Fracture of the Occipital Condyle: the Forgotten Part of the Neck

Total Page:16

File Type:pdf, Size:1020Kb

Fracture of the Occipital Condyle: the Forgotten Part of the Neck 220 J Accid Emerg Med 2000;17:220–228 CASE REPORTS J Accid Emerg Med: first published as 10.1136/emj.17.3.225 on 1 May 2000. Downloaded from Fracture of the occipital condyle: the forgotten part of the neck Andrew Kelly, Richard Parrish Abstract A case of occipital condylar fracture in a multiply injured and unconscious motor- cyclist is reported. This injury was clini- cally unsuspected but found on the lowest cuts of head computed tomography. It is shown that this site is often inadequately imaged when scanning the head and neck in victims of trauma. The Anderson and Montesano classification of occipital con- dylar fracture is described. It is noted that types 1 and 2 are stable injuries but type 3 is potentially unstable. A retrospective analysis of 30 head computed tomography scans in trauma cases revealed that in only 16 were the occipital condyles adequately imaged. It is emphasised that vigilance is required to detect fractures of the occipi- tal condyle and that it should be standard Figure 1 Computed tomography showing fractured right practice to include this area when per- occipital condyle. forming computed tomography of the head in trauma victims. ists and the neurosurgical team. Intracranial (J Accid Emerg Med 2000;17:220–221) pressure was monitored and remained normal. Halo traction was applied before his extubation http://emj.bmj.com/ Keywords: occipital condyle; fracture; trauma on day four. He required three months rigid fixation in a halo vest. Follow up computed Case report tomography showed healing at the fracture site A 16 year old male road traYc accident victim without evidence of subluxation. Residual cog- was found lying beside his motorcycle with the nitive impairment at two weeks necessitated helmet some distance away. The exact speed referral to the head injury rehabilitation unit and circumstances of the incident were un- and at the time of writing cognitive function on October 1, 2021 by guest. Protected copyright. clear. Paramedic roadside opinion was that the and speech are now normal and a residual victim had suVered a tumbling fall with conse- swallowing problem is improving constantly. quent potential for twisting head injury. In the prehospital phase a semirigid cervical collar Discussion was applied and fluid resuscitation given. Occipital condylar fracture was originally On arrival at hospital the patient was described by Charles Bell in 1817.1 This was a haemodynamically stable with a Glasgow postmortem diagnosis of a hospital patient Coma Scale score of 9 and other than bleeding who sustained a fall at the time of discharge! from an occipital scalp wound no external His demise was attributed to medullary Department of injury was seen. He was electively intubated compression by the condylar fragment. Before Accident and Emergency, Derriford and ventilated. Cervical spine control was the wide availability of computed tomography Hospital, Derriford maintained at all times. Fluid resuscitation was diagnosis in life was rare but by 1996 61 cases Road, Plymouth continued and initial radiographs revealed had been reported in the literature. In addition PL6 8DH bilateral pulmonary contusions. Cervical spine other occipital condylar fractures found at A Kelly plain films were normal. postmortem examination have been described. R Parrish Immediate computed tomography of the Often patients with this diagnosis have loss Correspondence to: head chest and abdomen was performed and a of consciousness because of associated head Mr Kelly, StaV Grade frontal lobe haematoma with mild cerebral injury and indeed most early neurological defi- (e-mail: doctorandykelly@ oedema was seen. The lowermost head cuts cits in patients with occipital condylar fracture hotmail.com) revealed a displaced fracture of the right are attributable to such related injury. In those Accepted for publication occipital condyle (fig 1). Ventilation was patients who are conscious on presentation 8 December 1999 continued and ongoing care given by intensiv- neck pain is usual and indeed may be the only Fracture of the occipital condyle 221 injury mechanism and computed tomography fracture morphology.4 Class I fractures are J Accid Emerg Med: first published as 10.1136/emj.17.3.225 on 1 May 2000. Downloaded from impacted condylar fractures consequent upon axial loading injuries. Type II fractures are extensions of a basilar skull fracture. Both these types are functionally stable consequent Tectorial membrane upon integrity of the tectorial membrane and contralateral alar ligament. Type III fractures, sustained during extreme rotation and/or lateral bending are avulsion fractures of the Apical ligament of dens condyle by the alar ligament. This type of frac- ture is potentially unstable because of loading of the tectorial membrane and contralateral Alar ligament alar ligament. Tuli et al2 recommend an alternative classification. They propose that instability is determined more by ligamentous injury as detected by computed tomography alignment criteria and magnetic