Essays in Environmental & Resource Economics by Léopold Temoana

Total Page:16

File Type:pdf, Size:1020Kb

Essays in Environmental & Resource Economics by Léopold Temoana Essays in Environmental & Resource Economics by L´eopold Temoana Marc Biardeau A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Agricultural and Resource Economics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Maximilian Auffhammer, Chair Professor Solomon Hsiang, Co-chair Professor Lucas W. Davis Professor Gordon Rausser Summer 2020 1 Abstract Essays in Environmental & Resource Economics by L´eopold Temoana Marc Biardeau Doctor of Philosophy in Agricultural and Resource Economics University of California, Berkeley Professor Maximilian Auffhammer, Chair Professor Solomon Hsiang, Co-chair At its core, environmental & resource economics seeks to identify and correct market failures, i.e. situations in which markets fail to allocate resources in a way that maximizes society's economic welfare. Some of the greatest issues of our time such as water and air pollution, the over-exploitation of natural resources, or climate change all result from market failures. While market failures can take many forms, they are often associated with time-inconsistent preferences, negative externalities, or the difficulty to provide and manage common goods. In this dissertation, I investigate three key issues relative to each of these types of market failure. In the first chapter, coauthored with Solomon Hsiang and S´ebastienAnnan-Phan, we pro- pose that the probability that individuals focus attention on a moment a fixed temporal distance from their present moment is stable. We call Kernel of Attention to Time (KAT) the resulting probability distribution across moments in relative time, which directs human attention across the past, present, and future. We then analyze how populations across the world query Google Search for information related to specific moments in time and provide the first evidence of a coherent KAT for most humans on Earth. We discover consistent structure to the distribution of attention across time, regardless of populations' language or country, with the present strongly dominating all other moments and capturing roughly 25% of time-related attention on average. Attention to the past and future decays rapidly with increasing temporal distance, much faster than exponentially. Despite consistency in the form of the KAT around the world, we find regional patterns in attention to the past, present, and future. Furthermore, it appears that over the last decade, attention to the present has been increasing at the expense of attention to the past. Together, these findings suggest that human populations exhibit strong common patterns 2 of thought with respect to time, but some non-biological factors that vary across space and over time can alter these patterns. While the KAT does not capture time-related economic tradeoffs directly (e.g. foregoing present consumption to increase future consumption), the structure of its future-oriented portion could enable better understanding of the origin of time-based preferences and pro- vide new insights on time-inconsistent behavior. In the second chapter, coauthored with Lucas Davis, Paul Gertler and Catherine Wolfram, we develop new measures of global air conditioning potential using temperature data from more than 14,000 monitoring stations around the world. We combine this information with disaggregated global population estimates to calculate cooling degree days (CDDs) and other measures of air conditioning potential by region, country, and city. Overall, the evidence points to enormous potential growth in air conditioning, particularly in low-income and middle-income countries. India, China, Indonesia, Nigeria, Pakistan, Brazil, Bangladesh, and the Philippines all have greater air conditioning potential than the United States, a country where a staggering 400 terawatt hours of electricity are currently used annually for air conditioning. We find, moreover, that a significant portion of total global air conditioning potential comes from the earth's largest cities. Mumbai, for example, has by itself the air conditioning potential of 25% of the entire United States. Our estimates imply that, were global air conditioning usage to reach U.S. levels, total electricity consumption worldwide for air conditioning could reach 20,000 terawatt hours annually, which roughly corresponds to the current net global electricity consumption. If unmitigated by improvements in air conditioner energy-efficiency or updated power network infrastructures, this rise in overall electricity demand could generate two negative externalities. First, it could lead to black- outs around the globe, especially in low and middle income countries. What is more, most electricity worldwide continues to rely on fossil fuels. Consequently, growing air conditioner adoption could lead to hundreds of millions of tons of increased carbon dioxide emissions, further aggravating climate change. In the third and last chapter, coauthored with David Zilberman, we rely on satellite-based data tracking vessel fishing hours to investigate the extent to which Very Large Marine Protected Areas (VLMPAs), { Marine Protected Areas spanning at least 100,000 km2,{ prohibiting all types of fishing have been successful at deterring fishing effort. These VLM- PAs have been created in an attempt to protect and replenish fish stocks, 34.5% of which have fallen below biologically sustainable levels,1 partly as a result of overfishing. Indeed, most fisheries have traditionally been open access resources, leading individually-acting fish- ers to collectively extract more than the efficient level and threatening the viability of the resource over time, a situation known as the tragedy of the commons.2 3 In spite of their large size which may constitute a challenge for enforcement, we find that VLMPAs have on average been able to deter fishing effort. However, a case-by-case analysis reveals varying levels of success, with the most successful VLMPA managed by the Republic of Kiribati and the worst performing one managed by the United States. To better understand the nature of illegal fishing effort in these VLMPAs, we focus on the characteristics of the vessels infringing the fishing bans in these VLMPAs and find that most of the infractions can be traced back to a few industrialized countries. i Contents Contents i List of Figures ii List of Tables iii Acknowledgements iv 1 The Distribution of Human Attention to Moments in Time1 1.1 Introduction.................................... 