Efficient and Selective Microwave-Assisted O-Methylation

Total Page:16

File Type:pdf, Size:1020Kb

Efficient and Selective Microwave-Assisted O-Methylation Spec. Matrices 2019; 7:1–19 Research Article Open Access Kazumasa Nomura* and Paul Terwilliger Green Process Synth 2019; 8: 584–589 Self-dual Leonard pairs Fatemeh Gholipour1, Mohammad Rahmani2,* and Farhad Panahi1 https://doi.org/10.1515/spma-2019-0001 Efficient and selectiveReceived Maymicrowave-assisted 8, 2018; accepted September 22, 2018 O-methylation of phenolicAbstract: Let F denote compounds a eld and let V denote using a vector space over F with nite positive dimension. Consider a pair A, A∗ of diagonalizable F-linear maps on V, each of which acts on an eigenbasis for the other one in an tetramethylammoniumirreducible hydroxide tridiagonal fashion. Such (TMAH) a pair is called a Leonard pair. We consider the self-dual case in which there exists an automorphism of the endomorphism algebra of V that swaps A and A∗. Such an automorphism is unique, and called the duality A A∗. In the present paper we give a comprehensive description of this ↔ https://doi.org/10.1515/gps-2019-0028 duality. In particular,There weare displayseveral reports an invertible in the literatureF-linear mapon theT synthesison V such that the map X TXT− is the duality Received October 12, 2018; accepted March 11, 2019. → A A∗. We expressof methylT as aaryl polynomial ethers using in A andmethylationA∗. We describeof phenolic how T acts on ags, decompositions, ↔ compounds (Figure 1). Abstract: In this study, an efficient method andfor O-methyla 24 bases- for V. In traditional methods toxic methylating agents tion of phenolic compound using tetramethylammonium Keywords: Leonardsuch pair, as methyl tridiagonal iodide matrix,[2,3] methyl self-dual bromide [3], dimethyl hydroxide (TMAOH) as a new alkylating agent under mic- sulfate1 [4-6] and diazomethane [7] have been used. rowave irradiation was developed. Ethanol was selected Classication: 17B37,15A21Methyl halides are toxic gaseous materials because they as a green reaction media to accomplish this protocol can methylate nucleic acids in living organisms [8]. To under environmentallybenign conditions. Less than half use dimethyl sulfate as alkylating agent stoichiometric hour time is needed to obtain good to excellent yields of amount of strong base for neutralization of acidic products at temperature of about 120°C. Using this pro- Introductionby-products is required [4,5]. Due to the growing awareness cedure, phenolic compounds could be converted to the of environmental issues, the commercial application of corresponding aryl methyl derivatives quickly. The results Let F denote a eldtheseand material let V aredenote restricted. a vector In order space to avoid over Fthewith use niteof positive dimension. We consider a indicated that different phenolic compounds bearing both pair A, A∗ of diagonalizablementioned methylatingF-linear maps agents on otherV, each methods of which have actsbeen on an eigenbasis for the other one in an electron-withdrawing and electron-donating groups are irreducible tridiagonaldeveloped. fashion. The O-methylation Such a pair is of called phenol a with Leonard methanol pair in (see [13, Denition 1.1]). The Leonard pair O-methylated effectively using TMAOH under microwave A, A∗ is said to bethe self-dual presence wheneverof a strong acid there has exists been an widely automorphism investigated of the endomorphism algebra of V that irradiation. This novel protocol has many improvements swaps A and A∗.