Proofs from the BOOK

Total Page:16

File Type:pdf, Size:1020Kb

Proofs from the BOOK Martin Aigner · Günter M. Ziegler Proofs from THE BOOK Sixth Edition Martin Aigner Günter M. Ziegler Proofs from THE BOOK Sixth Edition Martin Aigner Günter M. Ziegler Proofs from THE BOOK Sixth Edition Including Illustrations by Karl H. Hofmann 123 Martin Aigner Günter M. Ziegler Institut für Mathematik Institut für Mathematik Freie Universität Berlin Freie Universität Berlin Berlin, Germany Berlin, Germany ISBN 978-3-662-57264-1 ISBN 978-3-662-57265-8 (eBook) https://doi.org/10.1007/978-3-662-57265-8 Library of Congress Control Number: 2018940433 © Springer-Verlag GmbH Germany, part of Springer Nature 1998, 2001, 2004, 2010, 2014, 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Printed on acid-free paper This Springer imprint is published by the registered company Springer-Verlag GmbH, DE part of Springer Nature. The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany Preface Paul Erdos˝ liked to talk about The Book, in which God maintains the perfect proofs for mathematical theorems, following the dictum of G. H. Hardy that there is no permanent place for ugly mathematics. Erdos˝ also said that you need not believe in God but, as a mathematician, you should believe in The Book. A few years ago, we suggested to him to write up a first (and very modest) approximation to The Book. He was enthusiastic about the idea and, characteristically, went to work immediately, filling page after page with his suggestions. Our book was supposed to appear in March 1998 as a present to Erdos’˝ 85th birthday. With Paul’s unfortunate death in the summer of 1996, he is not listed as a co-author. Instead this book is dedicated to his memory. Paul Erdos˝ We have no definition or characterization of what constitutes a proof from The Book: all we offer here is the examples that we have selected, hop- ing that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations. We also hope that our readers will enjoy this despite the imperfections of our exposition. The selection is to a great extent influenced by Paul Erdos˝ himself. A large number of the topics were suggested by him, and many of the proofs trace directly back to him, or were initiated by his supreme insight in asking the right question or in making the right conjecture. So to a large extent this book reflects the views of Paul Erdos˝ as to what should be considered a proof from The Book. “The Book” A limiting factor for our selection of topics was that everything in this book is supposed to be accessible to readers whose backgrounds include only a modest amount of technique from undergraduate mathematics. A little linear algebra, some basic analysis and number theory, and a healthy dollop of elementary concepts and reasonings from discrete mathematics should be sufficient to understand and enjoy everything in this book. We are extremely grateful to the many people who helped and supported us with this project — among them the students of a seminar where we discussed a preliminary version, to Benno Artmann, Stephan Brandt, Stefan Felsner, Eli Goodman, Torsten Heldmann, and Hans Mielke. We thank Margrit Barrett, Christian Bressler, Ewgenij Gawrilow, Michael Joswig, Elke Pose, and Jörg Rambau for their technical help in composing this book. We are in great debt to Tom Trotter who read the manuscript from first to last page, to Karl H. Hofmann for his wonderful drawings, and most of all to the late great Paul Erdos˝ himself. Berlin, March 1998 Martin Aigner · Günter M. Ziegler VI Preface to the Sixth Edition The idea to this project was born during some leisurely discussions at the Mathematisches Forschungsinstitut in Oberwolfach with the incomparable Paul Erdos˝ in the mid-1990s. It is now nearly twenty years ago that we presented the first edition of our book on occasion of the International Congress of Mathematicians in Berlin 1998. At that time we could not possibly imagine the wonderful and lasting response our book about The Book would have, with all the warm letters, interesting comments and sug- gestions, new editions, and as of now thirteen translations. It is no exagger- ation to say that it has become a part of our lives. In addition to numerous improvements and smaller changes, many of