resonance imaging findings than on fracture morphology. Optimal treatments are not fully agreed upon but most sources propose semirigid Figure 2 The atlantooccipital joint viewed from behind. collar provision for stable injury and rigid immobilisation of varying design for the poten- symptom although neurological deficit includ- tially unstable injury. ing hemiparesis (attributable to contusion of To monitor the adequacy of our computed ipsilateral adjacent spinal cord) is recognised. tomography head scans in imaging the crani- Lower cranial nerve deficits (that is, IX–XII) ocervical junction we retrospectively assessed a are a “classic” sign. However they occur in only series of 30 computed tomography scans of a third of cases and within this group a third of head injured patients examined before the case such deficits present late.2 under discussion. The hard copies were exam- Cervical spine radiographs are usually ined for inclusion of the occipital condyles. In normal2 although prevertebral soft tissue swell- only 16 of 30 patients was there satisfactory ing and asymmetry of the odontoid peg as seen demonstration of these structures. It is already on the anteroposterior view are recognised our policy to print “bone window” images in signs. In addition computed tomography of the addition to standard “brain windows” in head often neglects fully to image the cranio- acutely head injured patients and we now cervical junction and the recognition of this ensure that computed tomography in patients injury therefore presents a diagnostic chal- with head injury starts at the C1 ring. lenge. Because neurological deficit can be late In conclusion, vigilance is required to in onset it is however necessary to make the diagnose occipital condylar fracture and in http://emj.bmj.com/ diagnosis at the time of presentation. It is particular we advise that all unconscious therefore important to retain the same index of trauma victims undergoing computed tomog- suspicion for skull base injury as is widespread raphy head imaging need careful examination for the cervicodorsal junction. of the craniocervical base. This should include It is best to consider the paired occipital 3 or 5 mm axial sections to cover the occipital condyles and the first two cervical vertebrae as condyles, with inspection of the resulting a functional unit. The stability of the atlanto- images on “bone windows” in addition to the occipital junction within this unit is maintained conventional “brain” settings. on October 1, 2021 by guest. Protected copyright. by several structures.3 Firstly, the tectorial membrane is a continuation of the posterior Contributors Andrew Kelly initiated the case report, searched the literature longitudinal ligament and attaches to the and wrote the report. Richard Parrish conceived the idea of a foramen magnum. This limits flexion and retrospective analysis of our CT scans, performed this review and contributed materially to the discussion. extension. Secondly, the paired alar ligaments Guarantor run directly from the odontoid peg to each Andrew Kelly is the guarantor for this paper. occipital condyle; their function is to check lat- Thanks to Sallie Waring for medical illustration. eral flexion and rotation. It is these above structures that primarily stabilise this part of Funding: none. the neck. Finally, the anterior and posterior atlanto-occipital membranes interconnect the Conflicts of interest: none. margins of the foramen magnum and the ring 1 Bell C. Surgical observations. Middlesex Hospital Journal of the atlas while in addition the apical 1817;4:469–70. 2 Tuli S, Tator CH, Fehlings MG, Mackay M. Occipital con- ligament extends from the odontoid peg to the dyle fractures. Neurosurgery 1997;41:368–76. anterior margin of the foramen magnum. 3 Werne. Studies in spontaneous atlas dislocation. Acta Scand Orthopaedika (Suppl) 1957;23:1–50. Anderson and Montesano described a com- 4 Anderson PA, Montesano PX. Morphology and treatment monly used classification system based on of occipital condyle fractures. Spine 1988;13:731–6. 222 Holloway, Harris Spontaneous pneumothorax: Is it under tension? J Accid Emerg Med: first published as 10.1136/emj.17.3.225 on 1 May 2000. Downloaded from V J Holloway, J K Harris Abstract and a portable chest radiograph ordered. The A diagnosis of tension pneumothorax is radiograph showed a left tension pneumotho- usually only considered within the context rax with marked mediastinal shift. On re- of trauma, incorrect chest drain insertion examination the apex beat was found to be or positive pressure ventilation. Four heard maximally over the sternum and on per- patients are presented who developed cussion, the mediastinum was shown to be dis- spontaneous tension pneumothorax with placed to the right. He remained well until he no precipitating factors. In three of these lay flat for a chest drain insertion, upon which instances, the diagnosis was only made he became breathless and tachycardic. His radiologically and in every case the treat- symptoms settled when he sat up and the chest ing physician was unaware that a sponta- drain was inserted without diYculty. He was neous tension pneumothorax could occur.
