Sedimentary Structures & Palaeocurrent Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sediment and Sedimentary Rocks
Sediment and sedimentary rocks • Sediment • From sediments to sedimentary rocks (transportation, deposition, preservation and lithification) • Types of sedimentary rocks (clastic, chemical and organic) • Sedimentary structures (bedding, cross-bedding, graded bedding, mud cracks, ripple marks) • Interpretation of sedimentary rocks Sediment • Sediment - loose, solid particles originating from: – Weathering and erosion of pre- existing rocks – Chemical precipitation from solution, including secretion by organisms in water Relationship to Earth’s Systems • Atmosphere – Most sediments produced by weathering in air – Sand and dust transported by wind • Hydrosphere – Water is a primary agent in sediment production, transportation, deposition, cementation, and formation of sedimentary rocks • Biosphere – Oil , the product of partial decay of organic materials , is found in sedimentary rocks Sediment • Classified by particle size – Boulder - >256 mm – Cobble - 64 to 256 mm – Pebble - 2 to 64 mm – Sand - 1/16 to 2 mm – Silt - 1/256 to 1/16 mm – Clay - <1/256 mm From Sediment to Sedimentary Rock • Transportation – Movement of sediment away from its source, typically by water, wind, or ice – Rounding of particles occurs due to abrasion during transport – Sorting occurs as sediment is separated according to grain size by transport agents, especially running water – Sediment size decreases with increased transport distance From Sediment to Sedimentary Rock • Deposition – Settling and coming to rest of transported material – Accumulation of chemical -
Determination of Paleocurrent Directions Based on Well Logging Technology Aiming at the Lower Third Member of the Shahejie Forma
water Article Determination of Paleocurrent Directions Based on Well Logging Technology Aiming at the Lower Third Member of the Shahejie Formation in the Chezhen Depression and Its Implications Yangjun Gao 1,2, Furong Li 2,3, Shilong Shi 2 and Ye Chen 1,4,* 1 School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; [email protected] 2 Shengli Oilfield Branch Company, SINOPEC, Dongying 257001, China; [email protected] (F.L.); [email protected] (S.S.) 3 Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China 4 School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China * Correspondence: [email protected] Abstract: The Bohai Bay basin, mainly formed in the Cenozoic, is an important storehouse of groundwater in the North China Plain. The sedimentary deposits transported by paleocurrents often provided favorable conditions for the enrichment of modern liquid reservoirs. However, due to limited seismic and well logging data, studies focused on the macroscopic directions of paleocurrents L are scarce. In this study, we obtained a series of well logging data for the sedimentary layers of Es3 Formation in the Chezhen depression. The results indicate the sources of paleocurrents from the northeast, northwest, and west to a center of subsidence in the northern Chezhen depression at that Citation: Gao, Y.; Li, F.; Shi, S.; time. Based on the well testing data, the physical properties of the layers from Es L Formation in Chen, Y. Determination of 3 Paleocurrent Directions Based on this region were generally poor, but two abnormal overpressure zones were found at 3700–3800 m Well Logging Technology Aiming at and 4100–4300 m deep intervals, suggesting potential high-quality underground liquid reservoirs. -
Sedimentary Rocks
OCN 201 Coastal Sediments Lab Sediment Particle Size Distribution and Turbidity Flows Although this laboratory will pertain to oceanic sediments, similar processes can also be observed on land and in other aquatic systems (i.e., lakes, wetlands). This reading should supplement your understanding of the processes that affect particle size distribution across a marine system (i.e., barrier reef). Next week’s laboratory exercises will focus on demonstrating some of these principles, and give you experience in quantifying particle size distributions across a barrier reef. Sediments Sediment, by definition, is any loose or fragmented material. Hence, loose sand, shells and their fragments, dead leaves, and mud can all be categorized as sediment. All sediments have a source from which they originate. Pelagic sediments are those found in the open ocean, and whose origin cannot be traced to a specific landmass. They include red clay, radiolarian ooze, diatom ooze, and calcareous (nanofossil or foraminefera) ooze (see images of selected biogenic tests – see page 8 of Laboratory#5). Terrigenous sediments are those whose origin is traceable to a specific land (terra) area. They include a series of variously colored muds, volcanic debris, coral muds, and turbidity flow deposits. Lithogenous sediments are derived from weathering of rock (lithos) material, but their source cannot be readily identified. Red clay in the abyssal ocean is lithogenous. Much of the sediment on the sea floor of the open ocean is lithogenous clay that was transported thousands of miles from its origin. Calcareous sediments are found over oceanic rises and platforms, whereas red clays are typically distributed in the deep ocean basins. -