them suggested by our readers, for the present sixth edition we wrote an entirely new chapter with Gurvits’s proof of Van der Waerden’s permanent conjec- ture, used this to derive asymptotics for the number of Latin squares, added 1 2 a new, fourth proof for the Euler theorem n≥1 n2 = π /6, and present a new geometric explanation for Heath-Brown’s involution proof for the Fermat two squares theorem. We thank everyone who helped and encouraged us over all these years. For the second edition this included Stephan Brandt, Christian Elsholtz, Jürgen Elstrodt, Daniel Grieser, Roger Heath-Brown, Lee L. Keener, Christian Lebœuf, Hanfried Lenz, Nicolas Puech, John Scholes, Bernulf Weißbach, and many others. The third edition benefitted especially from input by David Bevan, Anders Björner, Dietrich Braess, John Cosgrave, Hubert Kalf, Günter Pickert, Alistair Sinclair, and Herb Wilf. For the fourth edi- tion, we were particularly indebted to Oliver Deiser, Anton Dochtermann, Michael Harbeck, Stefan Hougardy, Hendrik W. Lenstra, Günter Rote, Moritz W. Schmitt, and Carsten Schultz for their contributions. For the fifth edition, we gratefully acknowledged ideas and suggestions by Ian Agol, France Dacar, Christopher Deninger, Michael D. Hirschhorn, Franz Lemmermeyer, Raimund Seidel, Tord Sjödin, and John M. Sullivan, as well as help from Marie-Sophie Litz, Miriam Schlöter, and Jan Schneider. For the present sixth edition, very valuable hints were provided by France Dacar again, as well as by David Benko, Jan Peter Schäfermeyer, and Yuliya Semikina. Moreover, we thank Ruth Allewelt at Springer in Heidelberg and Christoph Eyrich, Torsten Heldmann, and Elke Pose in Berlin for their continuing sup- port throughout these years. And finally, this book would certainly not look the same without the original design suggested by Karl-Friedrich Koch, and the superb new drawings provided again and again by Karl H. Hofmann. Berlin, March 2018 Martin Aigner · Günter M. Ziegler Table of Contents Number Theory 1 1. Sixproofsoftheinfinityofprimes.............................. 3 2. Bertrand’s postulate . .......................................... 9 3. Binomial coefficients are (almost) never powers ................. 15 4. Representing numbers as sums of two squares .................. 19 5. The law of quadratic reciprocity ............................... 27 6. Everyfinitedivisionringisafield ............................. 35 7. The spectral theorem and Hadamard’s determinant problem ...... 39 8. Some irrational numbers . .................................... 47 9. Four times π2/6 ............................................. 55 Geometry 65 10. Hilbert’s third problem: decomposing polyhedra ................ 67 11. Lines in the plane and decompositions of graphs ................ 77 12. Theslopeproblem ........................................... 83 13. ThreeapplicationsofEuler’sformula.......................... 89 14. Cauchy’s rigidity theorem .................................... 95 15. The Borromean rings don’t exist . ............................. 99 16. Touching simplices ......................................... 107 17. Every large point set has an obtuse angle ...................... 111 18. Borsuk’s conjecture ......................................... 117 Analysis 125 19. Sets, functions, and the continuum hypothesis . ............... 127 20. In praise of inequalities ..................................... 143 21. The fundamental theorem of algebra .......................... 151 22. One square and an odd number of triangles . ................... 155 VIII Table of Contents 23. A theorem of Pólya on polynomials .......................... 163 24. Van der Waerden’s permanent conjecture . .................... 169 25. On a lemma of Littlewood and Offord ........................ 179 26. Cotangent and the Herglotz trick . ............................ 183 27. Buffon’s needle problem .................................... 189 Combinatorics 193 28. Pigeon-hole and double counting ............................. 195 29. Tiling rectangles ............................................ 207 30. Three famous theorems on finite sets ........................
Recommended publications
  • Fundamental Theorems in Mathematics
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635].