[9-13]. In this This case method such anis an automorphism acid catalyzed is process unique, and and the called the duality A A∗. in view point of reaction yields, selectivity and conditions ↔ product selectivity depends on properties of the used acid compared to previous studies. Trimethylamine Theand literaturewater contains many examples of self-dual Leonard pairs. For instance (i) the Leonard pair associ- catalyst. In most cases, the conversions of phenols are were the side products of O-methylation reactionated with which an irreducible module for the Terwilliger algebra of the hypercube (see [4, Corollaries 6.8, 8.5]); (ii) a not satisfactory and the C-methylation is the competition can be recovered easily from the productLeonard mixture. pairThis of Krawtchouk type (see [10, Denition 6.1]); (iii) the Leonard pair associated with an irreducible reaction and a large amount of byproduct is produced methodology showed high selectivity for moduleO-methylation for the Terwilliger algebra of a distance-regular graph that has a spin model in the Bose-Mesner alge- which complicated the workup and purification process. A and no C-methylated products were observed.bra (see [1, Theorem], [3, Theorems 4.1, 5.5]); (iv) an appropriately normalized totally bipartite Leonard pair clean, and selective methylation protocols was developed (see [11, Lemmausing 14.8]); (v)dimethyl the Leonard carbonate pair consistingas a less-toxic of any tworeagent of a modular Leonard triple A, B, C (see [2, Keywords: microwave-assisted; O-methylation; phenolic Denition 1.4]);[14,15]. (vi) the The Leonard reaction pair of consistingphenol with of dimethyl a pair of carbonate opposite generators for the q-tetrahedron alge- compound; tetramethylammonium hydroxide bra, acting on anwas evaluation also carried module out (seeunder [5, Propositiongas/liquid phase 9.2]). transfer The example (i) is a special case of (ii), and the examples (iii), (iv)catalysis are special conditions cases in of the (v). presence of K2CO3 coated with Let A, A∗ denotepolyethylene a Leonard glycol pair [16,17]. on V. WeUsing can this determine reagent, whether anisole A, A∗ is self-dual in the following way. d 1 Introduction By [13, Lemma 1.3]was each obtained eigenspace in high ofyieldsA, A along∗ has with dimension a high selectivity. one. Let θ denote an ordering of the eigen- { i}i= However this reagent has serious limitations to be used d values of A. For ≤ i ≤ d let vi denote a θi-eigenvector for A. The ordering θi i= is said to be standard O-Methylation of phenolic compounds is an important for high boiling pointd phenols [18]. The vapor phase { } d whenever A∗ acts on the basis vi i= in an irreducible tridiagonal fashion. If the ordering θi i= is standard strategy in organic chemistry due to its high applicability methylationd of phenol{ } with dimethyl carbonate was also { } then the ordering θd−i i= is also standard, and no further ordering is standard. Similar comments apply to in synthesis of many petrochemicals, fine chemicals,d performed{ } over ion-exchanged zeolites in the continuous- d A∗. Let θ denote a standard ordering of the eigenvalues of A. Then A, A∗ is self-dual if and only if θ pharmaceuticals, fragrances, dyes and agrochemicals{ i }[1].i= flow conditions [19-22]. However, this reaction is carried { i}i= is a standard orderingout at ofhigh the temperature eigenvalues and of Atwo∗ (see byproducts [7, Proposition including 8.7]). o-cresol and 2,6-xylenol are produced beside to anisole. * Corresponding author: Mohammad Rahmani, Department of In this situation, methylation of both phenol and Chemical Engineering, Amirkabir University of Technology (Tehran p-cresol using dimethyl carbonate were performed Polytechnic), Tehran, 15875-4413, Iran, Tel.: +9821-64543198, *Corresponding Author:in a continuously Kazumasa Nomura: fed stirredTokyo Medicaltank reactor and Dental [18]. University, The Ichikawa, 272-0827,Japan, e-mail: [email protected] E-mail: [email protected] Fatemeh Gholipour and Farhad Panahi, Department of Chemical O-methylation of phenol with dimethyl carbonate has Paul Terwilliger: Department of Mathematics, University of Wisconsin, Madison, WI53706, USA, E-mail: Engineering, Amirkabir University of Technology, Mahshahr, Iran also been reported over 1-butyl-3-methylimidazolium [email protected] Open Access. © 2019 Gholipour et al., published byOpen De Gruyter. Access. ©This2019 work Kazumasa is licensed Nomura under and the Paul Creative Terwilliger, Commons published by De Gruyter. This work is licensed under the Creative Commons Attribution alone 4.0 License. Attribution alone 4.0 License. F. Gholipour et al.: Efficient and selective microwave-assisted O-methylation of phenolic compounds 585 chloride [23,24], potassium carbonate [25], magnesium