Powerful Pollinators Encouraging Insect Pollinators in Farm Landscapes

Total Page:16

File Type:pdf, Size:1020Kb

Powerful Pollinators Encouraging Insect Pollinators in Farm Landscapes Mallee: Victoria and SE South Australia Powerful pollinators Encouraging insect pollinators in farm landscapes Pollinators are an essential component of agricultural production and of healthy, biodiverse landscapes. Protecting and enhancing pollinator resources on farms will help support a diverse range of pollinators. This brochure provides an introduction to encouraging insect pollinators on farms, including a guide to choosing plants that will support diverse pollinators throughout the year. The power of pollinators Different animals — mostly insects, but also birds and mammals — help to transfer pollen between flowering plants, allowing the formation of seeds and fruit. Pollinators do this by visiting flowers in search of food (nectar, pollen or both) and transferring pollen from one flower to another in the process. In Australia, honey bees, native bees and other native insects like hoverflies, wasps and butterflies provide essential © Almond Board of Australia pollination services for native plants, Native vegetation supports pollinators by providing food and nesting sites. Nearby crops and pastures, crops, fruits and vegetables. pastures will benefit from the increased abundance and diversity of pollinators in the landscape. Pollinators and food security Insect populations are in decline Healthy ecosystems Without insect pollinators, the quantity worldwide due to land clearing, Pollinators are both essential to, and and diversity of food grown for humans intensive or monocultural depend upon, healthy ecosystems. in contemporary agricultural systems A growing human population and agriculture, pesticide use, would be severely restricted. Many increasing demand for food puts of the food crops we eat, as well as environmental pollution, colony pressure on ecosystems, while declining pasture and fodder crops, benefit from disease and climate change. ecosystem function will in turn pollination by insects. negatively impact food production. Low pollinator numbers mean Pollinator-dependent crops include not all flowers are pollinated, Insect pollinators are a prime example almonds, apples, blueberries and of this — without healthy ecosystems vegetables, as well as many crops leading to low fruit or seed set. and the presence of patches of grown for seed production , such as This in turn reduces crop and native vegetation to support insect canola. The quantity and diversity of pasture yields, farm profits populations, pollination will decline. insect pollinators are key drivers of This will threaten both crop productivity production as they influence both crop and ultimately food supply. and the persistence of native, yields and quality. Under-pollination pollinator-dependent flowering plants. results in smaller and misshapen fruit Pollinators require habitat — such as that is commercially unsaleable. diverse, native vegetation — that contains Grazing enterprises can also suffer year-round food sources and nesting from a reduction in the abundance or sites. The presence of pollinator habitat diversity of pollinators, due to the role close to food crops has been shown these insects play in the persistence to improve food production in adjacent of nitrogen-fixing pasture legumes crops by enabling a greater variety such as clover. and number of pollinators to persist year-round, providing pollination A diverse and healthy community of services to crops when required. pollinators generally provides more © Sustainable Farms effective and stable pollination than Under-pollination results in smaller, Turn to the centre of this brochure for relying on any single species. misshapen fruit such as this strawberry. a guide to planting for pollinators. this period insect pollinators do not need pollen creating a ‘food desert’ where Diapause or diet? flowers. Birds and other small mammals will insect pollinators cannot survive. however continue to benefit from available Where are the insects? There are still many unknowns about pollen and nectar during this time. insect pollinators in Australia. Take part Many insect pollinators undergo a If there are low numbers of insect in Australian Pollinator Week or in the diapause during colder winter months. pollinators in the landscape, it is bi-annual Wild Pollinator Count to learn Diapause is a period of suspended important to determine whether this is more about pollinators in your area — development during unfavourable because of diapause, or because of an visit AustralianPollinatorWeek.org.au environmental conditions, and during inadequate availability of nectar and and WildPollinatorCount.com Encouraging pollinators on your property Create pollination reservoirs Plant according to habitat Get to know your local bush Pollination reservoirs are areas of type and prepare for change Each farm and region will have distinct native plant species that provide floral When establishing pollinator habitat, populations of