    [Show full text]
  • Introduction to Representation Theory by Pavel Etingof, Oleg Golberg
    Introduction to representation theory by Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry Vaintrob, and Elena Yudovina with historical interludes by Slava Gerovitch Licensed to AMS. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Licensed to AMS. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Contents Chapter 1. Introduction 1 Chapter 2. Basic notions of representation theory 5 x2.1. What is representation theory? 5 x2.2. Algebras 8 x2.3. Representations 9 x2.4. Ideals 15 x2.5. Quotients 15 x2.6. Algebras defined by generators and relations 16 x2.7. Examples of algebras 17 x2.8. Quivers 19 x2.9. Lie algebras 22 x2.10. Historical interlude: Sophus Lie's trials and transformations 26 x2.11. Tensor products 30 x2.12. The tensor algebra 35 x2.13. Hilbert's third problem 36 x2.14. Tensor products and duals of representations of Lie algebras 36 x2.15. Representations of sl(2) 37 iii Licensed to AMS. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms iv Contents x2.16. Problems on Lie algebras 39 Chapter 3. General results of representation theory 41 x3.1. Subrepresentations in semisimple representations 41 x3.2. The density theorem 43 x3.3. Representations of direct sums of matrix algebras 44 x3.4. Filtrations 45 x3.5. Finite dimensional algebras 46 x3.6. Characters of representations 48 x3.7. The Jordan-H¨oldertheorem 50 x3.8. The Krull-Schmidt theorem 51 x3.9.
    [Show full text]
  • Graduate Studies Texas Tech University
    77 75 G-7S 74 GRADUATE STUDIES TEXAS TECH UNIVERSITY Men and Institutions in American Mathematics Edited by J. Dalton Tarwater, John T. White, and John D. Miller K C- r j 21 lye No. 13 October 1976 TEXAS TECH UNIVERSITY Cecil Mackey, President Glenn E. Barnett, Executive Vice President Regents.-Judson F. Williams (Chairman), J. Fred Bucy, Jr., Bill E. Collins, Clint Form- by, John J. Hinchey, A. J. Kemp, Jr., Robert L. Pfluger, Charles G. Scruggs, and Don R. Workman. Academic Publications Policy Committee.-J. Knox Jones, Jr. (Chairman), Dilford C. Carter (Executive Director and Managing Editor), C. Leonard Ainsworth, Harold E. Dregne, Charles S. Hardwick, Richard W. Hemingway, Ray C. Janeway, S. M. Kennedy, Thomas A. Langford, George F. Meenaghan, Marion C. Michael, Grover E. Murray, Robert L. Packard, James V. Reese, Charles W. Sargent, and Henry A. Wright. Graduate Studies No. 13 136 pp. 8 October 1976 $5.00 Graduate Studies are numbered separately and published on an irregular basis under the auspices of the Dean of the Graduate School and Director of Academic Publications, and in cooperation with the International Center for Arid and Semi-Arid Land Studies. Copies may be obtained on an exchange basis from, or purchased through, the Exchange Librarian, Texas Tech University, Lubbock, Texas 79409. * Texas Tech Press, Lubbock, Texas 16 1976 I A I GRADUATE STUDIES TEXAS TECH UNIVERSITY Men and Institutions in American Mathematics Edited by J. Dalton Tarwater, John T. White, and John D. Miller No. 13 October 1976 TEXAS TECH UNIVERSITY Cecil Mackey, President Glenn E. Barnett, Executive Vice President Regents.-Judson F.
    [Show full text]
  • Philip Hall Lecture Note
    Philip Hall Lecture Note How cultivated is Nichole when Arian and forethoughtful Matthew equalising some rearing? Fruity Shurlocke territorialized implicitly. Multiseptate and through-composed Friedrick stage-managed her cuboid detoxicate or interconnect ungravely. About the incomplete beta function, of these properties of history and geometry into a regular basis of philip hall trees passes over time being answered show this Professors is that bet seems a lecture hall words of similarity that fell over in lecture notes and. March the official opening of interpretive signage at Mount Hummock was held at Whyalla. Lots of manufacture were rolling up with free same plan. They can do not support the hall word inequality used in lecture notes and this? His lectures at whyalla where they would suffer if much time philip hall made a lecture hall opened at ul lafayette, features deserve by a text. Amazon and have been happily lending them to students who need help and giving them as gifts to friends whose children are headed for college immediately or even in a few years. Phil Higgins told as of a dictum of Philip Hall personnel should choose an. Thanks for contributing an answer to Mathematics Stack Exchange! Differentiation is very good lecture hall was held in or work is often filled with my work. Jiminez a hall words are finished with philip hall; note that image of lectures will create a qualifying item? Give that i think of textbook notes on things come up on attention in that starts with the last comments were disregarded disclosed that. Please enter your professors will say, philip hall lecture note.
