First Result from Sciboone
Total Page:16
File Type:pdf, Size:1020Kb
Measurements of Neutral Current Neutral Pion Production by Neutrinos at SciBooNE Morgan O. Wascko Imperial College London 9 June, 2010 Imperial HEP Seminar Contents • Introduction • SciBooNE Description • Pion Production by Neutrinos • SciBooNE NCπ0 Measurements • Conclusion M.O. Wascko Imperial HEP Seminar Introduction Motivation if neutrinos have mass... a neutrino that is produced as a νμ + + • (e.g. π → µ νµ) might some time later be observed as a νe - • (e.g. νe n → e p) + ν - π μ νe e X μ+ ν detector ν source M.O. Wascko Imperial HEP Seminar 4 Neutrino Oscillation • Consider only two types ν cos θ sin θ ν µ = 1 ν sin θ cos θ ν of neutrinos e − 2 • If weak states differ from ν1 νµ mass states ν2 • i.e. (νµ νe)≠(ν1 ν2) ϴ νe • Then weak states are mixtures of mass states iE t iE t ν (t) = sin θ ν e− 1 + cos θ ν e− 2 | µ − | 1 | 2 • Probability to find νe P (ν ν )= ν ν (t) 2 osc µ → e | e| µ | when you started with νµ M.O. Wascko Imperial HEP Seminar 5 Neutrino Oscillation • In units that experimentalists like: 1.27∆m2(eV2)L(km) P (ν ν ) = sin2 2θ sin2 osc µ → e E (GeV) ν • Fundamental Parameters • mass squared differences • mixing angle • Experimental Parameters • L = distance from source to detector • E = neutrino energy M.O. Wascko Imperial HEP Seminar 6 Neutrino Oscillation Observations Super-K K2K 41.4m 2 2 ν1ν2 ν3 Neutrino masses (Δm12 , Δm23 ) νe 39m Mixing Angles ( , ) νµ ντ θ12 θ23 2 Δm 23 2 Δm 12 θ13 → δ KamLAND SNO MINOS M.O. Wascko Imperial HEP Seminar 7 T2K Next Steps νe ν να = Uαi νi 1 ν ∑ ν µ | i | 2 ν3 NOνA ντ U atmospheric Cross Mixing solar Discover the last oscillation channel → θ13 CP violation in the lepton sector (ν,ν) → δ non-zero? (Matter/antimatter asymmetry) Test of the standard ν oscillation scenario (UMNS) 2 → Precise measurements of ν oscillations (±Δm23 , θ23) M.O. Wascko Imperial HEP Seminar 8 T2K Next Steps νe ν να = Uαi νi 1 ν ∑ ν µ | i | 2 ν3 NOνA ντ iδ Ue1 Ue2 Ue3 10 0 c13 0 s13e− c12 s12 0 U= Uµ1 Uµ2 UUµ3 = 0 c23 s23 010 s12 c12 0 iδ − Uτ1 Uτ2 Uτ3 0 s23 c23 s e− 0 c 001 − − 13 13 atmospheric Cross Mixing solar Discover the last oscillation channel → θ13 CP violation in the lepton sector (ν,ν) → δ non-zero? (Matter/antimatter asymmetry) Test of the standard ν oscillation scenario (UMNS) 2 → Precise measurements of ν oscillations (±Δm23 , θ23) M.O. Wascko Imperial HEP Seminar 8 accelerator Oscillation Experiments Gigantic Intense beam detector protons M.O. Wascko Imperial HEP Seminar 9 accelerator Oscillation Experiments Gigantic Intense beam detector π, π, π, π, Κ protons ν, ν, ν, ν M.O. Wascko Imperial HEP Seminar 9 accelerator Oscillation Experiments Gigantic Intense beam detector π, π, π, π, Κ protons ν, ν, ν, ν HARP Φν(E) MIPP SHINE M.O. Wascko Imperial HEP Seminar 9 accelerator Oscillation Experiments Gigantic Intense beam detector π, π, π, π, Κ oscillation protons ν, ν, ν, ν σ σ HARP Φν(E) MIPP SHINE near far σ(E)⋅Φν (E) ⇔ σ(E)⋅Φν (E) ν µ proton M.O. Wascko Imperial HEP Seminar 9 accelerator Oscillation Experiments Gigantic Intense beam detector π, π, π, π, Κ oscillation