Approaching Dual Quaternions from Matrix Algebra Federico Thomas, Member, IEEE
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hyper-Dual Numbers for Exact Second-Derivative Calculations
49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition AIAA 2011-886 4 - 7 January 2011, Orlando, Florida The Development of Hyper-Dual Numbers for Exact Second-Derivative Calculations Jeffrey A. Fike∗ andJuanJ.Alonso† Department of Aeronautics and Astronautics Stanford University, Stanford, CA 94305 The complex-step approximation for the calculation of derivative information has two significant advantages: the formulation does not suffer from subtractive cancellation er- rors and it can provide exact derivatives without the need to search for an optimal step size. However, when used for the calculation of second derivatives that may be required for approximation and optimization methods, these advantages vanish. In this work, we develop a novel calculation method that can be used to obtain first (gradient) and sec- ond (Hessian) derivatives and that retains all the advantages of the complex-step method (accuracy and step-size independence). In order to accomplish this task, a new number system which we have named hyper-dual numbers and the corresponding arithmetic have been developed. The properties of this number system are derived and explored, and the formulation for derivative calculations is presented. Hyper-dual number arithmetic can be applied to arbitrarily complex software and allows the derivative calculations to be free from both truncation and subtractive cancellation errors. A numerical implementation on an unstructured, parallel, unsteady Reynolds-Averaged Navier Stokes (URANS) solver, -
A Nestable Vectorized Templated Dual Number Library for C++11
cppduals: a nestable vectorized templated dual number library for C++11 Michael Tesch1 1 Department of Chemistry, Technische Universität München, 85747 Garching, Germany DOI: 10.21105/joss.01487 Software • Review Summary • Repository • Archive Mathematical algorithms in the field of optimization often require the simultaneous com- Submitted: 13 May 2019 putation of a function and its derivative. The derivative of many functions can be found Published: 05 November 2019 automatically, a process referred to as automatic differentiation. Dual numbers, close rela- License tives of the complex numbers, are of particular use in automatic differentiation. This library Authors of papers retain provides an extremely fast implementation of dual numbers for C++, duals::dual<>, which, copyright and release the work when replacing scalar types, can be used to automatically calculate a derivative. under a Creative Commons A real function’s value can be made to carry the derivative of the function with respect to Attribution 4.0 International License (CC-BY). a real argument by replacing the real argument with a dual number having a unit dual part. This property is recursive: replacing the real part of a dual number with more dual numbers results in the dual part’s dual part holding the function’s second derivative. The dual<> type in this library allows this nesting (although we note here that it may not be the fastest solution for calculating higher order derivatives.) There are a large number of automatic differentiation libraries and classes for C++: adolc (Walther, 2012), FAD (Aubert & Di Césaré, 2002), autodiff (Leal, 2019), ceres (Agarwal, Mierle, & others, n.d.), AuDi (Izzo, Biscani, Sánchez, Müller, & Heddes, 2019), to name a few, with another 30-some listed at (autodiff.org Bücker & Hovland, 2019). -
2D and 3D Transformations, Homogeneous Coordinates Lecture 03
2D and 3D Transformations, Homogeneous Coordinates Lecture 03 Patrick Karlsson [email protected] Centre for Image Analysis Uppsala University Computer Graphics November 6 2006 Patrick Karlsson (Uppsala University) Transformations and Homogeneous Coords. Computer Graphics 1 / 23 Reading Instructions Chapters 4.1–4.9. Edward Angel. “Interactive Computer Graphics: A Top-down Approach with OpenGL”, Fourth Edition, Addison-Wesley, 2004. Patrick Karlsson (Uppsala University) Transformations and Homogeneous Coords. Computer Graphics 2 / 23 Todays lecture ... in the pipeline Patrick Karlsson (Uppsala University) Transformations and Homogeneous Coords. Computer Graphics 3 / 23 Scalars, points, and vectors Scalars α, β Real (or complex) numbers. Points P, Q Locations in space (but no size or shape). Vectors u, v Directions in space (magnitude but no position). Patrick Karlsson (Uppsala University) Transformations and Homogeneous Coords. Computer Graphics 4 / 23 Mathematical spaces Scalar field A set of scalars obeying certain properties. New scalars can be formed through addition and multiplication. (Linear) Vector space Made up of scalars and vectors. New vectors can be created through scalar-vector multiplication, and vector-vector addition. Affine space An extended vector space that include points. This gives us additional operators, such as vector-point addition, and point-point subtraction. Patrick Karlsson (Uppsala University) Transformations and Homogeneous Coords. Computer Graphics 5 / 23 Data types Polygon based objects Objects are described using polygons. A polygon is defined by its vertices (i.e., points). Transformations manipulate the vertices, thus manipulates the objects. Some examples in 2D Scalar α 1 float. Point P(x, y) 2 floats. Vector v(x, y) 2 floats. Matrix M 4 floats. -