Recommended publications
  • Diagnoses to Include in the Problem List Whenever Applicable
    Diagnoses to include in the problem list whenever applicable Tips: 1. Always say acute or open when applicable 2. Always relate to the original trauma 3. Always include acid-base abnormalities, AKI due to ATN, sodium/osmolality abnormalities 4. Address in the plan of your note 5. Do NOT say possible, potential, likely… Coders can only use a real diagnosis. Make a real diagnosis. Neurological/Psych: Head: 1. Skull fracture of vault – open vs closed 2. Basilar skull fracture 3. Facial fractures 4. Nerve injury____________ 5. LOC – include duration (max duration needed is >24 hrs) and whether they returned to neurological baseline 6. Concussion with or without return to baseline consciousness 7. DAI/severe concussion with or without return to baseline consciousness 8. Type of traumatic brain injury (hemorrhages and contusions) – include size a. Tiny = <0.6 cm b. Small/moderate = 0.6-1 cm c. Large/extensive = >1 cm 9. Cerebral contusion/hemorrhage 10. Cerebral edema 11. Brainstem compression 12. Anoxic brain injury 13. Seizures 14. Brain death Spine: 1. Cervical spine fracture with (complete or incomplete) or without cord injury 2. Thoracic spine fracture with (complete or incomplete) or without cord injury 3. Lumbar spine fracture with (complete or incomplete) or without cord injury 4. Cord syndromes: central, anterior, or Brown-Sequard 5. Paraplegia or quadriplegia (any deficit in the upper extremity is consistent with quadriplegia) Cardiovascular: 1. Acute systolic heart failure 40 2. Acute diastolic heart failure 3. Chronic systolic heart failure 4. Chronic diastolic heart failure 5. Combined heart failure 6. Cardiac injury or vascular injuries 7.
    [Show full text]
  • Cervical Spine Injury Risk Factors in Children with Blunt Trauma Julie C
    Cervical Spine Injury Risk Factors in Children With Blunt Trauma Julie C. Leonard, MD, MPH,a Lorin R. Browne, DO,b Fahd A. Ahmad, MD, MSCI,c Hamilton Schwartz, MD, MEd,d Michael Wallendorf, PhD,e Jeffrey R. Leonard, MD,f E. Brooke Lerner, PhD,b Nathan Kuppermann, MD, MPHg BACKGROUND: Adult prediction rules for cervical spine injury (CSI) exist; however, pediatric rules abstract do not. Our objectives were to determine test accuracies of retrospectively identified CSI risk factors in a prospective pediatric cohort and compare them to a de novo risk model. METHODS: We conducted a 4-center, prospective observational study of children 0 to 17 years old who experienced blunt trauma and underwent emergency medical services scene response, trauma evaluation, and/or cervical imaging. Emergency department providers recorded CSI risk factors. CSIs were classified by reviewing imaging, consultations, and/or telephone follow-up. We calculated bivariable relative risks, multivariable odds ratios, and test characteristics for the retrospective risk model and a de novo model. RESULTS: Of 4091 enrolled children, 74 (1.8%) had CSIs. Fourteen factors had bivariable associations with CSIs: diving, axial load, clotheslining, loss of consciousness, neck pain, inability to move neck, altered mental status, signs of basilar skull fracture, torso injury, thoracic injury, intubation, respiratory distress, decreased oxygen saturation, and neurologic deficits. The retrospective model (high-risk motor vehicle crash, diving, predisposing condition, neck pain, decreased neck mobility (report or exam), altered mental status, neurologic deficits, or torso injury) was 90.5% (95% confidence interval: 83.9%–97.2%) sensitive and 45.6% (44.0%–47.1%) specific for CSIs.
