Living Planet Report 2020 Bending the Curve of Biodiversity Loss Summary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SDG Indicator Metadata (Harmonized Metadata Template - Format Version 1.0)
Last updated: 4 January 2021 SDG indicator metadata (Harmonized metadata template - format version 1.0) 0. Indicator information 0.a. Goal Goal 15: Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss 0.b. Target Target 15.5: Take urgent and significant action to reduce the degradation of natural habitats, halt the loss of biodiversity and, by 2020, protect and prevent the extinction of threatened species 0.c. Indicator Indicator 15.5.1: Red List Index 0.d. Series 0.e. Metadata update 4 January 2021 0.f. Related indicators Disaggregations of the Red List Index are also of particular relevance as indicators towards the following SDG targets (Brooks et al. 2015): SDG 2.4 Red List Index (species used for food and medicine); SDG 2.5 Red List Index (wild relatives and local breeds); SDG 12.2 Red List Index (impacts of utilisation) (Butchart 2008); SDG 12.4 Red List Index (impacts of pollution); SDG 13.1 Red List Index (impacts of climate change); SDG 14.1 Red List Index (impacts of pollution on marine species); SDG 14.2 Red List Index (marine species); SDG 14.3 Red List Index (reef-building coral species) (Carpenter et al. 2008); SDG 14.4 Red List Index (impacts of utilisation on marine species); SDG 15.1 Red List Index (terrestrial & freshwater species); SDG 15.2 Red List Index (forest-specialist species); SDG 15.4 Red List Index (mountain species); SDG 15.7 Red List Index (impacts of utilisation) (Butchart 2008); and SDG 15.8 Red List Index (impacts of invasive alien species) (Butchart 2008, McGeoch et al. -
Strategic Goal C: to Improve the Status of Biodiversity by Safeguarding Ecosystems, Species and Genetic Diversity
BIPTPM 2012 Strategic Goal C: To improve the status of biodiversity by safeguarding ecosystems, species and genetic diversity Target 11 - Protected areas Indicator Name Indicator Partners Last Next Description CBD Operational Indicator(s) Update Update Protected Area Management University of 2010 2013 Trends in extent of marine protected areas, coverage of Effectiveness (PAME) Queensland, IUCN, KPAs and management effectiveness (A) WCPA, University of Trends in protected area condition and/or management Oxford, UNEP- effectiveness including more equitable management WCMC Trends in the delivery of ecosystem services and equitable benefits from PAs Protected area status of inland McGill University, New 2013? Trends in coverage of protected waters WWF, UNEP-WCMC areas Arctic Protected Areas indicator CBMP, UNEP- 2010 2015? Trends in representative coverage WCMC, Protected of PAs areas agencies Trends in PA condition and across Arctic management effectiveness countries Living Planet Index WWF, ZSL 2012 2014 Trends in species populations inside (and outside) protected areas Arctic Species Trend Index CBMP, ZSL, WWF 2012 2014 Trends in PA condition and management effectiveness Important Bird Area state, Birdlife Trends in PA condition and measure and response values management effectiveness Protected area coverage of Birdlife, IUCN etc Trends in representative coverage important sites for biodiversity of Pas and sites of particular (IBAs, KBA etc) importance for biodiversity Red List Index for Species with Birdlife, IUCN etc N/A Protected / -
Download-Report-2
Gao et al. BMC Plant Biology (2020) 20:430 https://doi.org/10.1186/s12870-020-02646-3 REVIEW Open Access Plant extinction excels plant speciation in the Anthropocene Jian-Guo Gao1* , Hui Liu2, Ning Wang3, Jing Yang4 and Xiao-Ling Zhang5 Abstract Background: In the past several millenniums, we have domesticated several crop species that are crucial for human civilization, which is a symbol of significant human influence on plant evolution. A pressing question to address is if plant diversity will increase or decrease in this warming world since contradictory pieces of evidence exit of accelerating plant speciation and plant extinction in the Anthropocene. Results: Comparison may be made of the Anthropocene with the past geological times characterised by a warming climate, e.g., the Palaeocene-Eocene Thermal Maximum (PETM) 55.8 million years ago (Mya)—a period of “crocodiles in the Arctic”, during which plants saw accelerated