insects, based on the resources for pollinators. They can consider including species that are plants and climate. Identifying and be new plantings or existing habitat, indigenous to your area but can understanding the insects in your area such as shelterbelts or remnant tolerate increasingly drier and warmer will help you develop better plantings. vegetation. A high diversity of plant conditions, to create resilient habitat The plants growing in nearby bush will species is essential to provide nectar, for the future under climate change. be well suited to the climate and soils in your region. Local community groups pollen and nesting sites throughout Rehabilitate weedy areas into managed and specialist native nurseries can the year. Pollination reservoirs need pollination reservoirs by introducing provide useful information and usually to be close enough to crops to ensure higher native plant diversity. Be careful produce local plant species. that pollinators can fly easily to them. not to plant invasive or listed weeds. Use existing habitat Double the crop value Protect and improve existing habitat Amplify the flower signal Plants that are pollinator-attracting where possible. Roadsides, shelterbelts, Plants have evolved large flowers or are sometimes crop species in their dam margins, woodlands, grasslands, clusters of smaller flowers because own right and can be used to diversify rocky areas and river and creek edges they attract more pollinator visits. farm production. Bush foods such as can all be important pollinator-attracting Large, colourful and diverse plantings desert limes, bush tomato, yam daisy areas, bringing valuable pollination attract more pollinators. Ideally, plant in and many more are in high demand services to your farm. groups that use all the vegetation layers for use in fresh and manufactured possible — combine a species-rich Native mallee stands provide habitat products. Native plant seed is needed mixture of forbs, ground covers, shrubs for pollinators. If you have them on for revegetation projects. and trees. your property, protect and enhance the Supporting beekeepers by hosting areas where they grow. Utilise ecotones beehives is an opportunity to increase Plant new trees, shrubs and pollinator numbers on the farm. Ecotones are the margins between groundcovers two different habitats. Ecotones often Use a combination of direct seed sowing Reduce chemical use contain a more diverse mixture of and planting tube stock to establish where possible species because they are used by new vegetation. Initial watering and species from both habitats. Protect and Insecticides (especially neonicotinoids), protection from grazing will improve utilise ecotones such as the transition fungicides and herbicides all affect the success rate of young plants. Forbs bee, colony and wild pollinator health. zones between woodland and and native pea species are excellent Herbicides can impact pollinators by grassland, or heath and shrubland, pollinator attractors but more difficult reducing the availability and diversity to create highly diverse floral and to establish. of flora and removing vegetation that insect communities. helps support insect life. Some herbicides can also harm the beneficial bacteria in the insect gut. Insecticides are an obvious threat to pollinators, yet many pollinators will, in healthy numbers, help control pest insects, ultimately reducing the need for insecticide use. Plant a variety of flowering species to Many crops are dependent on pollination encourage pollinators by bees. When chemical pest control year round Proximity of native is unavoidable, it is preferable to use vegetation to non-systemic insecticides and apply crops will increase insecticides in the evening or at night pollination and crop yield when pollinators are not active. Always use according to directions, especially for withholding periods, and Host notify beekeepers a few days before beehives to increase spraying chemicals so beehives can be pollinator safely relocated away from harm. numbers Protect existing habitat by fencing out livestock Flowering Pollinator reward Visitation by pollinator Lifeform Common name Scientific name Family Vegetation type Height Flower colour Aspect Soil moisture Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Pollen Nectar Native bees Honey bees Hoverflies Wasps Butterflies Moths Beetles Flies Crop plants Lily Onion seed Allium cepa Amaryllidaceae Field 0.4–0.8 m White Sun Moist to dry ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ A guide to planting Tree Orange Citrus × sinensis Rutaceae Orchard 2–4 m White Sun Moist to dry ⬤ ⬤ ⬤ ⬤ ⬤ Tree Olive Olea europaea Oleaceae Orchard
Recommended publications
  • Conservation Action Planning