O-methylation of phenolic compounds was achieved oxide [26], Mg-Al mixed oxides [27]. Unfortunately, in all under more environmental conditions without using of the mentioned methods for methylation using dimethyl stoichiometric amount of base and using TMAOH as an carbonate, C-alkylation by-products are always detected. abundant available and cheap methylating agent. Trimethylsulfonium salts was also used for methylation of phenols [28]. This reaction is carried out in the presence of methanol and potassium carbonate while the conversion was not satisfactory. In this situation, quaternary amines 2 Experimental such as phenyltrimethylammonium salts was employed for O-methylation of phenolic compounds in alkaloids 2.1 General chemistry [29]. For example, phenyltrimethylammonium chloride, in the presence of potassium carbonate in dry All phenols and naphthols and tetramethylammonium dimethylformamide (DMF) afforded glaucine from its hydroxide were commercially available and purchased starting material in good yield [30]. The O-methylation of from Merck and Aldrich chemical companies. phenols with trimethylammonium acetate was occurred Tetramethylammonium hydroxide is 25% solution in at temperature of 200-230°C and use of CaO as a base water. All products were known and their spectroscopic [31]. Tetramethylammonium chloride is also reported data were compared with those of authentic compounds. to be used as a methylating agent for the methylation Analyses of the products were done on a GC-MS (Agilent of phenols in the presence of K2CO3 or Cs2CO3 as base 6890 N-GC-5973 N-MSD chromatograph, using a and dimethoxymethane as a solvent at 145°C under 30 m × 0.25 mm Restek, Rtx-5SILMS column with a film microwave conditions [29]. Other reagents used for layer of 0.25 μm. The initial temperature of column was O-methylation of phenols under microwave conditions are 50°C for 1 min, followed by programming at 10°C/min trimethylphosphit and trimethyl phosphate [32].
Recommended publications
  • Retention Indices for Frequently Reported Compounds of Plant Essential Oils
    Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5.
    [Show full text]
  • Kinetic Modeling and Mechanistic Investigations of Transesterification of Propylene Carbonate with Methanol Over Fe-Mn Double Metal Cyanide Catalyst
    Reaction Chemistry & Engineering Kinetic Modeling and Mechanistic Investigations of Transesterification of Propylene Carbonate with Methanol over Fe-Mn Double Metal Cyanide Catalyst Journal: Reaction Chemistry & Engineering Manuscript ID RE-ART-09-2019-000372.R1 Article Type: Paper Date Submitted by the 21-Oct-2019 Author: Complete List of Authors: Song, Ziwei; Yanshan University, Subramaniam, Bala; University of Kansas, Center for Environmentally Beneficial Catalysis Chaudhari, Raghunath; University of Kansas, Chemical & Petroleum Engineering Page 1 of 23 Reaction Chemistry & Engineering Kinetic Modeling and Mechanistic Investigations of Transesterification of Propylene Carbonate with Methanol over Fe-Mn Double Metal Cyanide Catalyst Ziwei Song, a,b,c Bala Subramaniam, a,b and Raghunath V. Chaudhari* a,b aCenter for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Dr. Lawrence, KS 66047, United States bDepartment of Chemical & Petroleum Engineering, University of Kansas, 1503 W 15th St. Lawrence, KS 66045, United States cDepartment of Chemical Engineering, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China *Corresponding author: [email protected] KEYWORDS: double metal cyanide, transesterification, dimethyl carbonate, microkinetic modeling 1 Reaction Chemistry & Engineering Page 2 of 23 Abstract Kinetic modeling of transesterification of propylene carbonate with methanol using Fe-Mn double metal cyanide catalyst has been investigated based on experimental data obtained under kinetically controlled conditions in a batch slurry reactor in the 140-200 °C range. A simple two-step power law model was found to represent the experimental data well. In addition, a detailed kinetic model based on a molecular level description of the reaction mechanism is also evaluated to provide better insight into the reaction mechanism.