1 1.2 Model: The Kernel of Attention to Time (KAT)................ 2 1.3 Estimation: Recovering the KAT using Google Search ............. 6 1.4 Results....................................... 6 1.5 Discussion..................................... 11 2 Population, Warming, and Global Air Conditioning 15 2.1 Introduction.................................... 15 2.2 Methods...................................... 16 2.3 Results....................................... 22 2.4 Discussion..................................... 29 3 Evaluating the Effectiveness of Very Large Marine Protected Areas at Deterring Fishing Effort 30 3.1 Introduction.................................... 30 3.2 Methods...................................... 34 3.3 Results....................................... 38 3.4 Discussion..................................... 42 References 43 A Full derivation of the Kernel of Attention to time 52 A.1 A Probabilistic Model for Attention to Time.................. 52 A.2 Predictions for Internet Search Volume..................... 53 ii A.3 Google Search Data................................ 56 A.4 Empirical estimation of the KAT ........................ 57 B Supplemental Figures and Tables 61 B.1 Figures....................................... 61 B.2 Tables....................................... 73 List of Figures 1.1 Google search volume reflects changes in relative attention over time....... 3 1.2 Attention to time expressed through Google search queries............ 5 1.3 Google search volume for time-related queries and KAT model predictions... 7 1.4 The estimated Kernel of Attention to Time (KAT) ................ 9 1.5 Relative attention to past, present, and future around the world and over time . 11 1.6 The relative attention to the past, present and future for individual countries . 12 2.1 Simulation results................................... 18 2.2 Reporting Frequencies for Monitoring Stations................... 19 2.3 Global Cooling Degree Days............................. 23 2.4 Comparing Our Estimates to Previous Estimates ................. 25 2.5 Does Population-Weighting Matter?......................... 26 2.6 Robustness check................................... 28 3.1 List of all the Very Large Marine Protected Areas (VLMPAs) .......... 32 3.2 Evolution of daily hours of fishing effort in each VLMPA per 1,000 km2. 33 3.3 Displacement of fishing effort ............................ 36 3.4 Quartic polynomial curves of best fit and their associated 95% confidence intervals 39 B.1 Google search as convolution of KAT with daily dummies............. 62 B.2 Predicted search volume using estimated KATs .................. 63 B.3 Estimated KAT with alternative model choices .................. 64 B.4 Robustness checks for the shares of attention to different moments in time . 65 B.5 Estimated KAT using daily, monthly and yearly targets.............. 66 B.6 Country boundaries shapefile ............................ 67 B.7 Global CDD maps with alternative CDD thresholds................ 68 B.8 Expansion of vessel
Recommended publications
  • The Political Biogeography of Migratory Marine Predators
    1 The political biogeography of migratory marine predators 2 Authors: Autumn-Lynn Harrison1, 2*, Daniel P. Costa1, Arliss J. Winship3,4, Scott R. Benson5,6, 3 Steven J. Bograd7, Michelle Antolos1, Aaron B. Carlisle8,9, Heidi Dewar10, Peter H. Dutton11, Sal 4 J. Jorgensen12, Suzanne Kohin10, Bruce R. Mate13, Patrick W. Robinson1, Kurt M. Schaefer14, 5 Scott A. Shaffer15, George L. Shillinger16,17,8, Samantha E. Simmons18, Kevin C. Weng19, 6 Kristina M. Gjerde20, Barbara A. Block8 7 1University of California, Santa Cruz, Department of Ecology & Evolutionary Biology, Long 8 Marine Laboratory, Santa Cruz, California 95060, USA. 9 2 Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, 10 Washington, D.C. 20008, USA. 11 3NOAA/NOS/NCCOS/Marine Spatial Ecology Division/Biogeography Branch, 1305 East 12 West Highway, Silver Spring, Maryland, 20910, USA. 13 4CSS Inc., 10301 Democracy Lane, Suite 300, Fairfax, VA 22030, USA. 14 5Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine 15 Fisheries Service, National Oceanic and Atmospheric Administration, Moss Landing, 16 California 95039, USA. 17 6Moss Landing Marine Laboratories, Moss Landing, CA 95039 USA 18 7Environmental Research Division, Southwest Fisheries Science Center, National Marine 19 Fisheries Service, National Oceanic and Atmospheric Administration, 99 Pacific Street, 20 Monterey, California 93940, USA. 21 8Hopkins Marine Station, Department of Biology, Stanford University, 120 Oceanview 22 Boulevard, Pacific Grove, California 93950 USA. 23 9University of Delaware, School of Marine Science and Policy, 700 Pilottown Rd, Lewes, 24 Delaware, 19958 USA. 25 10Fisheries Resources Division, Southwest Fisheries Science Center, National Marine 26 Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA 92037, 27 USA.