    [Show full text]
  • The Role of GH Hardy and the London Mathematical Society
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematica 30 (2003) 173–194 www.elsevier.com/locate/hm The rise of British analysis in the early 20th century: the role of G.H. Hardy and the London Mathematical Society Adrian C. Rice a and Robin J. Wilson b,∗ a Department of Mathematics, Randolph-Macon College, Ashland, VA 23005-5505, USA b Department of Pure Mathematics, The Open University, Milton Keynes MK7 6AA, UK Abstract It has often been observed that the early years of the 20th century witnessed a significant and noticeable rise in both the quantity and quality of British analysis. Invariably in these accounts, the name of G.H. Hardy (1877–1947) features most prominently as the driving force behind this development. But how accurate is this interpretation? This paper attempts to reevaluate Hardy’s influence on the British mathematical research community and its analysis during the early 20th century, with particular reference to his relationship with the London Mathematical Society. 2003 Elsevier Inc. All rights reserved. Résumé On a souvent remarqué que les premières années du 20ème siècle ont été témoins d’une augmentation significative et perceptible dans la quantité et aussi la qualité des travaux d’analyse en Grande-Bretagne. Dans ce contexte, le nom de G.H. Hardy (1877–1947) est toujours indiqué comme celui de l’instigateur principal qui était derrière ce développement. Mais, est-ce-que cette interprétation est exacte ? Cet article se propose d’analyser à nouveau l’influence d’Hardy sur la communauté britannique sur la communauté des mathématiciens et des analystes britanniques au début du 20ème siècle, en tenant compte en particulier de son rapport avec la Société Mathématique de Londres.
    [Show full text]
  • Proofs from the BOOK
    Martin Aigner · Günter M. Ziegler Proofs from THE BOOK Fifth Edition Martin Aigner Günter M. Ziegler Proofs from THE BOOK Fifth Edition Martin Aigner Günter M. Ziegler Proofs from THE BOOK Fifth Edition Including Illustrations by Karl H. Hofmann 123 Martin Aigner Günter M. Ziegler Freie Universität Berlin Freie Universität Berlin Berlin, Germany Berlin, Germany ISBN978-3-662-44204-3 ISBN978-3-662-44205-0(eBook) DOI 10.1007/978-3-662-44205-0 © Springer-Verlag Berlin Heidelberg 2014 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Coverdesign: deblik, Berlin Printed on acid-free paper Springer is Part of Springer Science+Business Media www.springer.com Preface Paul Erdos˝ liked to talk about The Book, in which God maintains the perfect proofs for mathematical theorems, following the dictum of G. H. Hardy that there is no permanent place for ugly mathematics.
    [Show full text]
  • Arxiv:2105.07884V3 [Math.HO] 20 Jun 2021
    Enumerative and Algebraic Combinatorics in the 1960's and 1970's Richard P. Stanley University of Miami (version of 17 June 2021) The period 1960{1979 was an exciting time for enumerative and alge- braic combinatorics (EAC). During this period EAC was transformed into an independent subject which is even stronger and more active today. I will not attempt a comprehensive analysis of the development of EAC but rather focus on persons and topics that were relevant to my own career. Thus the discussion will be partly autobiographical. There were certainly deep and important results in EAC before 1960. Work related to tree enumeration (including the Matrix-Tree theorem), parti- tions of integers (in particular, the Rogers-Ramanujan identities), the Redfield- P´olya theory of enumeration under group action, and especially the repre- sentation theory of the symmetric group, GL(n; C) and some related groups, featuring work by Georg Frobenius (1849{1917), Alfred Young (1873{1940), and Issai Schur (1875{1941), are some highlights. Much of this work was not concerned with combinatorics per se; rather, combinatorics was the nat- ural context for its development. For readers interested in the development of EAC, as well as combinatorics in general, prior to 1960, see Biggs [14], Knuth [77, §7.2.1.7], Stein [147], and Wilson and Watkins [153]. Before 1960 there are just a handful of mathematicians who did a sub- stantial amount of enumerative combinatorics. The most important and influential of these is Percy Alexander MacMahon (1854-1929). He was a arXiv:2105.07884v3 [math.HO] 20 Jun 2021 highly original pioneer, whose work was not properly appreciated during his lifetime except for his contributions to invariant theory and integer parti- tions.