    [Show full text]
  • Dimethyl Carbonate
    SAN JOAQUIN VALLEY UNIFIED AIR POLLUTION CONTROL DISTRICT Appendix B: OEHHA Final Revised Assessment November 18, 2010 APPENDIX B OEHHA FINAL REVISED HEALTH ASSESSMENT FOR DIMETHYL CARBONATE November 18, 2010 Draft Staff Report with Appendices for Draft Amendments to Rule 1020 SAN JOAQUIN VALLEY UNIFIED AIR POLLUTION CONTROL DISTRICT Appendix B: OEHHA Final Revised Assessment November 18, 2010 This page intentionally blank. B-2 Draft Staff Report with Appendices for Draft Amendments to Rule 1020 Appendix B: OEHHA Assessment November 18, 2010 Office of Environmental Health Hazard Assessment Joan E. Denton, Ph.D., Director Headquarters ••• 1001 I Street ••• Sacramento, California 95814 Mailing Address: P.O. Box 4010 ••• Sacramento, California 95812-4010 Oakland Office ••• Mailing Address: 1515 Clay Street, 16th Floor ••• Oakland, California 94612 Linda S. Adams Arnold Schwarzenegger Secretary for Environmental Protectiony Governor M E M O R A N D U M TO: Richard Corey, Chief Research and Economic Studies Branch Research Division Air Resources Board FROM: Melanie A. Marty, Ph.D., Chief Air Toxicology and Epidemiology Branch DATE: December 8, 2009 SUBJECT: REVISED ASSESSMENT OF HEALTH EFFECTS OF EXPOSURE TO DIMETHYL CARBONATE, A CHEMICAL PETITIONED FOR EXEMPTION FROM VOC RULES Recently the Research Division sent the Office of Environmental Health Hazard Assessment (OEHHA) an application for VOC Exempt Status in the State of California for Dimethyl Carbonate. This was submitted by Kowa Corporation, who propose use of from 2 to possibly 5 million pounds of dimethyl carbonate per year as a niche solvent in California, if dimethyl carbonate is exempted from VOC regulations. In response to a request from the Division, OEHHA recently provided you a review of the health effects of dimethyl carbonate.
    [Show full text]
  • Gas-Phase Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide Over Co1.5PW12O40 Keggin-Type Heteropolyanion
    Int. J. Mol. Sci. 2010, 11, 1343-1351; doi:10.3390/ijms11041343 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Gas-Phase Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide Over Co1.5PW12O40 Keggin-Type Heteropolyanion Ahmed Aouissi *, Zeid Abdullah Al-Othman and Amro Al-Amro Department of Chemistry, King Saud University, P.O. Box 2455, Riyadh-11451, Saudi Arabia * Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 22 January 2010; in revised form: 9 March 2010 / Accepted: 29 March 2010 / Published: 31 March 2010 Abstract: The reactivity of Co1.5PW12O40 in the direct synthesis of dimethyl carbonate (DMC) from CO2 and CH3OH was investigated. The synthesized catalyst has been characterized by means of FTIR, XRD, TG, and DTA and tested in gas phase under atmospheric pressure. The effects of the reaction temperature, time on stream, and methanol weight hourly space velocity (MWHSV) on the conversion and DMC selectivity were investigated. The highest conversion (7.6%) and highest DMC selectivity (86.5%) were obtained at the lowest temperature used (200 °C). Increasing the space velocity MWHSV increased the selectivity of DMC, but decreased the conversion. A gain of 18.4% of DMC selectivity was obtained when the MWHSV was increased from 0.65 h-1 to 3.2 h-1. Keywords: heteropolyanion; Keggin structure; methanol; dimethyl carbonate; direct synthesis; carbon dioxide 1. Introduction Dimethyl carbonate (DMC) has drawn much attention in recent years as an environmentally friendly versatile intermediate. It has been used as a good solvent [1], an alkylation agent [2], and a substitute for highly toxic phosgene and dimethyl sulfate in many chemical processes [3,4].
    [Show full text]
  • NIOSH Skin Notation Profiles Dimethyl Sulfate (DMS)
    NIOSH Skin Notation Profiles Dimethyl Sulfate (DMS) IDSK [SK] SYS SYS (FATAL) DIR DIR (IRR) DIR (COR) SEN DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention SKNational Institute for Occupational Safety and Health This page intentionally left blank. NIOSH Skin Notation (SK) Profile Dimethyl Sulfate (DMS) [CAS No. 77-78-1] Naomi L. Hudson and G. Scott Dotson DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Institute for Occupational Safety and Health This document is in the public domain and may be freely copied or reprinted. Disclaimer Mention of any company or product does not constitute endorsement by the National Insti- tute for Occupational Safety and Health (NIOSH). In addition, citations to websites external to NIOSH do not constitute NIOSH endorsement of the sponsoring organizations or their pro- grams or products. Furthermore, NIOSH is not responsible for the content of these websites. Ordering Information To receive this document or information about other occupational safety and health topics, contact NIOSH: Telephone: 1-800-CDC-INFO (1-800-232-4636) TTY: 1-888-232-6348 E-mail: [email protected] or visit the NIOSH website: www.cdc.gov/niosh For a monthly update on news at NIOSH, subscribe to NIOSH eNews by visiting www.cdc.gov/niosh/eNews. Suggested Citation NIOSH [2017]. NIOSH skin notation profile: Dimethyl sulfate. By Hudson NL, Dotson GS. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publi- cation No. 2017-189.