    [Show full text]
  • Author Index
    Author Index Agrell, S. 0., 54 Durham, J. W., v, 13, 14, 15, 16, 51, 84, Allen, R., 190 105, 188 Arrhenius, G., vi, 169 Aoki, K, vi, 14, 52, 162, 172, 174, 185, Eibl-Eibesfeldt, I., 101, 188 187, 189 Engel, A. E. J., 188 Ericson, D. B., 188 Bailey, E. B., 166, 187 Ewing, M., 170, 188, 189 Bandy, M. C., 187 Banfield, A. F., 5, 22, 55, 56, 59, 60, 70, Fisher, R. L., 188 110, 124, 187 Friedlaender, I, 98, 99, 188 Barr, K. G., 190 Bass, M. N., vi, 167, 169 Gass, I., 175, 177, 189 Bates, H. W., 113, 187 Gast, P. W., 133, 188 Behre, M. H. Jr., 5, 187 Goldberg, E. D., 170, 190 Best, M. G„ 165, 187 Granja, J. C., v, 83, 84, 85, 188 Bott, M. H. P., 181, 187 Green, D. H., 188 Bowman, Robert, v, 79, 80, 90 Green, W. Lowthian, 98, 188 Brown, G. M., 157, 159, 160, 187 Grim, P. J., 189 Bryan, W. B., 187 Bunsen, R., 141, 187 Hedge, C., 188 Heezen, B. C., 188 Carmichael, I. S. E., 159, 187 Hess, H. H„ 157, 188 Carter, G. F. 115, 191 Howard, K. A., 80, 81,190 Castro, Miguel, vi, 76 Cavagnaro, D., 16, 33, 34, 78, 94, 187 Iljima, Azuma, vi, 31, 54 Chase, T. E., vi, 7, 98, 109, 110, 189, 190 Katsura, T., 77, 125, 136, 145, 172, 173, Chesterman, C. W., 11, 31, 168, 188 189 Chubb, L. J., 5, 9, 21, 46, 55, 60, 63, 98, Kennedy, W.
    [Show full text]
  • Marine Biodiversity in Juan Fernández and Desventuradas Islands, Chile: Global Endemism Hotspots
    RESEARCH ARTICLE Marine Biodiversity in Juan Fernández and Desventuradas Islands, Chile: Global Endemism Hotspots Alan M. Friedlander1,2,3*, Enric Ballesteros4, Jennifer E. Caselle5, Carlos F. Gaymer3,6,7,8, Alvaro T. Palma9, Ignacio Petit6, Eduardo Varas9, Alex Muñoz Wilson10, Enric Sala1 1 Pristine Seas, National Geographic Society, Washington, District of Columbia, United States of America, 2 Fisheries Ecology Research Lab, University of Hawaii, Honolulu, Hawaii, United States of America, 3 Millennium Nucleus for Ecology and Sustainable Management of Oceanic Islands (ESMOI), Coquimbo, Chile, 4 Centre d'Estudis Avançats (CEAB-CSIC), Blanes, Spain, 5 Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, United States of America, 6 Universidad Católica del Norte, Coquimbo, Chile, 7 Centro de Estudios Avanzados en Zonas Áridas, Coquimbo, Chile, 8 Instituto de Ecología y Biodiversidad, Coquimbo, Chile, 9 FisioAqua, Santiago, Chile, 10 OCEANA, SA, Santiago, Chile * [email protected] OPEN ACCESS Abstract Citation: Friedlander AM, Ballesteros E, Caselle JE, Gaymer CF, Palma AT, Petit I, et al. (2016) Marine The Juan Fernández and Desventuradas islands are among the few oceanic islands Biodiversity in Juan Fernández and Desventuradas belonging to Chile. They possess a unique mix of tropical, subtropical, and temperate Islands, Chile: Global Endemism Hotspots. PLoS marine species, and although close to continental South America, elements of the biota ONE 11(1): e0145059. doi:10.1371/journal. pone.0145059 have greater affinities with the central and south Pacific owing to the Humboldt Current, which creates a strong biogeographic barrier between these islands and the continent. The Editor: Christopher J Fulton, The Australian National University, AUSTRALIA Juan Fernández Archipelago has ~700 people, with the major industry being the fishery for the endemic lobster, Jasus frontalis.