    [Show full text]
  • Anesthesia for Trauma
    Anesthesia for Trauma Maribeth Massie, CRNA, MS Staff Nurse Anesthetist, The Johns Hopkins Hospital Assistant Professor/Assistant Program Director Columbia University School of Nursing Program in Nurse Anesthesia OVERVIEW • “It’s not the speed which kills, it’s the sudden stop” Epidemiology of Trauma • ~8% worldwide death rate • Leading cause of death in Americans from 1- 45 years of age • MVC’s leading cause of death • Blunt > penetrating • Often drug abusers, acutely intoxicated, HIV and Hepatitis carriers Epidemiology of Trauma • “Golden Hour” – First hour after injury – 50% of patients die within the first seconds to minutesÆ extent of injuries – 30% of patients die in next few hoursÆ major hemorrhage – Rest may die in weeks Æ sepsis, MOSF Pre-hospital Care • ABC’S – Initial assessment and BLS in trauma – GO TEAM: role of CRNA’s at Maryland Shock Trauma Center • Resuscitation • Reduction of fractures • Extrication of trapped victims • Amputation • Uncooperative patients Initial Management Plan • Airway maintenance with cervical spine protection • Breathing: ventilation and oxygenation • Circulation with hemorrhage control • Disability • Exposure Initial Assessment • Primary Survey: – AIRWAY • ALWAYS ASSUME A CERVICAL SPINE INJURY EXISTS UNTIL PROVEN OTHERWISE • Provide MANUAL IN-LINE NECK STABILIZATION • Jaw-thrust maneuver Initial Assessment • Airway cont’d: – Cervical spine evaluation • Cross table lateral and swimmer’s view Xray • Need to see all seven cervical vertebrae • Only negative CT scan R/O injury Initial Assessment • Cervical
    [Show full text]
  • CASE REPORT Injuries Following Segway Personal
    UC Irvine Western Journal of Emergency Medicine: Integrating Emergency Care with Population Health Title Injuries Following Segway Personal Transporter Accidents: Case Report and Review of the Literature Permalink https://escholarship.org/uc/item/37r4387d Journal Western Journal of Emergency Medicine: Integrating Emergency Care with Population Health, 16(5) ISSN 1936-900X Authors Ashurst, John Wagner, Benjamin Publication Date 2015 DOI 10.5811/westjem.2015.7.26549 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California CASE REPORT Injuries Following Segway Personal Transporter Accidents: Case Report and Review of the Literature John Ashurst DO, MSc Conemaugh Memorial Medical Center, Department of Emergency Medicine, Benjamin Wagner, DO Johnstown, Pennsylvania Section Editor: Rick A. McPheeters, DO Submission history: Submitted April 20, 2015; Accepted July 9, 2015 Electronically published October 20, 2015 Full text available through open access at http://escholarship.org/uc/uciem_westjem DOI: 10.5811/westjem.2015.7.26549 The Segway® self-balancing personal transporter has been used as a means of transport for sightseeing tourists, military, police and emergency medical personnel. Only recently have reports been published about serious injuries that have been sustained while operating this device. This case describes a 67-year-old male who sustained an oblique fracture of the shaft of the femur while using the Segway® for transportation around his community. We also present a review of the literature. [West J Emerg Med. 2015;16(5):693-695.] INTRODUCTION no parasthesia was noted. In 2001, Dean Kamen developed a self-balancing, zero Radiograph of the right femur demonstrated an oblique emissions personal transportation vehicle, known as the fracture of the proximal shaft of the femur with severe Segway® Personal Transporter (PT).1 The Segway’s® top displacement and angulation (Figure).