Origin and Evolution Processes of Hybrid Event Beds in the Lower Cretaceous of the Lingshan Island, Eastern China
Australian Journal of Earth Sciences An International Geoscience Journal of the Geological Society of Australia ISSN: 0812-0099 (Print) 1440-0952 (Online) Journal homepage: http://www.tandfonline.com/loi/taje20 Origin and evolution processes of hybrid event beds in the Lower Cretaceous of the Lingshan Island, Eastern China T. Yang, Y. Cao, H. Friis, K. Liu & Y. Wang To cite this article: T. Yang, Y. Cao, H. Friis, K. Liu & Y. Wang (2018) Origin and evolution processes of hybrid event beds in the Lower Cretaceous of the Lingshan Island, Eastern China, Australian Journal of Earth Sciences, 65:4, 517-534, DOI: 10.1080/08120099.2018.1433236 To link to this article: https://doi.org/10.1080/08120099.2018.1433236 Published online: 16 May 2018. Submit your article to this journal Article views: 9 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=taje20 AUSTRALIAN JOURNAL OF EARTH SCIENCES, 2018 VOL. 65, NO. 4, 517–534 https://doi.org/10.1080/08120099.2018.1433236 Origin and evolution processes of hybrid event beds in the Lower Cretaceous of the Lingshan Island, Eastern China T. Yang a,b,c, Y. Cao a, H. Friisc, K. Liu a and Y. Wanga aSchool of Geosciences, China University of Petroleum, Qingdao, 266580, PR China; bShandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266580, Shandong, PR China; cDepartment of Geoscience, Aarhus University, Høegh-Guldbergs Gade 2, DK-8000 Aarhus C, Denmark ABSTRACT ARTICLE HISTORY On the basis of detailed sedimentological investigation, three types of hybrid event beds (HEBs) Received 13 September 2017 together with debrites and turbidites were distinguished in the Lower Cretaceous sedimentary Accepted 15 January 2018 – sequence on the Lingshan Island in the Yellow Sea, China. -
Cambrian Stratigraphy and Depositional History of the Northern Indian Himalaya, Spiti Valley, North-Central India
Cambrian stratigraphy and depositional history of the northern Indian Himalaya, Spiti Valley, north-central India Paul M. Myrow† Department of Geology, Colorado College, Colorado Springs, Colorado 80903, USA Karl R. Thompson Nigel C. Hughes Department of Earth Sciences, University of California, Riverside, California 92521, USA Timothy S. Paulsen Department of Geology, University of Wisconsin, Oshkosh, Wisconsin 54901, USA Bryan K. Sell Department of Earth Sciences, University of California, Riverside, California 92521, USA Suraj K. Parcha Wadia Institute of Himalayan Geology, Dehra Dun, Uttranchal 248001, India ABSTRACT facies thicknesses. This paleoenvironmental published stratigraphic or structural evi- reconstruction contradicts previous interpre- dence exists for such an uplift to the south for Recent work on Himalayan tectonics indi- tations of this unit that range from deep-sea either the Greater or the Lesser Himalaya cates that prior to the Cenozoic collision of fl ysch to shallow-marine tidalites. In addi- lithotectonic zones. India and Asia, an enigmatic Cambrian– tion, our paleoenvironmental analysis and Ordovician event may have strongly infl u- paleocurrent data suggest that the upper- Keywords: Cambrian, Parahio Formation, enced the regional geology of the Himalaya. most Lower to Middle Cambrian deposits of India, Tethyan Himalaya, stratigraphy. Stratigraphic and sedimentological analyses the Lesser and Tethyan Himalaya are parts of well-preserved Cambrian deposits are of the same ancient northward-prograd- INTRODUCTION critical for understanding the nature of this ing, fl uvial-deltaic depositional system of the early tectonic event and its infl uence on the paleo-Tethys margin of India. The Himalaya consist of three principal later tectonic evolution of the Himalaya. -
Gems (Geologic Map Schema)—A Standard Format for the Digital Publication of Geologic Maps
GeMS (Geologic Map Schema)—A Standard Format for the Digital Publication of Geologic Maps Chapter 10 of Section B, U.S. Geological Survey Standards, of Book 11, Collection and Delineation of Spatial Data Techniques and Methods 11–B10 U.S. Department of the Interior U.S. Geological Survey Cover. Geologic map of the western United States and surrounding areas, extracted from the “Geologic map of North America” (Reed and others, 2005; database from Garrity and Soller, 2009). Image downloaded from the National Geologic Map Database (https://ngmdb.usgs.gov/Prodesc/proddesc_86688.htm). GeMS (Geologic Map Schema)—A Standard Format for the Digital Publication of Geologic Maps By the U.S. Geological Survey National Cooperative Geologic Mapping Program Chapter 10 of Section B, U.S. Geological Survey Standards, of Book 11, Collection and Delineation of Spatial Data Techniques and Methods 11–B10 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DAVID BERNHARDT, Secretary U.S. Geological Survey James F. Reilly II, Director U.S. Geological Survey, Reston, Virginia: 2020 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. -
Sedimentology and Stratigraphy Measuring Sedimentary Structures for Paleocurrent Reconstruction