    Conservation Action Planning 2015 Mallee Emu-Wren Stipiturus mallee Black-eared Miner Manorina melanotis Western Whipbird (eastern) Psophodes nigrogularis leucogaster Red-lored Whistler Pachycephala rufogularis Regent Parrot (eastern) Polytelis anthopeplus monarchoides Malleefowl Leipoa ocellata Threatened Mallee Birds Project Compiled by: Rebecca Boulton and Jenny Lau (BirdLife Australia) 1 Acknowledgments: Members of the Threatened Mallee Birds CAP Implementation Team including Rebecca Boulton, Jenny Lau, Wendy Stubbs, Chris Hedger, Vicky-Jo Russell, Jill Fleming, Rohan Clarke, Simon Watson, Sarah Brown, Simon Nally, Liberty Olds, Samantha Vine, David Parker and Peter Copley. Cover photos by Rohan Clarke & Chris Tzaros. This document may be cited as: Boulton, R.L. and Lau, J. (2015) Threatened Mallee Birds Conservation Action Plan, Report June 2015. Report to the Threatened Mallee Birds Implementation Team, BirdLife Australia. Version: 16/06/15 Abbreviations MEW Mallee Emu-wren BEM Black-eared Miner WWB Western Whipbird RLW Red-lored Whistler RP Regent Parrot MF Malleefowl CAP Conservation Action Plan YTM Yellow-throated Miner DEWNR Department of Environment, Water and Natural Resources DELWP Department of Environment, Land, Water and Planning DEDJTR Department of Economic Development, Jobs, Transport and Resources DoE Department of the Environment, Canberra OEH Office of Environment and Heritage, NSW PV Parks Victoria BirdLife BirdLife Australia ARI Arthur Rylah Institute ANU Australian National University TNC The Nature Conservancy
    [Show full text]
  • A Teachers' Guide to Bees
    A Teachers’ Guide to Bees What is this Guide? A Teachers’ Guide to Bees is designed to help teachers establish a clear pathway for incorporating bees into the school curriculum to achieve learning and teaching objectives and outcomes via diverse pedagogical approaches, with bees as the central thematic element. WheenBeeFoundation.org.au Australian native Trichocolletes leucogenys pollinating a native bush-pea. (Photo: Kerry Stuart) Why learn about bees? How can my school be In learning about bees, students can experience the joy of involved with bees? scientific discovery and nurture their natural curiosity about the world around them. In doing this, they develop critical and A bee-centric curriculum is as expansive and as in-depth as the creative thinking skills and challenge themselves to identify imagination! Students can participate in interactive beekeeping questions, apply new knowledge, explain science phenomena experiences via excursions or incursions; growing bee-friendly and draw evidence-based conclusions using scientific methods. gardens; creating pollinator havens; constructing insect hotels; The wider benefits of this ‘scientific literacy’ are well established, undertake citizen-science activities to record and observe insect including giving students the capability to investigate the world visitors (bee safari!); and maybe even keep a bee hive. around them and the way it has changed and continues to change as a result of human activity. What do I need to know? • Children’s safety (bees are potentially dangerous to people) • Bees’ health and wellbeing (bees require significant A Teachers’ Guide to Bees enables teachers to care and management) make informed decisions to ensure: • Compliance with school, local council and state legislation requirements.
    [Show full text]
  • Australian Native Bees a Practical Handbook
    Australian Native Bees A Practical Handbook Geo foozlings his resentfulness curried appassionato or head-on after Enrico finessings and flashes amorally, proleptical and obligate. Oversimplified Quigman usually flews some diviner or glissaded monotonously. Placating Morrie sufficing analytically or vernacularizing senatorially when Hamilton is horrifying. With many taboos in the a native practical handbook of indigenous knowledge engagement, light coloured regions of calimyrna figs Effect over floral plant by greater distances from complete australian native bees a practical handbook. Follow broken link brought an easy to use excellent form Order Bee Lab Honey Funds from honey sales goes directly into bee research or graduate student enrichment. Reputation Software With Video Testimonials Google Sites. Medicinal plants at a native species that? Before 2009 native garden patio lawn preparation South Brighton. Each comb above have a native bees australian spiders. Heard TA Dollin A 2000 Stingless beekeeping in Australia snapshot create an. Structure and practical guide australian native bees a practical handbook about time. Handling them as only one locality entry is prone to your garden plants, or it is any harm, native bees australian a practical handbook is fast rules vary considerably. Megachile Osmia Nomia and stingless bees Australia only but explain a much. Read A dismay of Practical Apilculture Giving you Correct. Australian Native Bees Handbook Manual Series AgGuide Series By David BrouwerEditor. The a native practical handbook, drink or so that. Australian Made Regular Beeco Regular 250 Regular 2500 Regular 6600 Jumbo. Numerous observations in bees australian a native practical handbook for seed extractory, the use your computer for landscape not candy is usually obvious to and other countries, slightly boggy area? Ag Guide A Practical Handbook Pollination Using Honey Bees Apr 9 2020 In most book beekeepers who are considering supplying honey bees for pollination.