speciation through autopolyploid speciation. Three accelerators of plant speciation were reasonably identified in the Anthropocene, including cities, polar regions and botanical gardens where new plant species might be accelerating formed through autopolyploid speciation and hybridization. Conclusions: However, this kind of positive effect of climate warming on new plant species formation would be thoroughly offset by direct and indirect intensive human exploitation and human disturbances that cause habitat loss, deforestation, land use change, climate change, and pollution, thus leading to higher extinction risk than speciation in the Anthropocene. At last, four research directions are proposed to deepen our understanding of how plant traits affect speciation and extinction, why we need to make good use of polar regions to study the mechanisms of dispersion and invasion, how to maximize the conservation of plant genetics, species, and diverse landscapes and ecosystems and a holistic perspective on plant speciation and extinction is needed to integrate spatiotemporally. -
Improvements to the Red List Index Stuart H
Improvements to the Red List Index Stuart H. M. Butchart1*, H. Resit Akc¸akaya2, Janice Chanson3, Jonathan E. M. Baillie4, Ben Collen4, Suhel Quader5,8, Will R. Turner6, Rajan Amin4, Simon N. Stuart3, Craig Hilton-Taylor7 1 BirdLife International, Cambridge, United Kingdom, 2 Applied Biomathematics, Setauket, New York, United States of America, 3 Conservation International/Center for Applied Biodiversity Science-World Conservation Union (IUCN)/Species Survival Commission Biodiversity Assessment Unit, IUCN Species Programme, Center for Applied Biodiversity Science, Conservation International, Washington, D. C., United States of America, 4 Institute of Zoology, Zoological Society of London, London, United Kingdom, 5 Department of Zoology, University of Cambridge, Cambridge, United Kingdom, 6 Center for Applied Biodiversity Science, Conservation International, Washington, D. C., United States of America, 7 World Conservation Union (IUCN) Species Programme, Cambridge, United Kingdom, 8 Royal Society for the Protection of Birds, Sandy, United Kingdom The Red List Index uses information from the IUCN Red List to track trends in the projected overall extinction risk of sets of species. It has been widely recognised as an important component of the suite of indicators needed to measure progress towards the international target of significantly reducing the rate of biodiversity loss by 2010. However, further application of the RLI (to non-avian taxa in particular) has revealed some shortcomings in the original formula and approach: It performs inappropriately when a value of zero is reached; RLI values are affected by the frequency of assessments; and newly evaluated species may introduce bias. Here we propose a revision to the formula, and recommend how it should be applied in order to overcome these shortcomings. -
ZSL200 Strategy 2018
A world where wildlife thrives CONTENTS Introduction from Director General Dominic Jermey 3 4 Getting set for the next century Our purpose and vision 5 ZSL 200: our strategy – 6 a world where wildlife thrives Wildlife and People 8 10 Wildlife Health Wildlife Back from the Brink 12 16 Implementing our strategy Our Zoos: inspiring visitors through fun and wonder 18 Science for conservation campus: 21 informing future generations of conservation scientists Conservation: empowering communities and influencing policy 22 People, values and culture: 24 fit for the future Engaging and partnering with our conservation family 26 27 How we’ll know we’ve got there? 2 ZSL 200 I came to the Zoological Society of London to make a difference. I joined an extraordinary organisation at a defining moment in its nearly 200 year history. After enabling millions of people to experience wildlife through its Zoos, after multiple scientific discoveries and conservation successes, ZSL is positioned to set out an agenda for positive impact on wildlife throughout the 21st century. This is a period of enormous strain on wildlife. ZSL’s Living Planet Index has charted the devastating decline in biodiversity across many species in the last half century. That is why a bold, ambitious strategy for the Society is right. A strategy which sets out the difference we will make to the world of wildlife over decades to come. A strategy which builds on our people, our expertise and our partnerships, all of which have helped us inspire, inform and empower so many people to stop wild animals going extinct. -
