Minimal Representations for Translation-Invariant Set Mappings by Mathematical Morphology Author(s): Gerald Jean Francis Banon and Junior Barrera Source: SIAM Journal on Applied Mathematics, Vol. 51, No. 6 (Dec., 1991), pp. 1782-1798 Published by: Society for Industrial and Applied Mathematics Stable URL: http://www.jstor.org/stable/2102371 . Accessed: 02/04/2013 13:46 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact
[email protected]. Society for Industrial and Applied Mathematics is collaborating with JSTOR to digitize, preserve and extend access to SIAM Journal on Applied Mathematics. http://www.jstor.org This content downloaded from 200.130.19.189 on Tue, 2 Apr 2013 13:46:44 PM All use subject to JSTOR Terms and Conditions SIAM J. APPL. MATH. ? 1991 Society for Industrial and Applied Mathematics Vol. 51, No. 6, pp. 1782-1798, December 1991 018 MINIMAL REPRESENTATIONS FOR TRANSLATION-INVARIANT SET MAPPINGS BY MATHEMATICAL MORPHOLOGY* GERALD JEAN FRANCIS BANONt AND JUNIOR BARRERAt Abstract. In his 1975 book, Matheron introduced a pair of dual representations, written in terms of erosions and dilations, for increasing translation invariant set mappings, using the concept of a kernel. Based on hit-miss topology, Maragos, in his 1985 Ph.D.