    [Show full text]
  • The Dynamic Impact Behavior of the Human Neurocranium
    www.nature.com/scientificreports OPEN The dynamic impact behavior of the human neurocranium Johann Zwirner1,2*, Benjamin Ondruschka2,3, Mario Scholze4,5, Joshua Workman6, Ashvin Thambyah6 & Niels Hammer5,7,8 Realistic biomechanical models of the human head should accurately refect the mechanical properties of all neurocranial bones. Previous studies predominantly focused on static testing setups, males, restricted age ranges and scarcely investigated the temporal area. This given study determined the biomechanical properties of 64 human neurocranial samples (age range of 3 weeks to 94 years) using testing velocities of 2.5, 3.0 and 3.5 m/s in a three-point bending setup. Maximum forces were higher with increasing testing velocities (p ≤ 0.031) but bending strengths only revealed insignifcant increases (p ≥ 0.052). The maximum force positively correlated with the sample thickness (p ≤ 0.012 at 2.0 m/s and 3.0 m/s) and bending strength negatively correlated with both age (p ≤ 0.041) and sample thickness (p ≤ 0.036). All parameters were independent of sex (p ≥ 0.120) apart from a higher bending strength of females (p = 0.040) for the 3.5 -m/s group. All parameters were independent of the post mortem interval (p ≥ 0.061). This study provides novel insights into the dynamic mechanical properties of distinct neurocranial bones over an age range spanning almost one century. It is concluded that the former are age-, site- and thickness-dependent, whereas sex dependence needs further investigation. Biomechanical parameters characterizing the load-deformation behavior of the human neurocranium are crucial for building physical models 1–3 and high-quality computational simulations 4–6 of the human head to answer com- plex biomechanical research questions to the best possible extent.
    [Show full text]
  • Clinical Features and Treatment of Pediatric Orbit Fractures
    ORIGINAL INVESTIGATION Clinical Features and Treatment of Pediatric Orbit Fractures Eric M. Hink, M.D.*, Leslie A. Wei, M.D.*, and Vikram D. Durairaj, M.D., F.A.C.S.*† Departments of *Ophthalmology, and †Otolaryngology and Head and Neck Surgery, University of Colorado Denver, Aurora, Colorado, U.S.A. of craniofacial skeletal development.1 Orbit fractures may be Purpose: To describe a series of orbital fractures and associated with ophthalmic, neurologic, and craniofacial inju- associated ophthalmic and craniofacial injuries in the pediatric ries that may require intervention. The result is that pediatric population. facial trauma is often managed by a diverse group of specialists, Methods: A retrospective case series of 312 pediatric and each service may have their own bias as to the ideal man- patients over a 9-year period (2002–2011) with orbit fractures agement plan.4 In addition, children’s skeletal morphology and diagnosed by CT. physiology are quite different from adults, and the benefits of Results: Five hundred ninety-one fractures in 312 patients surgery must be weighed against the possibility of detrimental were evaluated. There were 192 boys (62%) and 120 girls (38%) changes to facial skeletal growth and development. The purpose with an average age of 7.3 years (range 4 months to 16 years). of this study was to describe a series of pediatric orbital frac- Orbit fractures associated with other craniofacial fractures were tures; associated ophthalmic, neurologic, and craniofacial inju- more common (62%) than isolated orbit fractures (internal ries; and fracture management and outcomes. fractures and fractures involving the orbital rim but without extension beyond the orbit) (38%).
    [Show full text]
  • In Drivers of Open-Wheel Open Cockpit Race Cars
    SPORTS MEDICINE SPINE FRACTURES IN DRIVERS OF OPEN-WHEEL OPEN COCKPIT RACE CARS – Written by Terry Trammell and Kathy Flint, USA This paper is intended to explain the mechanisms responsible for production of spinal fracture in the driver of an open cockpit single seat, open-wheel racing car (Indy Car) and what can be done to lessen the risk of fracture. In a report of fractures in multiple racing • Seated angle (approximately 45°) • Lumbar spine flexed series drivers (Championship Auto Racing • Hips and knees flexed • Seated semi-reclining Cars [CART]/Champ cars, Toyota Atlantics, Indy Racing League [IRL], Indy Lights and Figure 1: Body alignment in the Indy Car. Formula 1 [F1]), full details of the crash and mechanism of injury were captured and analysed. This author was the treating physician in all cases from 1996 to 2011. All images, medical records, data available BASILAR SKULL FRACTURE Use of this specific safety feature from the Accident Data Recorder-2 (ADR), Following a fatal distractive basilar is compulsory in most professional crash video, specific on track information, skull fracture in 1999, the Head and Neck motorsport sanctions and has resulted in a post-accident investigation of damage and Support (HANS) device was introduced into dramatic reduction to near elimination of direction of major impact correlated with Indy Cars. Basilar skull fracture occurs when fatal basilar skull fractures. No basilar skull ADR-2 data were analysed. Results provided neck tension exceeds 3113.75 N forces. fractures have occurred in the IRL since the groundwork for understanding spine No data demonstrates that HANS introduction of the HANS and since 2006 fracture and forces applied to the driver in predisposes the wearer to other cervical there has been only one cervical fracture.