Distributions of Extinction Times from Fossil Ages and Tree Topologies: the Example of Some Mid-Permian Synapsid Extinctions
bioRxiv preprint doi: https://doi.org/10.1101/2021.06.11.448028; this version posted June 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Distributions of extinction times from fossil ages and tree topologies: the example of some mid-Permian synapsid extinctions Gilles Didier1 and Michel Laurin2 1IMAG, Univ Montpellier, CNRS, Montpellier, France 2CR2P (“Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements”; UMR 7207), CNRS/MNHN/UPMC, Sorbonne Université, Muséum National d’Histoire Naturelle, Paris, France June 11, 2021 Abstract Given a phylogenetic tree of extinct and extant taxa with fossils where the only temporal infor- mation stands in the fossil ages, we devise a method to compute the distribution of the extinction time of a given set of taxa under the Fossilized-Birth-Death model. Our approach differs from the previous ones in that it takes into account the possibility that the taxa or the clade considered may diversify before going extinct, whilst previous methods just rely on the fossil recovery rate to estimate confidence intervals. We assess and compare our new approach with a standard previous one using simulated data. Results show that our method provides more accurate confidence intervals. This new approach is applied to the study of the extinction time of three Permo-Carboniferous synapsid taxa (Ophiacodontidae, Edaphosauridae, and Sphenacodontidae) that are thought to have disappeared toward the end of the Cisuralian, or possibly shortly thereafter. The timing of extinctions of these three taxa and of their component lineages supports the idea that a biological crisis occurred in the late Kungurian/early Roadian. -
A Users' Guide to Biodiversity Indicators
European Academies’ Science Advisory Council A users’ guide to biodiversity indicators 29 November 2004 CONTENTS 1 Summary briefing 1.1 Key points 1.2 The EASAC process 1.3 What is meant by biodiversity? 1.4 Why is it important? 1.5 Can biodiversity be measured? 1.6 What progress is being made at European and global levels? 1.7 What could be done now? 1.8 What is stopping it? 1.9 Is this a problem? 1.10 What further needs to be done to produce a better framework for monitoring? 1.11 Recomendations 2 Introduction 2.1 What is biodiversity? 2.2 Biodiversity in Europe 2.3 Why does it matter? 2.4 What is happening to biodiversity? 2.5 The need for measurement and assessment 2.6 Drivers of change 2.7 Progress in developing indicators 2.8 Why has it been so difficult to make progress? 3 Conclusions and recommended next steps 3.1 Immediate and short term – what is needed to have indicators in place to assess progress against the 2010 target 3.2 The longer term – developing indicators for the future Annexes A Assessment of available indicators A.1 Trends in extent of selected biomes, ecosystems and habitats A.2 Trends in abundance and distribution of selected species A.3 Change in status of threatened and/or protected species A.4 Trends in genetic diversity of domesticated animals, cultivated plants and fish species of major socio- economic importance A.5 Coverage of protected areas A.6 Area of forest, agricultural, fishery and aquaculture ecosystems under sustainable management A.7 Nitrogen deposition A.8 Number and costs of alien species A.9 -
Living Planet Report 2018: Aiming Higher
REPORT INT 2018 SOUS EMBARGO JUSQU’AU 30 OCTOBRE 2018 - 01H01 CET Living Planet Report 2018: Aiming higher WWF Living Planet Report 2016 page 1 Institute of Zoology (Zoological Society of London) Founded in 1826, the Zoological Society of London (ZSL) is an CONTENTS international scientific, conservation and educational organization. Its mission is to achieve and promote the worldwide conservation of animals and their habitats. ZSL runs ZSL London Zoo and ZSL Whipsnade Zoo; Foreword by Marco Lambertini 4 carries out scientific research in the Institute of Zoology; and is actively involved in field conservation worldwide. ZSL manages the Living Planet Index® in a collaborative partnership