Babak, S., Petiteau, A., Sesana, A., Brem, P., Rosado, P. A., Taylor, S. R., Lassus, A., Hes- sels, J. W. T., Bassa, C. G., Burgay, M., and 26 colleagues, European Pulsar Timing Array limits on continuous gravitational waves from individual supermassive black hole binaries, 2016, MNRAS, 455, 1665 Sclocco, A., van Leeuwen, J., Bal, H. E., and van Nieuwpoort, R. V., Real-time dedispersion for fast radio transient surveys, using auto tuning on many-core accelerators, 2016, A&C, 14, 1 Tramper, F., Sana, H., Fitzsimons, N. E., de Koter, A., Kaper, L., Mahy, L., and Moffat, A., The mass of the very massive binary WR21a, 2016, MNRAS, 455, 1275 Pinilla, P., Klarmann, L., Birnstiel, T., Benisty, M., Dominik, C., and Dullemond, C. P., A tunnel and a traffic jam: How transition disks maintain a detectable warm dust component despite the presence of a large planet-carved gap, 2016, A&A, 585, A35 van den Heuvel, E., Neutron Stars, 2016, ASCO Conference, 20 Van Den Eijnden, J., Ingram, A., and Uttley, P., The energy dependence of quasi periodic oscillations in GRS 1915+105, 2016, AAS, 227, 411.07 Calzetti, D., Johnson, K.
    [Show full text]