    [Show full text]
  • Depressed Skull Fracture (Let's Talk About
    In partnership with Primary Children’s Hospital Let’s Talk About... Depressed Skull Fracture B. A. Depressed skull Indentation fracture C. Concussion A depressed skull fracture happens when one or more to be removed. Before the surgery, your child’s head fragments of the skull bone are pushed inward (see is shaved so the surgery can be completely clean. Your “B” on the illustration). An indentation (A) with no child also receives some medicine to help him or her breaks in the bone happens more often in babies. relax and sleep. During surgery, small metal plates Since the brain is beneath the skull, the skull bone and screws may be used to hold the bone fragments fragments may injure the brain (C). Your child may in place. The skin over the surgical area is closed with have a bruise on the brain (called a contusion), and sutures (SOO-churs) or skin staples. a swollen black-and-blue area on the skin. What happens after the surgery? How do you treat a depressed After the surgery, your child will stay in the hospital skull fracture? for a few days. There is a lot of equipment around To find out if your child has a skull fracture, a special the bed. This helps the staff care for your child. x-ray called a CT Scan (short for computerized While your child is in the hospital, the nurses tomography) is needed. The CT scan takes pictures of frequently check your child’s temperature, pulse, your child’s brain and skull bones. blood pressure, and alertness.
    [Show full text]
  • Biomechanics of Temporo-Parietal Skull Fracture Narayan Yoganandan *, Frank A
    Clinical Biomechanics 19 (2004) 225–239 www.elsevier.com/locate/clinbiomech Review Biomechanics of temporo-parietal skull fracture Narayan Yoganandan *, Frank A. Pintar Department of Neurosurgery, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA Received 16 December 2003; accepted 16 December 2003 Abstract This paper presents an analysis of research on the biomechanics of head injury with an emphasis on the tolerance of the skull to lateral impacts. The anatomy of this region of the skull is briefly described from a biomechanical perspective. Human cadaver investigations using unembalmed and embalmed and intact and isolated specimens subjected to static and various types of dynamic loading (e.g., drop, impactor) are described. Fracture tolerances in the form of biomechanical variables such as peak force, peak acceleration, and head injury criteria are used in the presentation. Lateral impact data are compared, where possible, with other regions of the cranial vault (e.g., frontal and occipital bones) to provide a perspective on relative variations between different anatomic regions of the human skull. The importance of using appropriate instrumentation to derive injury metrics is underscored to guide future experiments. Relevance A unique advantage of human cadaver tests is the ability to obtain fundamental data for delineating the biomechanics of the structure and establishing tolerance limits. Force–deflection curves and acceleration time histories are used to derive secondary variables such as head injury criteria. These parameters have direct application in safety engineering, for example, in designing vehicular interiors for occupant protection. Differences in regional biomechanical tolerances of the human head have implications in clinical and biomechanical applications.
    [Show full text]
  • Diagnosis and Treatment of Cerebrospinal Fluid Rhinorrhea Following Accidental Traumatic Anterior Skull Base Fractures
    Neurosurg Focus 32 (6):E3, 2012 Diagnosis and treatment of cerebrospinal fluid rhinorrhea following accidental traumatic anterior skull base fractures MATEO ZIU, M.D., JENNIFER GENTRY SAVAGE, M.D., AND DAVID F. JIMENEZ, M.D. Department of Neurosurgery, University of Texas Health Science Center at San Antonio, Texas Cerebrospinal fluid rhinorrhea is a serious and potentially fatal condition because of an increased risk of menin- gitis and brain abscess. Approximately 80% of all cases occur in patients with head injuries and craniofacial fractures. Despite technical advances in the diagnosis and management of CSF rhinorrhea caused by craniofacial injury through the introduction of MRI and endoscopic extracranial surgical approaches, difficulties remain. The authors review here the pathophysiology, diagnosis, and management of CSF rhinorrhea relevant exclusively to traumatic anterior skull base injuries and attempt to identify areas in which further work is needed. (http://thejns.org/doi/abs/10.3171/2012.4.FOCUS1244) KEY WORDS • craniomaxillofacial trauma • head trauma • cerebrospinal fluid rhinorrhea • meningitis • dural repair • endoscopic surgery • skull base fracture EREBROSPINAL fluid rhinorrhea is a serious and po- Furthermore, the issues related to CSF leak caused tentially fatal condition that still presents a major by traumatic injury are complex and multiple. Having challenge in terms of its diagnosis and manage- conducted a thorough review of existing literature, we Cment. It is estimated that meningitis develops in approxi- discuss here the pathophysiology, diagnosis, and man- mately 10%–25% of patients with this disorder, and 10% agement of CSF rhinorrhea relevant to traumatic anterior of them die as a result. Approximately 80% of all cases of skull base injuries and attempt to identify areas in which CSF rhinorrhea are caused by head injuries that are asso- further research is needed.
