<<

SciBooNE, A Neutrino Cross Section Measurement Experiment at

1. Motivation 2. SciBooNE detector 3. Cross section measurements 4. Conclusion

Teppei Katori for the SciBooNE collaboration Massachusetts Institute of Technology New Trends in High Energy Physics, Alushta, Ukraine, Sep. 6, 2011 1. Motivation

2. SciBooNE detector

3. Cross section measurements

4. Conclusion

09/06/11 Teppei Katori, MIT 2 1. Introduction

Neutrino oscillation experiments

We compare data and MC neutrino interaction rate, to find

!"#$% &'()%#*$+ ! # ",-./+ " ")'*00 0&) %#*$+ To extract accurate information, accurate cross section (and flux) knowledge is essential

Neutrino oscillation is a function of neutrino energy and flight distance

% /"-$ ( !"! " ! $ = %&'( (# %&'( # %&'( ')+(,$-( "#.( $ *+! µ # )* (* ' *) * & 0"1#.$)

3 -3 To measure θ13, L/E needs to be ~10 (because Δm31~10 ), T2K’s choice is

L = 295 km E ~ 600 MeV

It is important to know the neutrino cross sections around 600 MeV

09/06/11 Teppei Katori, MIT 3 1. Introduction

- First long baseline neutrino oscillation experiment dedicated to θ13 measurement - >500 collaborators, 12 countries

09/06/11 Teppei Katori, MIT 4 1. Introduction

Neutrino cross section measurement world data

old data T2K - sparse, large error - many channels contribute - old data and modern data disagree QE

DIS

resonance

modern data

09/06/11 Teppei Katori, MIT 5 1. Introduction

o NCπ for νe background for θ13 measurement - This is the biggest misID background for ν signal signal e νe e W n p

νe appearance+backgrounds misID (NCπo event, etc)

beam intrinsic νe ν ν Z T2K collabo. N N πo γ Background γ

09/06/11 Teppei Katori, MIT 6 1. Introduction

νµ background for precise Δm31 measurement W- e need precise measurement of θ23 and Δm31, by νµ disappearance measurement

% /"-$ ( !"! " ! $ = %&'( (# %&'( # %&'( ')+(,$-( "#.( $ *+! µ # )* (* ' *) * & 0"1#.$) % /"-$ ( !"! " ! $ = %&'( (# %&'( ')+(,$-( c "#.( $ * µ µ (* ' *( * & 0"1#.$)

T2K collabo. mis-reconstruction of neutrino energy 2 spoils ν disappearance signals sin 2θ23 µ

T2K collabo. Reconstructed neutrino energy ! + ! " " +µ# at far detector µ

2 Δm 31 background nuclear pion absorption ! + ! " ! +µ# + $+ Reconstructed neutrino energy (GeV) µ

09/06/11 Teppei Katori, MIT 7 1. Introduction

Booster Neutrino Beam (BNB) (JPARC) - It provides similar energy with T2K - Ideal place to measure T2K related neutrino cross section before (BNB) Goal - precise neutrino cross section measurements - CC inclusive, CCπ+ production rate, NCπo production rate, etc

Detector requirement - fine grained

09/06/11 Teppei Katori, MIT 8 1. Motivation

2. SciBooNE detector

3. Cross section measurements

4. Conclusion

09/06/11 Teppei Katori, MIT 9 2. SciBooNE detector SciBooNE detector The SciBooNE detector consists of

3 major components Muon Range Detector (MRD)

ν beam

Electron Catcher (EC) SciBar

09/06/11 Teppei Katori, MIT 10 2. SciBooNE detector

SciBar detector - Extruded scintillators with WLS fiber readout by multi-anode PMT - 14,366 channel x-y tracker SciBar

Extruded scintillator (15t) ν Multi-anode PMT (64 ch.) 3m

Wave-length 09/06/11 shifting fiber Teppei Katori, MIT 1.7m 11 2. SciBooNE detector

PMT Extruded scintillation bar charged - Polystyrene (PS), 1% PPO and 0.03% POPOP particle - TiO2 is merged in outer layer as a reflector scintillation - ~20 p.e. for MIP particle light (blue) shifted light - K2K, MINOS, SciBooNE, MINERvA, T2K... (green) SciBar

Extruded scintillator production machine (Fermilab)

09/06/11 Teppei Katori, MIT 12 2. SciBooNE detector

Wave length shifting (WLS) fiber - absorb blue light (430 nm), emit green light (476 nm) - attenuation ~350 cm

SciBar

WLS fiber optical fiber

09/06/11 Teppei Katori, MIT 13 2. SciBooNE detector

Wave length shifting (WLS) fiber - absorb blue light (430 nm), emit green light (476 nm) - attenuation ~350 cm

SciBar

absorption reemission captured by fiber

WLS fiber optical fiber

09/06/11 Teppei Katori, MIT 14

2. SciBooNE detector

Electron catcher (EC) - Lead with scintillation fiber “spaghetti” calorimeter to see electron - 11 radiation length, 256 channels Fibers EC MRD

ν Beam cm 8 Readout Cell 4 cm

Muon Range Detector (MRD) - Iron plates with X-Y scintillator panels - measure the muon momentum up to 0.9GeV - ~10% momentum resolution (362 channels) 09/06/11 Teppei Katori, MIT 16 SciBar 2. SciBooNE detector all around the world EC