    [Show full text]
  • Eucalyptus Dumosa White Mallee Classification Eucalyptus | Symphyomyrtus | Dumaria | Rufispermae Nomenclature
    Euclid - Online edition Eucalyptus dumosa White mallee Classification Eucalyptus | Symphyomyrtus | Dumaria | Rufispermae Nomenclature Eucalyptus dumosa A.Cunn. ex J.Oxley, J. Two Exped. Int. New South Wales 63 (1820). Eucalyptus incrassata var. dumosa (A.Cunn. ex J.Oxley) Maiden, Crit. Revis. Eucalyptus 1: 96 (1904). T: Euryalean Scurb, between 33°and 34°S, and 146° and 147°E, NSW, 23 May 1817, A.Cunningham 206; iso: BM, CANB, E, K. Eucalyptus lamprocarpa F.Muell. ex Miq., Ned. Kruidk. Arch. 4: 129 (1856). T: not designated. Eucalyptus muelleri Miq., op.cit. 130. T: 'Madam Pepper-wealth ad fl. Murray'; F.Mueller. Description Mallee to 10 m tall. Forming a lignotuber. Bark usually rough on lower part of stems, grey or grey-brown, flaky or box-type; smooth bark white, yellow, grey, brown or pink-grey, shedding in ribbons from the upper stems and branches, rarely powdery. Branchlets with oil glands in the pith. Juvenile growth (coppice or wild seedling to 50 cm tall): stem rounded in cross-section; juvenile leaves always petiolate, opposite for 2 or 3 pairs then alternate, petiolate, ovate to broadly lanceolate, 5.5–14 cm long, 2.2–7 cm wide, blue-green or grey-green. Adult leaves alternate, petiole 0.8–2.5 cm long; blade lanceolate to falcate, 4.8–12 cm long, 0.8–2.5 cm wide, base tapering to petiole, concolorous, usually dull, blue-green to grey-green or almost grey, or maturing glossy green, side-veins at an acute or wider angle to midrib, moderately to very densely reticulate but with veinlets erose, intramarginal vein parallel to and just within margin, oil glands numerous mostly intersectional or obscure.
    [Show full text]
  • The Pharmacological and Therapeutic Importance of Eucalyptus Species Grown in Iraq
    IOSR Journal Of Pharmacy www.iosrphr.org (e)-ISSN: 2250-3013, (p)-ISSN: 2319-4219 Volume 7, Issue 3 Version.1 (March 2017), PP. 72-91 The pharmacological and therapeutic importance of Eucalyptus species grown in Iraq Prof Dr Ali Esmail Al-Snafi Department of Pharmacology, College of Medicine, Thi qar University, Iraq Abstract:- Eucalyptus species grown in Iraq were included Eucalyptus bicolor (Syn: Eucalyptus largiflorens), Eucalyptus griffithsii, Eucalyptus camaldulensis (Syn: Eucalyptus rostrata) Eucalyptus incrassate, Eucalyptus torquata and Eucalyptus microtheca (Syn: Eucalyptus coolabahs). Eucalypts contained volatile oils which occurred in many parts of the plant, depending on the species, but in the leaves that oils were most plentiful. The main constituent of the volatile oil derived from fresh leaves of Eucalyptus species was 1,8-cineole. The reported content of 1,8-cineole varies for 54-95%. The most common constituents co-occurring with 1,8- cineole were limonene, α-terpineol, monoterpenes, sesquiterpenes, globulol and α , β and ϒ-eudesmol, and aromatic constituents. The pharmacological studies revealed that Eucalypts possessed gastrointestinal, antiinflammatory, analgesic, antidiabetic, antioxidant, anticancer, antimicrobial, antiparasitic, insecticidal, repellent, oral and dental, dermatological, nasal and many other effects. The current review highlights the chemical constituents and pharmacological and therapeutic activities of Eucalyptus species grown in Iraq. Keywords: Eucalyptus species, constituents, pharmacological, therapeutic I. INTRODUCTION: In the last few decades there has been an exponential growth in the field of herbal medicine. It is getting popularized in developing and developed countries owing to its natural origin and lesser side effects. Plants are a valuable source of a wide range of secondary metabolites, which are used as pharmaceuticals, agrochemicals, flavours, fragrances, colours, biopesticides and food additives [1-50].