EAS 423: Sedimentology and Stratigraphy Measuring Sedimentary Structures for Paleocurrent Reconstruction Objectives: Today’s exercise will incorporate several field data collection skills with some common analytical tools to help us develop our abilities to gain valuable information from sediment structures commonly found in our region. During this exercise, which will admittedly take more than just today, we will complete the following tasks: 1. Use compasses in the field to measure sedimentary bedding and structures; 2. Practice observing and sketching features at various scales; 3. Take detailed, accurate field notes to document our data and experiences, including grain size and rock descriptions, stratigraphic relationships, and sedimentary structures; 4. Compile directional (orientation) data using a Rose diagram; 5. Use field measurements and rose diagram results for paleocurrent reconstruction. Background: As most of you know, the Allegheny Plateau and the Appalachian Basin are underlain by the Catskill Delta, which contains a diverse suite of sedimentary rocks, indicative of their depositional environment (Figure 1). During the late Silurian through the Devonian, the Acadian Orogeny built up an early stage of the Appalachian Mountains. Sediments were shed off the western slopes of this mountain belt into an inland sea, creating thick sequences of shales, limestones, and sandstones. Later, during the Pennsylvanian Period, these sediments were buried even deeper as Pangea was uplifting what we recognize as the modern Appalachian Mts. during the Alleghenian Orogeny. That is a lot of exciting geology! But how do we know all this? We’ve discussed basic sedimentology and stratigraphy at length, and the role that transgressions and regressions play in sedimentary environments. -
Page - Paleo Lab #4 - Sedimentary Environments
page - Paleo Lab #4 - Sedimentary Environments 1. CHARACTERISTICS OF SEDIMENT Grain size and grain shape: The sizes and shapes of sedimentary particles (grains) are modified considerably during their transportation to the site of deposition. For example, abrasion of particles tends to round off jagged edges and corners, producing smaller grains with smooth, rounded surfaces and spherical shapes. Thus, a sand grain eroded from a hill in Wisconsin and carried down the Mississippi River will be smaller, better rounded, and more nearly spherical when it gets to New Orleans than it was when it passed Memphis. In addition, the higher the velocity (or energy) of the transporting agent (wind, water currents), the larger the grains that can be moved. An example of this is commonly seen in marine environments where, as the distance from shore increases, particle size of the sediments decreases due to the decreasing energy of water currents and increasing distance from the sediment source (i.e., land). Finally, continuous transportation tends to produce a well-sorted sediment in which all of the particles are more or less of the same size. A good example is a beach, where the constant swash and backwash of waves tend to produce well-sorted sand deposits. Mineral composition: Detrital grains (composed of particles derived from pre-existing rocks), which occur in a variety of sizes, (e.g., boulders, pebbles, sand, silt, and mud) may be found in almost any environment. The percentage of quartz present is commonly taken as a measure of the maturity (degree of weathering) of the detrital sediment prior to deposition. -
Sedimentary Structures
E-PG PATHSHALA IN EARTH SCIENCE Content Writers Template 1. Details of Module and its Structure Module details Subject Name Earth Science Paper Name Stratigraphy and sedimentology Module Name/Title Sedimentary Structures Module Id ES 251 Pre-requisites Before learning this module, the users should be aware of The types of sedimentary rocks Mode of formation of sedimentary rocks Sediment generation, Transportation and depositional processes Objectives Objectives: The aim of this lesson is to introduce the sedimentary structures. The objectives of learning this module are to highlight the following: a) Identification of various structures on sedimentary rocks b) Mechanism of structures formed in sedimentary rocks c) Pre and post depositional process of sediments. After attending this module, the learner will be able to explain about the various types of sedimentary structures and its importance in stratigraphic construction and geologic interpretation. Sedimentary structures are key to defining depositional environments, geological history, and surface processes. Keywords bedding, deformation, deposition, erosion, interbed, intrabed, sediment 2. Structure of the Module-as Outline : Table of Contents only ( topics covered with their sub-topics) 1. INTRODUCTION 2. PRIMARY STRUCTURES 2.1. PREDEPOSITIONAL SEDIMENTARY STRUCTURES 2.1.1.Channels 2.1.2.Sole marks 2.1.2.a. Scour-and-fill 2.1.2.b. Tool Marks 2.1.3.Flute Marks 1 2.1.4.Groove Marks 2.2. SYNDEPOSITIONAL (INTRABED) STRUCTURES 2.2.1. Bedding and lamination 2.2.1.a. Massive Bedding 2.2.1.b. Flat-Bedding 2.2.2. Graded Bedding 2.2.3. Cross-Bedding 2.2.4. Ripples and Cross-Lamination 2.2.5. -