Application of Dual Quaternions on Selected Problems
APPLICATION OF DUAL QUATERNIONS ON SELECTED PROBLEMS Jitka Prošková Dissertation thesis Supervisor: Doc. RNDr. Miroslav Láviˇcka, Ph.D. Plze ˇn, 2017 APLIKACE DUÁLNÍCH KVATERNIONU˚ NA VYBRANÉ PROBLÉMY Jitka Prošková Dizertaˇcní práce Školitel: Doc. RNDr. Miroslav Láviˇcka, Ph.D. Plze ˇn, 2017 Acknowledgement I would like to thank all the people who have supported me during my studies. Especially many thanks belong to my family for their moral and material support and my advisor doc. RNDr. Miroslav Láviˇcka, Ph.D. for his guidance. I hereby declare that this Ph.D. thesis is completely my own work and that I used only the cited sources. Plzeˇn, July 20, 2017, ........................... i Annotation In recent years, the study of quaternions has become an active research area of applied geometry, mainly due to an elegant and efficient possibility to represent using them ro- tations in three dimensional space. Thanks to their distinguished properties, quaternions are often used in computer graphics, inverse kinematics robotics or physics. Furthermore, dual quaternions are ordered pairs of quaternions. They are especially suitable for de- scribing rigid transformations, i.e., compositions of rotations and translations. It means that this structure can be considered as a very efficient tool for solving mathematical problems originated for instance in kinematics, bioinformatics or geodesy, i.e., whenever the motion of a rigid body defined as a continuous set of displacements is investigated. The main goal of this thesis is to provide a theoretical analysis and practical applications of the dual quaternions on the selected problems originated in geometric modelling and other sciences or various branches of technical practise. -
The 22Nd International Conference on Finite Or Infinite Dimensional
The 22nd International Conference on Finite or Infinite Dimensional Complex Analysis and Applications August 8{August 11, 2014 Dongguk University Gyeongju, Republic of Korea The 22nd International Conference on Finite or Infinite Dimensional Complex Analysis and Applications http://22.icfidcaa.org August 8{11, 2014 Dongguk University Gyeongju, Republic of Korea Organized by • Dongguk University (Gyeongju Campus) • Youngnam Mathematical Society • BK21PLUS Center for Math Research and Education at PNU • Gyeongsang National University Supported by • KOFST (The Korean Federation of Science and Technology Societies) August 2, 2014 Contents Preface, Welcome and Acknowledgements ..................................1 Committee ......................................................................3 Topics of Conference ...........................................................4 History and Publications ......................................................5 Welcome Address ..............................................................8 Outline of Activities ...........................................................9 Details of Activities ..........................................................12 Abstracts of Talks .............................................................30 1 Preface, Welcome and Acknowledgements The 22nd International Conference on Finite or Infinite Dimensional Complex Analy- sis and Applications is being held at Dongguk University (Gyeongju), continuing to The 16th International Conference on Finite or Infinite Dimensional Complex -
2-D Drawing Geometry Homogeneous Coordinates
2-D Drawing Geometry Homogeneous Coordinates The rotation of a point, straight line or an entire image on the screen, about a point other than origin, is achieved by first moving the image until the point of rotation occupies the origin, then performing rotation, then finally moving the image to its original position. The moving of an image from one place to another in a straight line is called a translation. A translation may be done by adding or subtracting to each point, the amount, by which picture is required to be shifted. Translation of point by the change of coordinate cannot be combined with other transformation by using simple matrix application. Such a combination is essential if we wish to rotate an image about a point other than origin by translation, rotation again translation. To combine these three transformations into a single transformation, homogeneous coordinates are used. In homogeneous coordinate system, two-dimensional coordinate positions (x, y) are represented by triple- coordinates. Homogeneous coordinates are generally used in design and construction applications. Here we perform translations, rotations, scaling to fit the picture into proper position 2D Transformation in Computer Graphics- In Computer graphics, Transformation is a process of modifying and re- positioning the existing graphics. • 2D Transformations take place in a two dimensional plane. • Transformations are helpful in changing the position, size, orientation, shape etc of the object. Transformation Techniques- In computer graphics, various transformation techniques are- 1. Translation 2. Rotation 3. Scaling 4. Reflection 2D Translation in Computer Graphics- In Computer graphics, 2D Translation is a process of moving an object from one position to another in a two dimensional plane. -