    [Show full text]
  • Geometry at Cambridge, 1863–1940 ✩
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematica 33 (2006) 315–356 www.elsevier.com/locate/yhmat Geometry at Cambridge, 1863–1940 ✩ June Barrow-Green, Jeremy Gray ∗ Centre for the History of the Mathematical Sciences, Faculty of Mathematics and Computing, The Open University, Milton Keynes, MK7 6AA, UK Available online 10 January 2006 Abstract This paper traces the ebbs and flows of the history of geometry at Cambridge from the time of Cayley to 1940, and therefore the arrival of a branch of modern mathematics in Great Britain. Cayley had little immediate influence, but projective geometry blossomed and then declined during the reign of H.F. Baker, and was revived by Hodge at the end of the period. We also consider the implications these developments have for the concept of a school in the history of mathematics. © 2005 Published by Elsevier Inc. Résumé L’article retrace les hauts et le bas de l’histoire de la géométrie à Cambridge, du temps de Cayley jusqu’à 1940. Il s’agit donc de l’arrivée d’une branche de mathématiques modernes en Grande-Bretagne. Cayley n’avait pas beaucoup d’influence directe, mais la géométrie projective fut en grand essor, déclina sous le règne de H.F. Baker pour être ranimée par Hodge vers la fin de notre période. Nous considérons aussi brièvement l’effet que tous ces travaux avaient sur les autres universités du pays pendant ces 80 années. © 2005 Published by Elsevier Inc. MSC: 01A55; 01A60; 51A05; 53A55 Keywords: England; Cambridge; Geometry; Projective geometry; Non-Euclidean geometry ✩ The original paper was given at a conference of the Centre for the History of the Mathematical Sciences at the Open University, Milton Keynes, MK7 6AA, UK, 20–22 September 2002.
    [Show full text]
  • William Vallance Douglas Hodge. 17 June 1903
    WILLIAM VALLANCE DOUGLAS HODGE 17 June 1903 - 7 July 1975 Elected F.R.S. 1938 BY M. F. ATIYAH,F.R.S. SIRWILLIAM HODGE, formerly Lowndean Professor of Astronomy and Geometry in the University of Cambridge, Master of Pembroke College, Cambridge, and Physical Secretary of the Royal Society, was for over forty years a leading figure in British mathematical life. He died in July 1975 at the age of 72. EARLY LIFE Hodge came from a moderately prosperous Edinburgh background, but it appears that on both sides of the family this prosperity only went back a couple of generations and that his two grandfathers had been responsible for raising the social level, from rather humble origins, to a modest middle-class standing in the last quarter of the nineteenth century. The paternal grandfather, Archibald Hodge, spent most of his life in a firm, Douglas and Company, of Searchers of Records. This business, peculiar to Scotland, involved the examination of land titles and its fortunes were closely linked with those of the property market. In due course Archibald Hodge became senior partner of the firm and his only son Archibald James Hodge joined as junior partner. The other grandfather, William Vallance, built up a flourishing confectionery business which eventually had valuable premises in the centre of Edinburgh. His wife Janet (born Horsburgh) appears to have been the dominating partner both in the business and in the family. In spite of having eight children she remained in command of the business until her husband's death in 1903. Her eldest son then took over but was required to inform her daily on how things were going.