Sedimentary Structures Mud Cracks
1 Summary of common chemical sedimentary rocks nLimestone (organic and inorganic), coquina, and chalk nChert nEvaporites nCoal - today 2 8) Coal (organic) LIGNITE Soft, brown coal; moderate energy 3 Table 6.2 of textbook. Rocks to know 4 SEDIMENTARY ENVIRONMENTS MARINE AND CONTINENTAL 5 Transitional (shoreline) environments Tidal flats, Deltas, Estuaries 6 Grand Canyon 7 Sedimentary facies 8 Sedimentary structures nProvide information useful in the interpretation of Earth history 9 Beds of ripple marks 10 “fossil” ripple marks 11 Symmetrical and assymetrical ripples 12 Formation of cross beds 2) Cross-bedding Strata (beds) are inclined at an angle to the horizontal bedding plane 13 Environments in which ripple marks and cross bedding occurs nSand dunes in deserts and beaches nSandy ocean beaches nPoint bars in river channels 14 Cross bedding in ancient sand dunes 15 Graded Bedding 16 Graded beds Particle size varies from coarse to fine 17 Mud cracks 1 18 What sedimentary environment is represented by these fossil mud cracks? 19 Fossils: Evidence of past life nBy definition, fossils are the traces or remains of prehistoric life now preserved in rock 20 Some types of fossils nOriginal mineral matter nAltered e.g. original mineral replaced by another mineral nCasts and molds nFoot prints nTrails nBurrows 21 Spider preserved in amber 22 Natural casts of shelled invertebrates 23 Dinosaur footprint in limestone 24 Animal trail 25 Geologically fossils are important for several reasons nAid in interpretation of the geologic past nServe as important time indicators nAllow for correlation of rocks from different places 26 Example: Using interpretations of sedimentary environments and fossil assemblages to understand the ancient climate of Antarctica 27 Map of Antarctica 28 When did the major Ice sheets come into existence? 29 The effect of melting about 75% of the West Antarctic 2 Ice Sheet 30 Lat. -
Grain-Size Characteristics of Turbidites Geological Society, London
Geological Society, London, Special Publications Grain-size characteristics of turbidites Kate Kranck Geological Society, London, Special Publications 1984; v. 15; p. 83-92 doi:10.1144/GSL.SP.1984.015.01.05 Email alerting click here to receive free email alerts when new articles cite this service article Permission click here to seek permission to re-use all or part of this article request Subscribe click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection Notes Downloaded by Oregon State University on 17 November 2010 © 1984 Geological Society of London Grain-size characteristics of turbidites Kate Kranck S U M M A R Y: Detailed sampling using a very small sample size and grain-size analysis with a Coulter Counter of three fine-grained turbidites enabled a distinction to be made between the well-sorted single-grain Stokes'-deposited and unsorted "whole suspension' floc-deposited grain-size populations. The results indicate that each turbidite is a continuous sequence deposited from the same source suspension. Particles settle to the bottom as flocculated masses. Initially flocs are broken up by near-bottom shear forces and only the coarsest silt and sand remains on the bed. The remaining mud forms a temporary mud suspension near the bottom which reflocculates and intermittently deposits at some critical concentration producing mud interlayers between silt laminae. Decrease in current velocity eventually allows simultaneous deposition of single grains and flocs with the latter becoming progressively more abundant resulting in formation of graded beds. Eventually, all deposition occurs in the form of mud flocs and a massive sediment results. -
UC Riverside UC Riverside Electronic Theses and Dissertations
UC Riverside UC Riverside Electronic Theses and Dissertations Title Integrated Geochronologic, Geochemical, and Sedimentological Investigation of Proterozoic- Early Paleozoic Strata: From Northern India to Global Perspectives Permalink https://escholarship.org/uc/item/86m796cn Author McKenzie, Neil Ryan Publication Date 2012 Supplemental Material https://escholarship.org/uc/item/86m796cn#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Integrated Geochronologic, Geochemical, and Sedimentological Investigation of Proterozoic-Early Paleozoic Strata: From Northern India to Global Perspectives. A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Geological Sciences by Neil Ryan McKenzie December 2012 Dissertation Committee: Dr. Nigel C. Hughes, Chairperson Dr. Peter M. Sadler Dr. Timothy W. Lyons Copyright by Neil Ryan McKenzie 2012 The Dissertation of Neil Ryan McKenzie is approved: ________________________________________________ ________________________________________________ ________________________________________________ Committee Chairperson University of California, Riverside ABSTRACT OF THE DISSERTATION Integrated Geochronologic, Geochemical, and Sedimentological Investigation of Proterozoic-Early Paleozoic Strata: From Northern India to Global Perspectives by Neil Ryan McKenzie Doctor of Philosophy, Graduate Program in Geological Sciences University of California,