    [Show full text]
  • Stormwater Connections to Natural Waterways Rouse Hill Development Area
    Stormwater connections to natural waterways Rouse Hill Development Area Overview What This guide explains what you need to do when building a stormwater connection into Sydney Water’s natural open channel waterways in the Rouse Hill Development Area (RHDA). We allow stormwater connections that ensure: stable transition from a constructed drainage system to the natural waterway sustainable water quality management restoration of vegetation following construction. Who This guide applies to owners and developers proposing to build a stormwater pipe connecting to a waterway owned or managed by Sydney Water in the RHDA. This applies to connection proposals for residential, commercial, industrial and other government agencies (e.g. Roads and Maritime Services) developments. Why Construction of stormwater connections to natural waterways affects the waterway and the riparian corridor. This guide ensures that owners and developers design and construct stormwater connections to a safe and sustainable standard by: minimising the number of uncontrolled stormwater discharges ensuring new stormwater connections cause minimal environmental impact to the waterway and its water quality restoring and maintaining disturbed waterfront and riparian vegetation following construction activities. Document current at 31 July 2014 Page 1 Sydney Water – Stormwater connections to natural waterways – Rouse Hill Development Area Contents 1. Introduction 3 2. Approval requirements 3 Connecting to any waterway 3 Connecting to a Sydney Water waterway 3 3. Stormwater connection design 4 Point of connection 4 Drainage system 4 Outlet headwall 5 Asset ownership 6 4. Land and vegetation restoration 7 5. Submission requirements 9 6. Design drawings 10 Headwall setback from creek channel – montage 10 Headwall setback from creek channel – plan 11 Headwall setback from creek channel – elevation 12 Headwall setback from creek channel – section 13 Soil horizons – montage 14 Appropriate revegetation – plan and section elevation 15 7.
    [Show full text]
  • Flora Survey on Hiltaba Station and Gawler Ranges National Park
    Flora Survey on Hiltaba Station and Gawler Ranges National Park Hiltaba Pastoral Lease and Gawler Ranges National Park, South Australia Survey conducted: 12 to 22 Nov 2012 Report submitted: 22 May 2013 P.J. Lang, J. Kellermann, G.H. Bell & H.B. Cross with contributions from C.J. Brodie, H.P. Vonow & M. Waycott SA Department of Environment, Water and Natural Resources Vascular plants, macrofungi, lichens, and bryophytes Bush Blitz – Flora Survey on Hiltaba Station and Gawler Ranges NP, November 2012 Report submitted to Bush Blitz, Australian Biological Resources Study: 22 May 2013. Published online on http://data.environment.sa.gov.au/: 25 Nov. 2016. ISBN 978-1-922027-49-8 (pdf) © Department of Environment, Water and Natural Resouces, South Australia, 2013. With the exception of the Piping Shrike emblem, images, and other material or devices protected by a trademark and subject to review by the Government of South Australia at all times, this report is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. All other rights are reserved. This report should be cited as: Lang, P.J.1, Kellermann, J.1, 2, Bell, G.H.1 & Cross, H.B.1, 2, 3 (2013). Flora survey on Hiltaba Station and Gawler Ranges National Park: vascular plants, macrofungi, lichens, and bryophytes. Report for Bush Blitz, Australian Biological Resources Study, Canberra. (Department of Environment, Water and Natural Resources, South Australia: Adelaide). Authors’ addresses: 1State Herbarium of South Australia, Department of Environment, Water and Natural Resources (DEWNR), GPO Box 1047, Adelaide, SA 5001, Australia.