    [Show full text]
  • RIFM Fragrance Ingredient Safety Assessment, 2-Isopropyl-4- Methylanisole, CAS Registry Number 31574-44-4
    Food and Chemical Toxicology 110 (2017) S545eS551 Contents lists available at ScienceDirect Food and Chemical Toxicology journal homepage: www.elsevier.com/locate/foodchemtox Short review RIFM fragrance ingredient safety assessment, 2-isopropyl-4- methylanisole, CAS Registry Number 31574-44-4 * A.M. Api a, , D. Belsito b, D. Botelho a, D. Browne a, M. Bruze c, G.A. Burton Jr. d, J. Buschmann e, M.L. Dagli f, M. Date a, W. Dekant g, C. Deodhar a, M. Francis a, A.D. Fryer h, K. Joshi a,S.LaCavaa, A. Lapczynski a, D.C. Liebler i,D.O’Brien a, R. Parakhia a,A.Patela, T.M. Penning j, G. Ritacco a, J. Romine a, D. Salvito a, T.W. Schultz k, I.G. Sipes l, Y. Thakkar a, E.H. Theophilus a, A.K. Tiethof a, Y. Tokura m, S. Tsang a, J. Wahler a a Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA b Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY 10032, USA c Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo SE-20502, Sweden d School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI 58109, USA e Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625 Hannover, Germany f University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo CEP 05508-900, Brazil g University of Wuerzburg, Department of Toxicology, Versbacher Str.
    [Show full text]
  • A Convenient and Safe O-Methylation of Flavonoids with Dimethyl Carbonate (DMC)
    Molecules 2011, 16, 1418-1425; doi:10.3390/molecules16021418 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article A Convenient and Safe O-Methylation of Flavonoids with Dimethyl Carbonate (DMC) Roberta Bernini *, Fernanda Crisante and Maria Cristina Ginnasi Dipartimento di Agrobiologia e Agrochimica, Università degli Studi della Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy * Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 16 November 2010; in revised form: 23 January 2011 / Accepted: 27 January 2011 / Published: 9 February 2011 Abstract: Dietary flavonoids exhibit beneficial health effects. Several epidemiological studies have focused on their biological activities, including antioxidant, antibacterial, antiviral, anti-inflammatory and cardiovascular properties. More recently, these compounds have shown to be promising cancer chemopreventive agents in cell culture studies. In particular, O-methylated flavonoids exhibited a superior anticancer activity than the corresponding hydroxylated derivatives being more resistant to the hepatic metabolism and showing a higher intestinal absorption. In this communication we describe a convenient and efficient procedure in order to prepare a large panel of mono- and dimethylated flavonoids by using dimethyl carbonate (DMC), an ecofriendly and non toxic chemical, which plays the role of both solvent and reagent. In order to promote the methylation reaction under mild and practical conditions, 1,8-diazabicyclo[5.4.0]undec-7- ene (DBU) was added in the solution; methylated flavonoids were isolated in high yields and with a high degree of purity. This methylation protocol avoids the use of hazardous and high toxic reagents (diazomethane, dimethyl sulfate, methyl iodide). Keywords: methylated flavonoids; ecofriendly methylation reaction; dimethyl carbonate (DMC); green chemistry 1.