Vector Bundles and Brill–Noether Theory
MSRI Series Volume 28, 1995 Vector Bundles and Brill{Noether Theory SHIGERU MUKAI Abstract. After a quick review of the Picard variety and Brill–Noether theory, we generalize them to holomorphic rank-two vector bundles of canonical determinant over a compact Riemann surface. We propose sev- eral problems of Brill–Noether type for such bundles and announce some of our results concerning the Brill–Noether loci and Fano threefolds. For example, the locus of rank-two bundles of canonical determinant with five linearly independent global sections on a non-tetragonal curve of genus 7 is a smooth Fano threefold of genus 7. As a natural generalization of line bundles, vector bundles have two important roles in algebraic geometry. One is the moduli space. The moduli of vector bun- dles gives connections among different types of varieties, and sometimes yields new varieties that are difficult to describe by other means. The other is the linear system. In the same way as the classical construction of a map to a pro- jective space, a vector bundle gives rise to a rational map to a Grassmannian if it is generically generated by its global sections. In this article, we shall de- scribe some results for which vector bundles play such roles. They are obtained from an attempt to generalize Brill–Noether theory of special divisors, reviewed in Section 2, to vector bundles. Our main subject is rank-two vector bundles with canonical determinant on a curve C with as many global sections as pos- sible: especially their moduli and the Grassmannian embeddings of C by them (Section 4). -
Projective Geometry Lecture Notes
Projective Geometry Lecture Notes Thomas Baird March 26, 2014 Contents 1 Introduction 2 2 Vector Spaces and Projective Spaces 4 2.1 Vector spaces and their duals . 4 2.1.1 Fields . 4 2.1.2 Vector spaces and subspaces . 5 2.1.3 Matrices . 7 2.1.4 Dual vector spaces . 7 2.2 Projective spaces and homogeneous coordinates . 8 2.2.1 Visualizing projective space . 8 2.2.2 Homogeneous coordinates . 13 2.3 Linear subspaces . 13 2.3.1 Two points determine a line . 14 2.3.2 Two planar lines intersect at a point . 14 2.4 Projective transformations and the Erlangen Program . 15 2.4.1 Erlangen Program . 16 2.4.2 Projective versus linear . 17 2.4.3 Examples of projective transformations . 18 2.4.4 Direct sums . 19 2.4.5 General position . 20 2.4.6 The Cross-Ratio . 22 2.5 Classical Theorems . 23 2.5.1 Desargues' Theorem . 23 2.5.2 Pappus' Theorem . 24 2.6 Duality . 26 3 Quadrics and Conics 28 3.1 Affine algebraic sets . 28 3.2 Projective algebraic sets . 30 3.3 Bilinear and quadratic forms . 31 3.3.1 Quadratic forms . 33 3.3.2 Change of basis . 33 1 3.3.3 Digression on the Hessian . 36 3.4 Quadrics and conics . 37 3.5 Parametrization of the conic . 40 3.5.1 Rational parametrization of the circle . 42 3.6 Polars . 44 3.7 Linear subspaces of quadrics and ruled surfaces . 46 3.8 Pencils of quadrics and degeneration . 47 4 Exterior Algebras 52 4.1 Multilinear algebra . -
Exploring Mathematical Objects from Custom-Tailored Mathematical Universes
Exploring mathematical objects from custom-tailored mathematical universes Ingo Blechschmidt Abstract Toposes can be pictured as mathematical universes. Besides the standard topos, in which most of mathematics unfolds, there is a colorful host of alternate toposes in which mathematics plays out slightly differently. For instance, there are toposes in which the axiom of choice and the intermediate value theorem from undergraduate calculus fail. The purpose of this contribution is to give a glimpse of the toposophic landscape, presenting several specific toposes and exploring their peculiar properties, and to explicate how toposes provide distinct lenses through which the usual mathematical objects of the standard topos can be viewed. Key words: topos theory, realism debate, well-adapted language, constructive mathematics Toposes can be pictured as mathematical universes in which we can do mathematics. Most mathematicians spend all their professional life in just a single topos, the so-called standard topos. However, besides the standard topos, there is a colorful host of alternate toposes which are just as worthy of mathematical study and in which mathematics plays out slightly differently (Figure 1). For instance, there are toposes in which the axiom of choice and the intermediate value theorem from undergraduate calculus fail, toposes in which any function R ! R is continuous and toposes in which infinitesimal numbers exist. The purpose of this contribution is twofold. 1. We give a glimpse of the toposophic landscape, presenting several specific toposes and exploring their peculiar properties. 2. We explicate how toposes provide distinct lenses through which the usual mathe- matical objects of the standard topos can be viewed. -