    [Show full text]
  • Recommendation of Native Species for the Reforestation of Degraded Land Using Live Staking in Antioquia and Caldas’ Departments (Colombia)
    UNIVERSITÀ DEGLI STUDI DI PADOVA Department of Land, Environment Agriculture and Forestry Second Cycle Degree (MSc) in Forest Science Recommendation of native species for the reforestation of degraded land using live staking in Antioquia and Caldas’ Departments (Colombia) Supervisor Prof. Lorenzo Marini Co-supervisor Prof. Jaime Polanía Vorenberg Submitted by Alicia Pardo Moy Student N. 1218558 2019/2020 Summary Although Colombia is one of the countries with the greatest biodiversity in the world, it has many degraded areas due to agricultural and mining practices that have been carried out in recent decades. The high Andean forests are especially vulnerable to this type of soil erosion. The corporate purpose of ‘Reforestadora El Guásimo S.A.S.’ is to use wood from its plantations, but it also follows the parameters of the Forest Stewardship Council (FSC). For this reason, it carries out reforestation activities and programs and, very particularly, it is interested in carrying out ecological restoration processes in some critical sites. The study area is located between 2000 and 2750 masl and is considered a low Andean humid forest (bmh-MB). The average annual precipitation rate is 2057 mm and the average temperature is around 11 ºC. The soil has a sandy loam texture with low pH, which limits the amount of nutrients it can absorb. FAO (2014) suggests that around 10 genera are enough for a proper restoration. After a bibliographic revision, the genera chosen were Alchornea, Billia, Ficus, Inga, Meriania, Miconia, Ocotea, Protium, Prunus, Psidium, Symplocos, Tibouchina, and Weinmannia. Two inventories from 2013 and 2019, helped to determine different biodiversity indexes to check the survival of different species and to suggest the adequate characteristics of the individuals for a successful vegetative stakes reforestation.
    [Show full text]
  • List of Plant Species List of Plant Species
    List of plant species List of Plant Species Contents Amendment history .......................................................................................................................... 2 1 Introduction ...................................................................................................................................... 3 1.1 Application ........................................................................................................................... 3 1.2 Relationship with planning scheme ..................................................................................... 3 1.3 Purpose ............................................................................................................................... 3 1.4 Aim ...................................................................................................................................... 3 1.5 Who should use this manual? ............................................................................................. 3 2 Special consideration ....................................................................................................................... 3 3 Variations ......................................................................................................................................... 4 4 Relationship ..................................................................................................................................... 4 Appendix A – Explanatory notes & definitions .......................................................................................