SciBooNE CHORUS SciBar Producon (CERN, Switzerland) HARP (Fermilab, USA) (Fermilab, USA) 2007 1994 (CERN, Switzerland) 2003 2001

EC Producon (INFN, ) K2K 1991 (KEK, ) Solar neutron (Puebla, Mexico) 2003 2011

09/06/11 Teppei Katori, MIT 17 SciBar 2. SciBooNE detector all around the world EC

SciBooNE CHORUS SciBar Producon (CERN, Switzerland) HARP (Fermilab, USA) (Fermilab, USA) 2007 1994 (CERN, Switzerland) 2002 2001

EC Producon (INFN, Italy) K2K 1992? (KEK, Japan) Solar neutron (Puebla, Mexico) 2003 2011

DOE‐wide Polluon Prevenon Star (P2 Star) Award

09/06/11 Teppei Katori, MIT 18 SciBar 2. SciBooNE detector all around the world EC

SciBooNE CHORUS SciBar Producon (CERN, Switzerland) HARP (Fermilab, USA) (Fermilab, USA) 2007 1994 (CERN, Switzerland) 2002 2001

SciBooNE time scale

EC Producon Mar. 2005 K2K ends (INFN, Italy) Nov. 2005 SciBooNE is proposed K2K 1992? Dec. 2005 Approved (KEK, Japan) Solar neutron Jul. 2006 SciBar arrived from Japan 2003 (Puebla, Mexico) Sep. 2006 Groundbreaking 2011 Apr. 2007 SciBar assembly completed Jun. 2007 SciBooNE started to beam data Aug. 2008 Run end

In SciBooNE, students can work all components of the experiment, including hardware, software, DOE‐wide Polluon Prevenon Star (P2 Star) Award analysis, and the publication

09/06/11 Teppei Katori, MIT We need more exriements like this! 19 1. Motivation

2. SciBooNE detector

3. Cross section measurements

4. Conclusion

09/06/11 Teppei Katori, MIT 20 3. Neutrino interactions in SciBooNE

CCQE (Charged Current Quasi-elastic) interaction

ν+p→n+µ+ ν+n→p+µ- candidate μ candidate n p p

μ μ

SciBar EC MRD SciBar EC MRD

09/06/11 Teppei Katori, MIT 21 3. Cross section results of SciBooNE

CCQE cross section CC inclusive cross section - highest event rate in this energy - no nuclear model dependence - SciBooNE measures higher cross - SciBooNE measures higher cross section than section than old data, but consistent old data, but consistent with NOMAD? with MiniBooNE

Publication in preparation PRD83(2010)012005

09/06/11 Teppei Katori, MIT 22 3. Cross section results of SciBooNE

Coherent pion production NCπο production cross section - ~10% of pion production channel. - the most important misID background

- isospin symmetry suggests coherent for νe appearance search pion production, CC:NC=2:1 - coherent fraction is carefully studied + - K2K measured no CC coherent π PRD81(2010)033004 - SciBooNE can utilize energy deposit PRD81(2010)111102 around vertex, “vertex activity”, and confirmed K2K result PRD78(2008)112004

09/06/11 Teppei Katori, MIT 23 3. Oscillation physics SciBooNE

Muon angles PRD84(2011)012009

νµ-flux from Kaon decay 1 track - νe from K-decay has large error (~40%) on oscillation total analysis of MiniBooNE. Kaon

Since high energy νµ at SciBooNE is dominated from K- decay (=multiple tracks), SciBooNE can measure Kaon production rate by template fit. - SciBooNE measures Kaon production rate with ~13% error in their acceptance range (MiniBooNE Kaon production error is 40%). 2 track total Kaon

3 track total Kaon

09/06/11 Teppei Katori, MIT 24 3. Oscillation physics SciBooNE

MiniBooNE-SciBooNE combined νµ- disappearance search - they share many systematics i. same neutrino beam ii. same target material (=carbon) so, simultaneous analysis of both data set has higher power for oscillation analysis.

→ joint analysis can push

νµ-disappearance limit. ArXiv:1106.5685

MiniBooNE only prediction Mini/SciBooNE joint analysis

09/06/11 Teppei Katori, MIT 25 4. Conclusion

SciBooNE is a neutrino cross section measurement experiment around 1GeV, where the most important energy scale for T2K experiment in Japan.

We started to take data in June 2007, and completed on Aug. 2008, and we collected 2.52x1020 POT total

Physics results here are used for T2K and MiniBooNE.

09/09/2011 Teppei Katori, MIT 26 SciBooNE collaboration Universitat Autonoma de Barcelona University of Cincinnati University of Colorado Columbia University Fermi National Accelerator Laboratory High Energy Accelerator Research Organization (KEK) Imperial College London Indiana University Institute for Cosmic Ray Research (ICRR) Kyoto University Los Alamos National Laboratory Louisiana State University Purdue University Calumet Università degli Studi di Romand INFN-Roma Saint Mary’s University of Minnesota Tokyo Institute of Technology Universidad de Valencia

09/09/2011 Дякую за вашу увагуTeppei Katori, MIT ! 27