Exponential and Cayley Maps for Dual Quaternions
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by LSBU Research Open Exponential and Cayley maps for Dual Quaternions J.M. Selig Abstract. In this work various maps between the space of twists and the space of finite screws are studied. Dual quaternions can be used to represent rigid-body motions, both finite screw motions and infinitesimal motions, called twists. The finite screws are elements of the group of rigid-body motions while the twists are elements of the Lie algebra of this group. The group of rigid-body displacements are represented by dual quaternions satisfying a simple relation in the algebra. The space of group elements can be though of as a six-dimensional quadric in seven-dimensional projective space, this quadric is known as the Study quadric. The twists are represented by pure dual quaternions which satisfy a degree 4 polynomial relation. This means that analytic maps between the Lie algebra and its Lie group can be written as a cubic polynomials. In order to find these polynomials a system of mutually annihilating idempotents and nilpotents is introduced. This system also helps find relations for the inverse maps. The geometry of these maps is also briefly studied. In particular, the image of a line of twists through the origin (a screw) is found. These turn out to be various rational curves in the Study quadric, a conic, twisted cubic and rational quartic for the maps under consideration. Mathematics Subject Classification (2000). Primary 11E88; Secondary 22E99. Keywords. Dual quaternions, exponential map, Cayley map. -
Chapter 12 the Cross Ratio
Chapter 12 The cross ratio Math 4520, Fall 2017 We have studied the collineations of a projective plane, the automorphisms of the underlying field, the linear functions of Affine geometry, etc. We have been led to these ideas by various problems at hand, but let us step back and take a look at one important point of view of the big picture. 12.1 Klein's Erlanger program In 1872, Felix Klein, one of the leading mathematicians and geometers of his day, in the city of Erlanger, took the following point of view as to what the role of geometry was in mathematics. This is from his \Recent trends in geometric research." Let there be given a manifold and in it a group of transforma- tions; it is our task to investigate those properties of a figure belonging to the manifold that are not changed by the transfor- mation of the group. So our purpose is clear. Choose the group of transformations that you are interested in, and then hunt for the \invariants" that are relevant. This search for invariants has proved very fruitful and useful since the time of Klein for many areas of mathematics, not just classical geometry. In some case the invariants have turned out to be simple polynomials or rational functions, such as the case with the cross ratio. In other cases the invariants were groups themselves, such as homology groups in the case of algebraic topology. 12.2 The projective line In Chapter 11 we saw that the collineations of a projective plane come in two \species," projectivities and field automorphisms. -
Homogeneous Representations of Points, Lines and Planes
Chapter 5 Homogeneous Representations of Points, Lines and Planes 5.1 Homogeneous Vectors and Matrices ................................. 195 5.2 Homogeneous Representations of Points and Lines in 2D ............... 205 n 5.3 Homogeneous Representations in IP ................................ 209 5.4 Homogeneous Representations of 3D Lines ........................... 216 5.5 On Plücker Coordinates for Points, Lines and Planes .................. 221 5.6 The Principle of Duality ........................................... 229 5.7 Conics and Quadrics .............................................. 236 5.8 Normalizations of Homogeneous Vectors ............................. 241 5.9 Canonical Elements of Coordinate Systems ........................... 242 5.10 Exercises ........................................................ 245 This chapter motivates and introduces homogeneous coordinates for representing geo- metric entities. Their name is derived from the homogeneity of the equations they induce. Homogeneous coordinates represent geometric elements in a projective space, as inhomoge- neous coordinates represent geometric entities in Euclidean space. Throughout this book, we will use Cartesian coordinates: inhomogeneous in Euclidean spaces and homogeneous in projective spaces. A short course in the plane demonstrates the usefulness of homogeneous coordinates for constructions, transformations, estimation, and variance propagation. A characteristic feature of projective geometry is the symmetry of relationships between points and lines, called