    [Show full text]
  • Phoenix Active Management Area Low-Water-Use/Drought-Tolerant Plant List
    Arizona Department of Water Resources Phoenix Active Management Area Low-Water-Use/Drought-Tolerant Plant List Official Regulatory List for the Phoenix Active Management Area Fourth Management Plan Arizona Department of Water Resources 1110 West Washington St. Ste. 310 Phoenix, AZ 85007 www.azwater.gov 602-771-8585 Phoenix Active Management Area Low-Water-Use/Drought-Tolerant Plant List Acknowledgements The Phoenix AMA list was prepared in 2004 by the Arizona Department of Water Resources (ADWR) in cooperation with the Landscape Technical Advisory Committee of the Arizona Municipal Water Users Association, comprised of experts from the Desert Botanical Garden, the Arizona Department of Transporation and various municipal, nursery and landscape specialists. ADWR extends its gratitude to the following members of the Plant List Advisory Committee for their generous contribution of time and expertise: Rita Jo Anthony, Wild Seed Judy Mielke, Logan Simpson Design John Augustine, Desert Tree Farm Terry Mikel, U of A Cooperative Extension Robyn Baker, City of Scottsdale Jo Miller, City of Glendale Louisa Ballard, ASU Arboritum Ron Moody, Dixileta Gardens Mike Barry, City of Chandler Ed Mulrean, Arid Zone Trees Richard Bond, City of Tempe Kent Newland, City of Phoenix Donna Difrancesco, City of Mesa Steve Priebe, City of Phornix Joe Ewan, Arizona State University Janet Rademacher, Mountain States Nursery Judy Gausman, AZ Landscape Contractors Assn. Rick Templeton, City of Phoenix Glenn Fahringer, Earth Care Cathy Rymer, Town of Gilbert Cheryl Goar, Arizona Nurssery Assn. Jeff Sargent, City of Peoria Mary Irish, Garden writer Mark Schalliol, ADOT Matt Johnson, U of A Desert Legum Christy Ten Eyck, Ten Eyck Landscape Architects Jeff Lee, City of Mesa Gordon Wahl, ADWR Kirti Mathura, Desert Botanical Garden Karen Young, Town of Gilbert Cover Photo: Blooming Teddy bear cholla (Cylindropuntia bigelovii) at Organ Pipe Cactus National Monutment.
    [Show full text]
  • Chemistry and Biological Activities of Essential Oils from Melaleuca L
    REVIEW ARTICLE 11 Chemistry and Biological Activities of Essential Oils from Melaleuca L. Species Luiz Claudio Almeida BARBOSA 1, 2 ( ) Cleber José SILVA 3 Róbson Ricardo TEIXEIRA 1 Renata Maria Strozi Alves MEIRA 4 Antônio Lelis PINHEIRO 5 Summary Essential oils from species Melaleuca genus, especially M. alternifolia (Maiden & Betche) Cheel, have been widely used worldwide in various industries. Th is review is a contribution to Melaleuca knowledge and describes fi ve important essential oil-producing species and two subspecies of Melaleuca in terms of their essential oil chemical composition, medicinal applications, and leaf morphoanatomy. Some relationships between essential oil composition of these species and important biological activities are presented. Useful parameters for the certifi cation of the essential oils are also highlighted. Key words Melaleuca, Myrtaceae, volatile oils, biological activities, leaf morphoanatomy 1 Federal University of Viçosa, Chemistry Department, 36570-000 Viçosa, MG, Brazil e-mail: [email protected] 2 Universidade Federal de Minas Gerais, Department of Chemistry, (ICEx), Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil 3 Federal University of São João Del-Rei, Campus de Sete Lagoas, 35701-970, Sete Lagoas-MG, Brazil 4 Federal University of Viçosa, Plant Biology Department, 36570-000, Viçosa, MG, Brazil 5 Federal University of Viçosa, Forest Engineering Department, 36570-000, Viçosa, MG, Brazil Received: October 27, 2011 | Accepted: December 18, 2012 ACKNOWLEDGEMENTS We thank the Brazilian Agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Supe- rior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for their financial support.
    [Show full text]
  • Flora and Vegetation Of
    __________________________________________________________________________________________ FLORA AND VEGETATION OF AVIVA LEASE AREA Prepared for: URS Australia Pty Ltd on behalf of Aviva Corporation Ltd Prepared by: Mattiske Consulting Pty Ltd February 2009 MATTISKE CONSULTING PTY LTD URS0808/195/08 MATTISKE CONSULTING PTY LTD __________________________________________________________________________________________ TABLE OF CONTENTS Page 1. SUMMARY ................................................................................................................................................ 1 2. INTRODUCTION ...................................................................................................................................... 3 2.1 Location .............................................................................................................................................. 3 2.2 Climate ................................................................................................................................................ 3 2.3 Landforms and Soils ........................................................................................................................... 4 2.4 Vegetation ........................................................................................................................................... 4 2.5 Declared Rare, Priority and Threatened Species ................................................................................. 4 2.6 Threatened Ecological Communities (TEC’s) ...................................................................................
    [Show full text]