    [Show full text]
  • Functional Structure of the Skull and Fractures of the Skull Thickened and Thinner Parts of the Skull
    Functional structure of the skull and Fractures of the skull Thickened and thinner parts of the skull = important base for understanding of the functional structure of the skull → - the transmission of masticatory forces - fracture predilection Thickned parts: . sagittal line . ventral lateral line . dorsal lateral line Thinner parts: . articular fossa . cribriform plate . foramines, canals and fissures . anterior, medial and posterior cranial fossa Thickned parts: . tuber parietalis . mastoid process . protuberantia occipitalis ext. et int. linea temporalis . margin of sulcus sinus: - sagitalis sup. - transversus Functional structure of the skull Facial buttresses system . Of thin segments of bone encased and supported by a more rigid framework of "buttresses" . The midface is anchored to the cranium through this framework . Is formed by strong frontal, maxillary, zygomatic and sphenoid bones and their attachments to one another Tuber maxillae Vertical buttress Sinus maxillae Orbita . nasomaxillary Nasal cavity . zygomaticomaxillary . pterygomaxillary Horizontal buttress . glabella . orbital rims . zygomatic processes . maxillary palate . The buttress system absorbs and transmits forces applied to the facial skeleton . Masticatory forces are transmitted to the skull base primarily through the vertical buttresses, which are joined and additionally supported by the horizontal buttresses . When external forces are applied, these components prevent disruption of the facial skeleton until a critical level is reached and then fractures occur Stress that occurs from mastication or trauma is transferred from the inferior of the mandible via various trajectory lines → to the condyles glenoid fossa → temporal bone The main alveolar stress concentration were located interradicularly and interproximally Fractures of the skull I. Neurocranial fractures II. Craniofacial fractures I. Neurocranial fracture . A break in the skull bone are generally occurs as a result of a direct impact .
    [Show full text]
  • Updated Mild Traumatic Brain Injury Guideline for Adults
    Heads Up to Clinicians: Updated Mild Traumatic Brain Injury Guideline for Adults This Guideline is based on the 2008 Mild TBI Clinical Policy for adults, which revises the previous 2002 Clinical Policy. To help improve diagnosis, treatment, and outcomes for patients with mild TBI, it is critical that you become familiar with this guideline. The guideline is especially important for clinicians working in hospital-based emergency care. Inclusion Criteria: This guideline is intended for patients with non-penetrating trauma to the head who present to the ED within 24 hours of injury, who have a Glascow Coma Scale (GCS) score of 14 or 15 on initial evaluation in the ED, and are ≥ 16 years old. Exclusion Criteria: This guideline is not intended for patients with penetrating trauma or multisystem trauma who have a GCS score of < 14 on initial evaluation in the ED and are < 16 years old. Please turn over. What You Need to Know: This guideline provides recommendations for determining which patients with a known or suspected mild TBI require a head CT and which may be safely discharged. Here are a few important points to note: There is no evidence to recommend the use of a head Discuss discharge instructions with patients and give MRI over a CT in acute evaluation. them a discharge instruction sheet to take home and share with their family and/or caregiver. Be sure to: A noncontrast head CT is indicated in head trauma patients with loss of consciousness or posttraumatic • Alert patients to look for postconcussive symptoms amnesia in presence of specific symptoms.
    [Show full text]