    [Show full text]
  • Bryozoa De La Placa De Nazca Con Énfasis En Las Islas Desventuradas
    Cienc. Tecnol. Mar, 28 (1): 75-90, 2005 Bryozoa de la Placa de Nazca 75 BRYOZOA DE LA PLACA DE NAZCA CON ÉNFASIS EN LAS ISLAS DESVENTURADAS ON THE NAZCA PLATE BRYOZOANS WITH EMPHASIS ON DESVENTURADAS ISLANDS HUGO I. MOYANO G. Departamento de Zoología Universidad de Concepción Casilla 160-C Concepción Recepción: 27 de abril de 2004 – Versión corregida aceptada: 1 de octubre de 2004. RESUMEN Esta es una revisión parcial de las faunas de briozoos conocidas hasta ahora provenientes de la Placa de Nazca. A partir de las publicaciones preexistentes y del examen de algunas muestras se compa- raron zoogeográficamente Pascua (PAS), Salas y Gómez (SG), Juan Fernández (JF), Desventuradas (DES) y Galápagos (GAL). Para la comparación se utilizaron tres conjuntos de 115, 140 y 170 géneros de los territorios insulares ya indicados, los que incluyen también aquellos de las costas chileno-peruanas influi- das por la corriente de Humboldt (CHP) y los de las islas Kermadec (KE). Los dendrogramas resultantes demuestran que los territorios insulares más afines son los de Juan Fernández y las Desventuradas en términos de afinidad genérica briozoológica. El dendrograma basado en 170 géneros de los órdenes Ctenostomatida y Cheilostomatida muestra dos conjuntos principales a saber: a) JF, DES y CHP y b) PAS, GA y KE a los cuales se une solitariamente SG. Sobre la base de la comparación a nivel genérico indicada más arriba, para las islas Desventura- das no se justifica un status zoogeográfico separado de nivel de provincia tropical sino que debería integrarse a la provincia temperado-cálida de Juan Fernández.
    [Show full text]
  • Redalyc.Initial Assessment of Coastal Benthic Communities in the Marine Parks at Robinson Crusoe Island
    Latin American Journal of Aquatic Research E-ISSN: 0718-560X [email protected] Pontificia Universidad Católica de Valparaíso Chile Rodríguez-Ruiz, Montserrat C.; Andreu-Cazenave, Miguel; Ruz, Catalina S.; Ruano- Chamorro, Cristina; Ramírez, Fabián; González, Catherine; Carrasco, Sergio A.; Pérez- Matus, Alejandro; Fernández, Miriam Initial assessment of coastal benthic communities in the Marine Parks at Robinson Crusoe Island Latin American Journal of Aquatic Research, vol. 42, núm. 4, octubre, 2014, pp. 918-936 Pontificia Universidad Católica de Valparaíso Valparaíso, Chile Available in: http://www.redalyc.org/articulo.oa?id=175032366016 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Lat. Am. J. Aquat. Res., 42(4): 918-936, 2014 Marine parks at Robinson Crusoe Island 918889 “Oceanography and Marine Resources of Oceanic Islands of Southeastern Pacific ” M. Fernández & S. Hormazábal (Guest Editors) DOI: 10.3856/vol42-issue4-fulltext-16 Research Article Initial assessment of coastal benthic communities in the Marine Parks at Robinson Crusoe Island Montserrat C. Rodríguez-Ruiz1, Miguel Andreu-Cazenave1, Catalina S. Ruz2 Cristina Ruano-Chamorro1, Fabián Ramírez2, Catherine González1, Sergio A. Carrasco2 Alejandro Pérez-Matus2 & Miriam Fernández1 1Estación Costera de Investigaciones Marinas and Center for Marine Conservation, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, P.O. Box 114-D, Santiago, Chile 2Subtidal Ecology Laboratory and Center for Marine Conservation, Estación Costera de Investigaciones Marinas, Pontificia Universidad Católica de Chile, P.O. Box 114-D, Santiago, Chile ABSTRACT.