protons ν, ν, ν, ν σ σ HARP Φν(E) MIPP SHINE near far σ(E)⋅Φν (E) ⇔ σ(E)⋅Φν (E) MiniBooNE K2K-ND ν µ SciBooNE MINERνA proton M.O. Wascko Imperial HEP Seminar 9 Background Processes ν ν →ν e appearance ( μ e) νμ disappearance (νμ→νx) Signal νe CC-QE Signal νμ CC-QE ν µ νe e µ W W n p n p 0 + Background NC-1π Background νμ CC-1π ν ν µ νµ π0γ+γ Z W π+ N N N N Need to understand these processes well M.O. Wascko Imperial HEP Seminar 10 Search for θ13 νe appearance γ 0 • Subdominant oscillation π γ 2 P(νµ→νe) ~ sin 2θ13 • Major background from NCπ0 events • γ rings mimic e rings in Super-K • Must reduce uncertainty on NCπ0 cross section M.O. Wascko Imperial HEP Seminar 11 First T2K Beam Event! Effect of NCπ0 νµ νµ S. Mine Z0 0 - stat. only p,n π - δBG=10% p,n sensitivity - δBG=20% 13 θ 2 2 sin • Want to reduce uncertainty in σ (NCπ0) from 20% to 10% • improvement of factor of 2 in ultimate T2K sensitivity to θ13 • or 2.5 years vs. 4 years to 10-2 1 2 3 4 5 Exposure /(22.5kt x yr) M.O. Wascko Imperial HEP Seminar 13 ν-nucleus cross sections Future neutrino oscillation experiments need precise knowledge of neutrino cross sections near 1 GeV Data from old experiments (1970~1980) Low statistics Systematic Uncertainties New data from K2K, MiniBooNE, SciBooNE revealing surprises MINOS K2K, NOvA T2K, MiniBooNE, SciBooNE M.O. Wascko Imperial HEP SeminarSuper-K atmospheric ν 14 SciBooNE Description SciBooNE Experiment (FNAL E954) Booster Neutrino Beam • Precise measurements of ν- andν-nucleus σs near 1 GeV • Essential for future neutrino oscillation experiments • Neutrino energy spectrum measurements MiniBooNE/SciBooNE joint ν disappearance • μ ν &ν constraint for MiniBooNE • e e M.O. Wascko Imperial HEP Seminar 16 SciBooNE Collaboration SciBooNE, 2006 Universitat Autonoma de Barcelona University of Colorado, Boulder Columbia University Fermi National Accelerator Laboratory High Energy Accelerator Research Organization (KEK) Imperial College London Indiana University Institute for Cosmic Ray Research (ICRR) Kyoto University Los Alamos National Laboratory Louisiana State University Massachusetts Institute of Technology Purdue University Calumet Università di Roma "La Sapienza“ and INFN Saint Mary's University of Minnesota Tokyo Institute of Technology Unversidad de Valencia ~60 physicists Spokespersons: 5 countries 17 institutions M.O. Wascko (Imperial), T. Nakaya (Kyoto) M.O. Wascko Imperial HEP Seminar 17 SciBooNE Collaboration SciBooNE, 2006 Universitat Autonoma de Barcelona University of Colorado, Boulder Columbia University Fermi National Accelerator Laboratory High Energy Accelerator Research Organization (KEK) Imperial College London Indiana University Institute for Cosmic Ray Research (ICRR) Kyoto University Los Alamos National Laboratory Louisiana State University Massachusetts Institute of Technology Purdue University Calumet Università di Roma "La Sapienza“ and INFN Saint Mary's University of Minnesota Tokyo Institute of Technology Unversidad de Valencia ~60 physicists Spokespersons: 5 countries 17 institutions M.O. Wascko (Imperial), T. Nakaya (Kyoto) M.O. Wascko Imperial HEP