with WWF. WWF Executive summary 6 WWF is one of the world’s largest and most experienced independent conservation organizations, with over 5 million supporters and a global network active in more than 100 countries. WWF’s mission is to stop the degradation of the planet’s natural environment and to build a Setting the scene 10 future in which humans live in harmony with nature, by conserving the world’s biological diversity, ensuring that the use of renewable natural resources is sustainable, and promoting the reduction of pollution and wasteful consumption. Chapter 1: Why biodiversity matters 12 Chapter 2: The threats and pressures wiping out our world 26 Chapter 3: Biodiversity in a changing world 88 Chapter 4: Aiming higher, what future do we want? 108 Citation WWF. 2018. Living Planet Report - 2018: Aiming Higher. Grooten, M. and Almond, R.E.A.(Eds). WWF, Gland, Switzerland. The path ahead 124 Design and infographics by: peer&dedigitalesupermarkt References 130 Cover photograph: © Global Warming Images / WWF Children dive into the sea at sunset, Funafuti, Tuvalu ISBN 978-2-940529-90-2 fsc logo to be Living Planet Report® added by printer and Living Planet Index® are registered trademarks This report has been printed of WWF International. -
Living Planet Report 2020 a Deep Dive Into the Living Planet Index
LIVING PLANET REPORT 2020 A DEEP DIVE INTO THE LIVING PLANET INDEX A DEEP DIVE INTO THE LPI 1 WWF WWF is one of the world’s largest and most experienced independent conservation organizations, with over 5 million supporters and a global network active in more than 100 countries. WWF’s mission is to stop the degradation of the planet’s natural environment and to build a future in which humans live in harmony with nature, by conserving the world’s biological diversity, ensuring that the use of renewable natural resources is sustainable, and promoting the reduction of pollution and wasteful consumption. Institute of Zoology (Zoological Society of London) Founded in 1826, ZSL (Zoological Society of London) is an international conservation charity working to create a world where wildlife thrives. ZSL’s work is realised through ground-breaking science, field conservation around the world and engaging millions of people through two zoos, ZSL London Zoo and ZSL Whipsnade Zoo. ZSL manages the Living Planet Index® in a collaborative partnership with WWF. LIVING PLANET Citation WWF (2020) Living Planet Report 2020. Bending the curve of biodiversity loss: a deep dive into the Living Planet Index. Marconi, V., McRae, L., Deinet, S., Ledger, S. and Freeman, F. in Almond, R.E.A., Grooten M. and Petersen, T. (Eds). WWF, Gland, Switzerland. REPORT 2020 Design and infographics by: peer&dedigitalesupermarkt Cover photograph: Credit: Image from the Our Planet series, A DEEP DIVE INTO THE © Hugh Pearson/Silverback Films / Netflix The spinner dolphins thrive off the coast of Costa Rica where they feed on lanternfish. -
Greening Wildlife Documentary’, in Libby Lester and Brett Hutchins (Eds) Environmental Conflict and the Media, New York: Peter Lang
Morgan Richards (forthcoming 2013) ‘Greening Wildlife Documentary’, in Libby Lester and Brett Hutchins (eds) Environmental Conflict and the Media, New York: Peter Lang. GREENING WILDLIFE DOCUMENTARY Morgan Richards The loss of wilderness is a truth so sad, so overwhelming that, to reflect reality, it would need to be the subject of every wildlife film. That, of course, would be neither entertaining nor ultimately dramatic. So it seems that as filmmakers we are doomed either to fail our audience or fail our cause. — Stephen Mills (1997) Five years before the BBC’s Frozen Planet was first broadcast in 2011, Sir David Attenborough publically announced his belief in human-induced global warming. “My message is that the world is warming, and that it’s our fault,” he declared on the BBC’s Ten O’Clock News in May 2006. This was the first statement, both in the media and in his numerous wildlife series, in which he didn’t hedge his opinion, choosing to focus on slowly accruing scientific data rather than ruling definitively on the causes and likely environmental impacts of climate change. Frozen Planet, a seven-part landmark documentary series, produced by the BBC Natural History Unit and largely co-financed by the Discovery Channel, was heralded by many as Attenborough’s definitive take on climate change. It followed a string of big budget, multipart wildlife documentaries, known in the industry as landmarks1, which broke with convention to incorporate narratives on complex environmental issues such as habitat destruction, species extinction and atmospheric pollution. David Attenborough’s The State of the Planet (2000), a smaller three-part series, was the first wildlife documentary to deal comprehensively with environmental issues on a global scale. -