    [Show full text]
  • Research Opportunities in Biomedical Sciences
    STREAMS - Research Opportunities in Biomedical Sciences WSU Boonshoft School of Medicine 3640 Colonel Glenn Highway Dayton, OH 45435-0001 APPLICATION (please type or print legibly) *Required information *Name_____________________________________ Social Security #____________________________________ *Undergraduate Institution_______________________________________________________________________ *Date of Birth: Class: Freshman Sophomore Junior Senior Post-bac Major_____________________________________ Expected date of graduation___________________________ SAT (or ACT) scores: VERB_________MATH_________Test Date_________GPA__________ *Applicant’s Current Mailing Address *Mailing Address After ____________(Give date) _________________________________________ _________________________________________ _________________________________________ _________________________________________ _________________________________________ _________________________________________ Phone # : Day (____)_______________________ Phone # : Day (____)_______________________ Eve (____)_______________________ Eve (____)_______________________ *Email Address:_____________________________ FAX number: (____)_______________________ Where did you learn about this program?:__________________________________________________________ *Are you a U.S. citizen or permanent resident? Yes No (You must be a citizen or permanent resident to participate in this program) *Please indicate the group(s) in which you would include yourself: Native American/Alaskan Native Black/African-American
    [Show full text]
  • Cq Dx Zones of the World
    180 W 170 W 160 W 150 W 140 W 130 W 120 W 110 W 100 W 90 W 80 W 70 W 60 W 50 W 40 W 30 W 20 W 10 W 10 E 20 E 30 E 40 E 50 E 60 E 70 E 80 E 90 E 100 E 110 E 120 E 130 E 140 E 150 E 160 E 170 E 180 E -2 +4 CQ DX ZONES Franz Josef Land OF THE WORLD (Russia) ITU DX Zones of the world N can be viewed on the back. 80 Svalbard (Norway) -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 +1 +2 +3 +5 +7 +9 +10 +11 +12 19 1 2 40 -1 Jan Mayen (Norway) +11 70 N 70 Greenland +1 +2 Finland Alaska, U.S. Iceland Faroe Island (Denmark) 14 Norway Sweden 15 16 17 18 19 International Date Line 60 N 60 Estonia Russia Canada Latvia Denmark Lithuania +7 Northern Ireland +3 +5 +6 +8 +9 +10 (UK) Russia/Kaliningrad -10 Ireland United Kingdom Belarus Netherlands Germany Poland Belgium Luxembourg 50 N 50 Guernsey Czech Republic Ukraine Jersey Slovakia St. Pierre and Miquelon Liechtenstein Kazakhstan Austria France Switzerland Hungary Moldova Slovenia Mongolia Croatia Romania Bosnia- Serbia Monaco Herzegovina 1 Corsica Bulgaria Montenegro Georgia Uzbekistan Andorra (France) Italy Macedonia Azores Albania Kyrgyzstan Portugal Spain Sardinia Armenia+4 Azerbaijan 40 N 40 3 4 5 (Portugal) (Italy) Turkmenistan North Korea Greece Turkey United States Balearic Is. Tajikistan +1 Day NOTES: (Spain) 20 23 South Korea Gibraltar Japan Tunisia Malta China Cyprus Syria Iran Madeira Lebanon +4.5 +8 This CQ DX zones map and the ITU zones map on the reverse side use (Portugal) Bermuda Iraq +3.5 Afghanistan an Albers Equal Area projection and is current as of July 2010.