    [Show full text]
  • Recent Progress in Phosgene-Free Methods for Synthesis of Dimethyl Carbonate*
    Pure Appl. Chem., Vol. 84, No. 3, pp. 603–620, 2012. http://dx.doi.org/10.1351/PAC-CON-11-06-02 © 2011 IUPAC, Publication date (Web): 22 September 2011 Recent progress in phosgene-free methods for synthesis of dimethyl carbonate* Weicai Peng1, Ning Zhao1, Fukui Xiao1, Wei Wei1,‡, and Yuhan Sun1,2,‡ 1State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; 2Low Carbon Conversion Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China Abstract: Dimethyl carbonate (DMC) is considered as an environmentally benign chemical due to negligible ecotoxicity, low bioaccumulation, and low persistence. However, the tradi- tional process of DMC synthesis via phosgene and methanol is limited in industry owing to the toxic raw material involved. Thus, environmentally friendly phosgene-free processes for DMC production have been proposed and developed in the past decades. Until now, the alter- natives appear to be the oxidative carbonylation of methanol, the transesterification of pro - pylene or ethylene carbonate (PC or EC), the methanolysis of urea, and the direct synthesis of DMC from CO2 with methanol. In this review, we present some recent developments of these phosgene-free approaches and their prospects for industrialization. Keywords: carbon dioxide; dimethyl carbonate synthesis; oxidative carbonylation; phosgene- free; transesterification; urea. INTRODUCTION Along with the global spread of sustainable development strategy, the chemical synthesis processes and materials endangering humans and the environment would be gradually restricted. The “clean produc- tion process” and “green chemicals” will be the developmental direction for the modern chemical indus- try, and the production and chemical utilization of dimethyl carbonate (DMC) are closely concerted by this trend.
    [Show full text]
  • Propionate Dihydrate
    (19) & (11) EP 2 247 572 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07C 241/02 (2006.01) C07C 243/40 (2006.01) 03.08.2011 Bulletin 2011/31 (86) International application number: (21) Application number: 09713008.2 PCT/EP2009/051996 (22) Date of filing: 19.02.2009 (87) International publication number: WO 2009/103773 (27.08.2009 Gazette 2009/35) (54) A ONE-POT PROCESS FOR PREPARING 3-(2,2,2-TRIMETHYLHYDRAZINIUM)PROPIONATE DIHYDRATE EIN-TOPF-VERFAHREN ZUR HERSTELLUNG VON 3-(2,2,2-TRIMETHYLHYDRAZINIUM) PROPIONAT-DIHYDRAT PROCÉDÉ DE PRÉPARATION EN ENCEINTE UNIQUE DE DIHYDRATE DE 3-(2,2,2- TRIMÉTHYLHYDRAZINIUM)-PROPIONATE (84) Designated Contracting States: • OSVALDS, Pugovics AT BE BG CH CY CZ DE DK EE ES FI FR GB GR LV-1004 Riga (LV) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • CERNOBROVIJS, Aleksandrs PT RO SE SI SK TR LV-2114 Olaine (LV) Designated Extension States: • IEVINA, Agnija AL BA RS LV-1004 Riga (LV) • LEBEDEVS, Antons (30) Priority: 19.02.2008 LV 080022 LV-3600 Ventspils (LV) 19.02.2008 LV 080023 (56) References cited: (43) Date of publication of application: WO-A-2005/012233 US-A- 4 481 218 10.11.2010 Bulletin 2010/45 • GILLER S.A. ET AL,.: CHEMISTRY OF (73) Proprietor: Grindeks, a joint stock company HETEROCYCLIC COMPOUNDS, vol. 11, no. 12, Riga 1057 (LV) 1975, pages 1378-1382, XP002534780 (72) Inventors: • KALVINS, Ivars LV-15052 Ikskile (LV) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • Kinetic Study of Hydrolysis of Tri-2,5-Diethoxy Aniline Phosphate (An Organo Phosphorus Pesticide) in Acid Medium
    International Journal of Chemistry February, 2010 Kinetic Study of Hydrolysis of Tri-2,5-diethoxy Aniline Phosphate (An Organo Phosphorus Pesticide) in Acid Medium Alka Tangri Dept. of Chemistry, Brahmanand P.G. College, Kanpur Flat No.- 38 Ram Kuthr 3A/206, Azad Nagar, Kanpur (U.P.), India Tel: 91-983-950-1085 E-mail: [email protected] Pradeep Mishra Dept. of Chemistry, Brahmanand P.G. College, Kanpur 113/115-A, Swaroop Nagar, Kanpur (U.P.), India Tel: 91-983-911-6593 E-mail: [email protected] Praveen Kumar (Corresponding author) Dayanand, Near the Railway Station Road Rura, Kanpur Dehat (U.P.), India Tel: 91-933-544-9365 E-mail: [email protected] Abstract The present work pertains to synthesis, kinetic behavior and mechanism of hydrolysis of some organophosphorus pesticides. The compound investigated here was 2,5-diethoxyaniline in particular. The corresponding tri-phosphate ester was prepared in the laboratory by phosphorylation with POCI3. The process involved is that of the substitution of –OH group of orthophosphoric acid by aryl radical. The kinetics of the hydrolysis of the above ester was studied in acidic media. The acid employed was HCI. In acidic media, hydrolysis was carried out at three different temperatures 80, 90 and 980C (keeping other parameters of the experiment unchanged). The rate of hydrolysis is found to follow the Arrhenius equation. The values of the Arrhenius parameters-energy of activation and change of entropy-point to the bimolecular nature of the hydrolysis of the triester. It can be inferred from the ionic strength data in the range 0.01 to 5 M-HCI, the reactive species of the present triester is conjugate acid species.