    [Show full text]
  • The Life and Work of Major Percy Alexander Macmahon Paul Garcia
    The life and work of Major Percy Alexander MacMahon PhD Thesis by Dr Paul Garcia History of Mathematics Thesis submitted to the Open University in fulfilment of the Degree of Doctor of Philosophy The life and work of Major Percy Alexander MacMahon Paul Garcia B.A. (Hons), MSc (Mathematics), MSc (Information and Knowledge Technology) May 2006 1 The life and work of Major Percy Alexander MacMahon PhD Thesis by Dr Paul Garcia Abstract This thesis describes the life and work of the mathematician Major Percy Alexander MacMahon (1854 - 1929). His early life as a soldier in the Royal Artillery and events which led to him embarking on a career in mathematical research and teaching are dealt with in the first two chapters. Succeeding chapters explain the work in invariant theory and partition theory which brought him to the attention of the British mathematical community and eventually resulted in a Fellowship of the Royal Society, the presidency of the London Mathematical Society, and the award of three prestigious mathematical medals and four honorary doctorates. The development and importance of his recreational mathematical work is traced and discussed. MacMahon’s career in the Civil Service as Deputy Warden of the Standards at the Board of Trade is also described. Throughout the thesis, his involvement with the British Association for the Advancement of Science and other scientific organisations is highlighted. The thesis also examines possible reasons why MacMahon’s work, held in very high regard at the time, did not lead to the lasting fame accorded to some of his contemporaries. Details of his personal and social life are included to give a picture of MacMahon as a real person working hard to succeed in a difficult context.
    [Show full text]
  • Confirmation for Wielandt's Conjecture
    Confirmation for Wielandt’s conjecture∗ Wenbin Guo Department of Mathematics, University of Science and Technology of China, Hefei 230026, P. R. China E-mail: [email protected] D. O. Revin, E. P. Vdovin Sobolev Institute of Mathematics and Novosibirsk State University, Novosibirsk 630090, Russia E-mail: [email protected], [email protected] Abstract Let π be a set of primes. By H.Wielandt definition, Sylow π-theorem holds for a finite group G if all maximal π-subgroups of G are conjugate. In the paper, the following statement is proven. Assume that π is a union of disjoint subsets σ and τ and a finite group G possesses a π-Hall subgroup which is a direct product of a σ- subgroup and a τ-subgroup. Furthermore, assume that both the Sylow σ-theorem and τ-theorem hold for G. Then the Sylow π-theorem holds for G. This result confirms a conjecture posed by H. Wielandt in 1959. Key words: finite group, Hall subgroup, Sylow π-theorem, condition Dπ, Wie- landt’s conjecture. MSC2010: 20D20 Introduction In the paper, the term ‘group’ always means ‘finite group’, p is always supposed to be a prime, π is a subset of the set of all primes, and π′ is its complement in the set of all primes. Lagrange’s theorem states that the order |G| of a group G is divisible by the order of arXiv:1407.2007v1 [math.GR] 8 Jul 2014 every subgroup of G. This simple statement has extraordinary significance and largely determines the problems of finite group theory.
    [Show full text]
  • The Breadth-Degree Type of a Finite $ P $-Group
    THE BREADTH-DEGREE TYPE OF A FINITE p-GROUP NORBERTO GAVIOLI, AVINOAM MANN, AND VALERIO MONTI Abstract. In the present paper we show that a stem finite p-group G has − − − size bounded by min p(8d 2 log2 d+b 4)(b+1)/2,pb(3b+4d 1)/2 where b is the breadth of G and pd is the maximum character degree of G. As a conse- quence there are only finitely many finite stem p-groups having breadth b and maximum character degree pd. Introduction The problem of finding all finite groups of a given order is quite old. In the case of finite p-groups (where p is a prime number) the task is particularly hard as the number of isomorphism classes grows rapidly with the order. This particular difficulty led Philip Hall, aiming at achieving a systematic classification theory, as he himself writes in his famous paper [12], to introduce the concept of isoclinism, an equivalence relation among groups preserving the commutation structure. A group T such that its center Z(T ) is contained in the derived subgroup T ′ is said to be a stem group. Philip Hall showed that finite stem groups are exactly the ones of minimum order within an isoclinism class. He also pointed out that the ratio of the number of conjugacy classes of a given size of a finite group G with respect to the order of G is preserved by isoclinism. In [12] it is also stated that the ratio of the number of irreducible characters of G of a given degree with respect to the order of G is invariant under isoclinism.
    [Show full text]