    [Show full text]
  • Humboldt Current and the Juan Fernández Archipelago November 2014
    Expedition Research Report Humboldt Current and the Juan Fernández archipelago November 2014 Expedition Team Robert L. Flood, Angus C. Wilson, Kirk Zufelt Mike Danzenbaker, John Ryan & John Shemilt Juan Fernández Petrel KZ Stejneger’s Petrel AW First published August 2017 by www.scillypelagics.com © text: the authors © video clips: the copyright in the video clips shall remain with each individual videographer © photographs: the copyright in the photographs shall remain with each individual photographer, named in the caption of each photograph All rights reserved. No part of this publication may be reproduced in any form or by any means – graphic or mechanical, including photocopying, recording, taping or information storage and retrieval systems – without the prior permission in writing of the publishers. 2 CONTENTS Report Summary 4 Introduction 4 Itinerary and Conditions 5 Bird Species Accounts 6 Summary 6 Humboldt Current and Coquimbo Bay 7 Passages Humboldt Current to Juan Fernández and return 13 At sea off the Juan Fernández archipelago 18 Ashore on Robinson Crusoe Island 26 Cetaceans and Pinnipeds 28 Acknowledgements 29 References 29 Appendix: Alpha Codes 30 White-bellied Storm-petrel JR 3 REPORT SUMMARY This report summarises our observations of seabirds seen during an expedition from Chile to the Juan Fernández archipelago and return, with six days in the Humboldt Current. Observations are summarised by marine habitat – Humboldt Current, oceanic passages between the Humboldt Current and the Juan Fernández archipelago, and waters around the Juan Fernández archipelago. Also summarised are land bird observations in the Juan Fernández archipelago, and cetaceans and pinnipeds seen during the expedition. Points of interest are briefly discussed.
    [Show full text]
  • Taxonomic Treatment of Cichorieae (Asteraceae) Endemic to the Juan Fernández and Desventuradas Islands (SE Pacific)
    Ann. Bot. Fennici 49: 171–178 ISSN 0003-3847 (print) ISSN 1797-2442 (online) Helsinki 29 June 2012 © Finnish Zoological and Botanical Publishing Board 2012 Taxonomic treatment of Cichorieae (Asteraceae) endemic to the Juan Fernández and Desventuradas Islands (SE Pacific) José A. Mejías1,* & Seung-Chul Kim2 1) Department of Plant Biology and Ecology, University of Seville, Avda. Reina Mercedes 6, ES-41012 Seville, Spain (*corresponding author’s e-mail: [email protected]) 2) Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-Gu, Suwon, Korea 440-746 Received 29 June 2011, final version received 15 Nov. 2011, accepted 16 Nov. 2011 Mejías, J. A. & Kim, S. C. 2012: Taxonomic treatment of Cichorieae (Asteraceae) endemic to the Juan Fernández and Desventuradas Islands (SE Pacific). — Ann. Bot. Fennici 49: 171–178. The evolutionary origin and taxonomic position of Dendroseris and Thamnoseris (Cichorieae, Asteraceae) are discussed in the light of recent molecular systematic studies. Based on the previous development of a robust phylogenetic framework, we support the inclusion of the group as a subgenus integrated within a new and broad concept of the genus Sonchus. This approach retains information on the evolutionary relationships of the group which most likely originated from an adaptive radiation process; furthermore, it also promotes holophyly in the subtribe Hyoseridinae (for- merly Sonchinae). Consequently, all the former Dendroseris and Thamnoseris species must be transferred to Sonchus. A preliminary nomenclatural synopsis of the proposed subgenus is given here, including the new required combinations. Introduction Within the tribe Cichorieae, the most prominent cases occur on the Canary Islands Adaptive radiation on oceanic islands has (NE Atlantic Ocean), and on the Juan Fern- yielded spectacular and explosive in-situ diversi- ández Islands (SE Pacific Ocean) (Crawford fication of plants (Carlquist 1974: 22–23), which et al.