    [Show full text]
  • TOXICOLOGY and EXPOSURE GUIDELINES ______(For Assistance, Please Contact EHS at (402) 472-4925, Or Visit Our Web Site At
    (Revised 1/03) TOXICOLOGY AND EXPOSURE GUIDELINES ______________________________________________________________________ (For assistance, please contact EHS at (402) 472-4925, or visit our web site at http://ehs.unl.edu/) "All substances are poisons; there is none which is not a poison. The right dose differentiates a poison and a remedy." This early observation concerning the toxicity of chemicals was made by Paracelsus (1493- 1541). The classic connotation of toxicology was "the science of poisons." Since that time, the science has expanded to encompass several disciplines. Toxicology is the study of the interaction between chemical agents and biological systems. While the subject of toxicology is quite complex, it is necessary to understand the basic concepts in order to make logical decisions concerning the protection of personnel from toxic injuries. Toxicity can be defined as the relative ability of a substance to cause adverse effects in living organisms. This "relative ability is dependent upon several conditions. As Paracelsus suggests, the quantity or the dose of the substance determines whether the effects of the chemical are toxic, nontoxic or beneficial. In addition to dose, other factors may also influence the toxicity of the compound such as the route of entry, duration and frequency of exposure, variations between different species (interspecies) and variations among members of the same species (intraspecies). To apply these principles to hazardous materials response, the routes by which chemicals enter the human body will be considered first. Knowledge of these routes will support the selection of personal protective equipment and the development of safety plans. The second section deals with dose-response relationships.
    [Show full text]
  • Arenechromium Tricarbonyl Complexes: Conformational
    η6 – ARENECHROMIUM TRICARBONYL COMPLEXES: CONFORMATIONAL ANALYSIS, STEREOCONTROL IN NUCLEOPHILIC ADDITION AND APPLICATIONS IN ORGANIC SYNTHESIS by HARINANDINI PARAMAHAMSAN Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Thesis Advisor: Prof. Anthony J. Pearson Department of Chemistry CASE WESTERN RESERVE UNIVERSITY May 2005 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of Harinandini Paramahamsan candidate for the Ph.D. degree*. (signed) Prof. Philip P. Garner (Chair of the Committee, Department of Chemistry, CWRU) Prof. Anthony J. Pearson (Department of Chemistry, CWRU) Prof. Fred L. Urbach (Department of Chemistry, CWRU) Dr. Zwong-Wu Guo (Department of Chemistry, CWRU) Dr. Stuart J. Rowan (Department of Macromolecular Science and Engineering, CWRU) Date: 14th January 2005 *We also certify that written approval has been obtained for any propriety material contained therein. To Amma, Naina & all my Teachers Table of Contents List of Tables………………………………………………………………………..……iv List of Figures…………………………………………………………………….…........vi List of Schemes…………………………………………………………………….….….ix List of Equations………………………………………………………...……….……….xi Acknowledgements………………………………………………………….…..……….xii List of Abbreviations……………………………………………………………………xiv Abstract………………………………………………………………………………….xvi CHAPTER I........................................................................................................................ 1 I.1 Structure and Bonding ...........................................................................................
    [Show full text]