Seminar 17 Booster Proton accelerator 8 GeV protons sent to target Target Hall Beryllium target: 71cm long 1cm diameter Resultant mesons focused with magnetic horn Reversible horn polarity To MiniBooNE 50m decay volume SciBooNE Mesons decay to μ & νμ Short decay pipe minimizes μ→νedecay SciBooNE located 100m from the beryllium target SciBooNE Booster Neutrino Beam Predicted neutrino flux at SciBooNE (neutrino mode) • mean neutrino energy ~0.7 GeV • 93% pure νμ beam • νμ (6.4%) • νe +νe (0.6%) • Good match to T2K • antineutrino beam obtained by reversing horn polarity M.O. Wascko Imperial HEP Seminar 19 Booster Neutrino Beam Predicted neutrino flux at SciBooNE (neutrino mode) • mean neutrino energy ~0.7 GeV • 93% pure νμ beam • νμ (6.4%) • νe +νe (0.6%) • Good match to T2K • antineutrino beam obtained by reversing horn polarity M.O. Wascko Imperial HEP Seminar 19 Neutrino Event Generator (NEUT) • QE • Llewellyn Smith, Smith-Moniz 2 • MA=1.2 (GeV/c) • PF=217 MeV/c, EB=27 MeV (for Carbon) • Resonant π • Rein-Sehgal (2007) 2 • MA=1.2 (GeV/c) CC/NC-1π • Coherent π • Rein-Sehgal (2006) 2 • MA=1.0 (GeV/c) • Deep Inelastic Scattering • GRV98 PDF • Bodek-Yang correction • Intra-nucleus interactions M.O. Wascko Imperial HEP Seminar 20 SciBooNE detector SciBar Muon Range Detector (MRD) • scintillator tracking detector • 12 2”-thick steel • 14,336 scintillator + scintillator planes bars (15 tons) measure muon Neutrino target • • ν momentum with range • detect all charged particles up to 1.2 GeV/c • p/π separation Parts recycled from past experiments using dE/dx 4m Used in K2K experiment Electron Catcher (EC) spaghetti calorimeter 2m • 2 planes (11 X ) • 0 DOE-wide Pollution Prevention 0 identify π and νe Star (P2 Star) Award • Used in CHORUS, HARP and K2K M.O. Wascko Imperial HEP Seminar 21 SciBooNE detector SciBar Muon Range Detector (MRD) • scintillator tracking detector • 12 2”-thick steel • 14,336 scintillator + scintillator planes bars (15 tons) measure muon Neutrino target • • ν momentum with range • detect all charged particles up to 1.2 GeV/c • p/π separation Parts recycled from past experiments using dE/dx 4m Used in K2K experiment Electron Catcher (EC) spaghetti calorimeter 2m • 2 planes (11 X ) • 0 DOE-wide Pollution Prevention 0 identify π and νe Star (P2 Star) Award • Used in CHORUS, HARP and K2K M.O. Wascko Imperial HEP Seminar 21 SciBooNE History Groundbreaking ceremony (Sep. 2006) Detector Assembly (Nov. 2006 -Mar.2007) M.O. Wascko Imperial HEP Seminar 22 SciBooNE History Students Detector installation contributed (Apr. 2007) significantly End-of-run party (Aug. 2008) M.O. Wascko Imperial HEP Seminar 23 SciBooNE Data-Taking Number of Protons on target (POT) • Jun. 2007 – Aug. 2008 • 95% data efficiency • 2.52x1020 POT in total • neutrino : 0.99x1020 POT ν ν ν • antineutrino: 1.53x1020 POT Results from full neutrino data set presented today M.O. Wascko Imperial HEP Seminar 24 Neutrino event displays Real SciBooNE Data ADC hits (area ∝ charge) vertex resolution ~5 mm TDC hits (32ch “OR”) SciBar EC MRD anti-νµ CC-QE candidate νµ CC-QE candidate (ν + p µ + n) (ν + n µ + p) M.O.