    [Show full text]
  • The Foraging Ecology of the Masked Booby in the Pacific Ocean
    Living in the tropics: the foraging ecology of the masked booby in the Pacific Ocean Dissertation in fulfilment of the requirements of the degree of Dr. rer. nat. at the Faculty of Mathematics and Natural Sciences at Kiel University Submitted by: Miriam Lerma Kiel, 2020 Living in the tropics: the foraging ecology of the masked booby in the Pacific Ocean Dissertation in fulfilment of the requirements of the degree of Dr. rer. nat. at the Faculty of Mathematics and Natural Sciences at Kiel University submitted by Miriam Lerma Kiel, 2020 First examiner: Prof. Dr. Stefan Garthe Second examiner: Prof. Dr. Hans-Rudolf Bork Date of the oral examination: 14-September-2020 Abstract Tropical regions represent half of the oceans on earth, yet our understanding of the ecological interactions in these areas lags far behind that for temperate or polar regions. By studying the foraging ecology of seabirds, ecological information about remote tropical regions can be obtained. However, in order to interpret the foraging ecology of seabirds, it is necessary to take account of local oceanography, inter-annual variations in environmental conditions at the colonies, and the sex and breeding stage of the birds. In this study, I used the masked booby Sula dactylatra as a model species to analyze the effects of the aforementioned factors and their interactions on the foraging ecology of a pantropical distributed seabird. Fieldwork was conducted on two remote islands in the Pacific, Motu Nui and Clarion Island, during consecutive years (2016 and 2017 on Motu Nui and 2016, 2017 and 2018 on Clarion Island), using GPS, time-depth recorders, diet samples, and satellite data, and taking account of the sex and breeding stage of the individuals.
    [Show full text]
  • (Antipatharia) in Shallow Coastal Waters of Northern Chile by Means of Underwater Video
    Lat. Am. J. Aquat. Res., 46(2): 457-460, 2018 Black corals (Antipatharia) in northern Chile 457 DOI: 10.3856/vol46-issue2-fulltext-20 Short Communication First record of black corals (Antipatharia) in shallow coastal waters of northern Chile by means of underwater video Matthias Gorny1, Erin E. Easton2 & Javier Sellanes2 1Oceana Inc. Chile, Santiago, Chile 2Millennium Nucleus for Ecology and Sustainable Management of Oceanic Islands (ESMOI) Departamento de Biología Marina, Facultad de Ciencias del Mar Universidad Católica del Norte, Coquimbo, Chile Autor corresponsal: Matthias Gorny ([email protected]) ABSTRACT. This record is the first report of black corals (Antipatharia) in shallow waters of the continental coast of Chile, and extends their geographical range in shallow waters of the upper continental shelf of South America by ~3000 km from Ecuador (~1°S) to Coquimbo, Chile (~29°S). Specimens were observed between 70 and 107 m on three underwater video transects executed in July 2016 on the rocky reef El Toro, which is located about 65 km northwest of Coquimbo. The images were taken with the cameras of a remotely operated vehicle (ROV) at a distance of about two meters from the rocks. Although the image resolution does not allow an exact identification of the species, the multi-branched corals were distinguished from other cnidarians as Antipatharia by the dark color of the stem. Keywords: Antipatharia, black corals, mesophotic, northern Chile, Pacific Ocean. The order Antipatharia, black corals, is distributed from about 1300-1800 m depth in the north of Chile off polar to tropical seas and from shallow coastal waters Calama (27°S).
    [Show full text]
  • Crustacea: Decapoda: Anomura: Munididae) from Seamounts of the Nazca-Desventuradas Marine Park
    A new species of Munida Leach, 1820 (Crustacea: Decapoda: Anomura: Munididae) from seamounts of the Nazca-Desventuradas Marine Park María de los Ángeles Gallardo Salamanca1,2, Enrique Macpherson3, Jan M. Tapia Guerra1,4, Cynthia M. Asorey1,2 and Javier Sellanes1,2 1 Sala de Colecciones Biológicas, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile 2 Departamento de Biología Marina & Núcleo Milenio Ecología y Manejo Sustentable de Islas Oceánicas, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile 3 Centre d'Estudis Avancats¸ de Blanes (CEAB-CSIC), Blanes, Spain 4 Programa de Magister en Ciencias del Mar Mención Recursos Costeros, Facultad de ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile ABSTRACT Munida diritas sp. nov. is described for the seamounts near Desventuradas Islands, in the intersection of the Salas & Gómez and Nazca Ridges, Chile. Specimens of the new species were collected in the summit (∼200 m depth) of one seamount and observed by ROV at two nearby ones. This species is characterized by the presence of distinct carinae on the thoracic sternites 6 and 7. Furthermore, it is not related with any species from the continental shelf nor the slope of America, while it is closely related to species of Munida from French Polynesia and the West-Pacific Ocean (i.e., M. ommata, M. psylla and M. rufiantennulata). In situ observations indicate that the species lives among the tentacles of ceriantarid anemones and preys on small crustaceans. The discovery of this new species adds to the knowledge of the highly endemic benthic fauna of seamounts of the newly created Nazca-Desventuradas Marine Park, emphasizing the relevance of this area for marine conservation.
    [Show full text]