Living Blue Planet Report
REPORT ITN 2015 Living Blue Planet Report Species, habitats and human well-being WWF WWF is one of the world’s largest and most experienced independent conservation organizations, with over 5 million supporters and a global network active in more than 100 countries. WWF’s mission is to stop the degradation of the planet’s natural environment and to build a future in which humans live in harmony with nature, by conserving the world’s biological diversity, ensuring that the use of renewable natural resources is sustainable, and promoting the reduction of pollution and wasteful consumption. Zoological Society of London Founded in 1826, the Zoological Society of London (ZSL) is an international scientific, conservation and educational organization. Its mission is to achieve and promote the worldwide conservation of animals and their habitats. ZSL runs ZSL London Zoo and ZSL Whipsnade Zoo; carries out scientific research in the Institute of Zoology; and is actively involved in field conservation worldwide. The ZSL manages the Living Planet Index® in a collaborative partnership with WWF. WWF International Avenue du Mont-Blanc 1196 Gland, Switzerland www.panda.org Institute of Zoology Zoological Society of London Regent’s Park,London NW1 4RY, UK www.zsl.org/indicators www.livingplanetindex.org Design by: millerdesign.co.uk Cover photograph: © naturepl.com / David Fleetham / WWF Living Planet Report WWF’s Living Planet Report, released every two years, is a leading science-based analysis on the health of our planet and the impact of human activity upon it. The Living Planet Report 2014 detailed alarming declines in biodiversity, showing species populations falling by half between 1970 and 2010. -
Agenda and Abstracts
TUESDAY 10 OCTOBER 2017 ZSL SCIENCE AND CONSERVATION EVENT The Meeting Rooms, Zoological Society of London, Regent’s Park, London NW1 4RY AGENDA Ten years on the EDGE of Existence Chair: Dr Monika Böhm, Institute of Zoology, ZSL _______________________________________ Receive the following communications: Dr Nisha Owen, EDGE of Existence Programme Manager, ZSL The evolution of EDGE: incorporating scientific advances into phylogenetically-informed conservation prioritisation James Rosindell, Imperial College London and OneZoom and Yan Wong, OneZoom and Oxford Big Data Institute Popularising the tree of life Dr Felix Forest, Royal Botanic Gardens, Kew Gymnosperms on the EDGE: creating the world’s first phylogenetic prioritisation scheme for plants _______________________________________ ZSL SCIENCE AND CONSERVATION EVENTS ABSTRACTS Ten years on the EDGE of Existence Tuesday 10 October 2017 The Meeting Rooms, The Zoological Society of London, Regent’s Park, London NW1 4RY The evolution of EDGE: incorporating scientific advances into phylogenetically-informed conservation prioritisation Dr Nisha Owen, EDGE of Existence Programme Manager, ZSL ZSL’s EDGE of Existence programme is the world’s only conservation initiative dedicated to using phylogenetically-informed conservation prioritisation to identify key species, combining Evolutionary Distinctiveness (ED) and Global Endangerment (GE) to create the world’s first priority list of mammalian species in 2007 with the first published tree for a vertebrate group. Since then, priority lists have been created for amphibians, corals, birds, and finally reptiles, as comprehensive and accurate trees have been created and IUCN Red List assessments completed for these key taxonomic groups. This has formed the foundation for our conservation programme, training and supporting 68 early- career researchers from 36 countries to conserve 63 EDGE species, with multiple successes to date including establishing local protected areas, introducing protective legislation, discovering new species and rediscovering lost populations.