Extending the Morphological Hit-Or-Miss Transform to Deep

Total Page:16

File Type:pdf, Size:1020Kb

Extending the Morphological Hit-Or-Miss Transform to Deep IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1 c 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. arXiv:1912.02259v2 [cs.CV] 28 Sep 2020 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2 Extending the Morphological Hit-or-Miss Transform to Deep Neural Networks Muhammad Aminul Islam, Member, IEEE, Bryce Murray, Student Member, IEEE, Andrew Buck, Member, IEEE, Derek T. Anderson, Senior Member, IEEE, Grant Scott, Senior Member, IEEE, Mihail Popescu, Senior Member, IEEE, James Keller, Life Fellow, IEEE, Abstract—While most deep learning architectures are built on pass filters), frequency-orientation filtering via the Gabor, etc. convolution, alternative foundations like morphology are being In a continuous space, it is defined as the integral of two explored for purposes like interpretability and its connection functions—an image and a filter in the context of image to the analysis and processing of geometric structures. The morphological hit-or-miss operation has the advantage that it processing—after one is reversed and shifted, whereas in takes into account both foreground and background information discrete space, the integral realized via summation. CNNs when evaluating target shape in an image. Herein, we identify progressively learn more complex features in deeper layers limitations in existing hit-or-miss neural definitions and we with low level features such as edges in the earlier layers formulate an optimization problem to learn the transform relative and more complex shapes in the later layers, which are to deeper architectures. To this end, we model the semantically important condition that the intersection of the hit and miss composite of features in the previous layer. While that has structuring elements (SEs) should be empty and we present a way been the claim of many to date, recent work has emerged to express Don’t Care (DNC), which is important for denoting suggesting that mainstream CNNs–e.g., GoogLeNet, VGG, regions of an SE that are not relevant to detecting a target ResNet, etc.–are not sufficiently learning to exploit shape. pattern. Our analysis shows that convolution, in fact, acts like In [1], Geirhos et al. showed that CNNs are strongly biased a hit-miss transform through semantic interpretation of its filter differences. On these premises, we introduce an extension that towards recognizing texture over shape, which as they put it outperforms conventional convolution on benchmark data. Quan- “is in stark contrast to human behavioural evidence and reveals titative experiments are provided on synthetic and benchmark fundamentally different classification strategies.” Geirhos et al. data, showing that the direct encoding hit-or-miss transform support these claims using a total of nine experiments totaling provides better interpretability on learned shapes consistent 48,560 psychophysical trials with respect to 97 observers. with objects whereas our morphologically inspired generalized convolution yields higher classification accuracy. Last, qualitative Their research highlights the gap and stresses the importance hit and miss filter visualizations are provided relative to single of shape as a central feature in vision. morphological layer. An argument against convolution is that its filter does Index Terms—Deep learning, morphology, hit-or-miss trans- not lend itself to interpretable shape. Because convolution is form, convolution, convolutional neural network correlation with a time/spatial reversed filter, the filter weights do not necessarily indicate the absolute intensities/levels in I. INTRODUCTION shape. Instead, they signify relative importance. Recently, Deep learning has demonstrated robust predictive accuracy investigations like guided backpropagation [2] and saliency across a wide range of applications. Notably, it has achieved mapping [3] have made it possible to visualize what CNNs and, in some cases, surpassed human-level performance in are perhaps looking at. However, these algorithms are not many cognitive tasks, for example, object classification, detec- guarantees, they inform us what spatial locations are of tion, and recognition, semantic and instance segmentation, and interest, not what exact shape, texture, color, contrast, or depth prediction. This success can be attributed in part to the other features led a machine to make the decision it did. ability of a neural network (NN) to construct an arbitrary and Furthermore, these explanations depend on an input image very complex function by composition of simple functions, and the learned filters. The filters alone do not explain the thus empowering it as a formidable machine learning tool. learned model. In many applications, it is not important that To date, state-of-the-art deep learning algorithms mostly we understand the chain of evidence that led to a decision. The use convolution as their fundamental operation, thus the name only consideration is if an AI can perform as well, if not better, convolutional neural network (CNN). Convolution has a rich than a human counterpart. However, other applications, e.g., and proud history in signal/image processing, for example ex- medical image segmentation in healthcare or automatic target tracting low-level features like edges, noise filtering (low/high recognition in security and defense, require glass versus black box AI when the systems that they impact intersect human Muhammad Aminul Islam is with the Department of Electrical & Computer lives. In scenarios like these, it is important that we ensure Engineering and Computer Science, University of New Haven, Connecticut, CT 06516, USA. E-mail: (amin [email protected]). that shape, when/where applicable, is driving decision making. Bryce Murray, Andrew Buck, Derek T. Anderson, Grant J. Scott, Mi- Furthermore, the ability to seed, or at a minimum understand hail Popescu, and James Keller are with the Department of Electrical Engi- what shape drove a machine to make its decision is essential. neering and Computer Science, University of Missouri, Columbia, MO 65211. In contrast to convolution, morphology-based operations are Manuscript revised June, 2020. more interpretable—a property well-known and well-studied IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3 in image processing, which has only been lightly studied and shape in terms of relevant and non-relevant elements (i.e., explored in the context of deep neural networks [4]–[16]. DNC). Herein, we provide the conditions that will make Morphology is based on set theory, lattice theory, topology elements under the conventional definition of hit-or-miss to act and random functions and has been used for the analysis and as DNC and we show that the valid ranges for target and DNC processing of geometric structures [17]–[26]. The most fun- elements are discontinuous. However, this constraint poses damental morphological operations are erosion and dilation, a challenge to data-driven learning using gradient descent, which can be combined to build more complex operations which requires the variables to reside in a (constrained or like opening, closing, the hit-or-miss transform, etc. Grayscale unconstrained) continuous space. As a result, we propose hit- erosion and dilation are used to find the minimal offset by or-miss transforms that implicitly enforces non-intersecting which the foreground and background of a target pattern fits in condition and addresses DNC. an image, providing an absolute measure of fitness in contrast Last, while convolution can act like a hit-or-miss transform to relative measure by convolution, facilitating the learning of – when its “positive filter weights” correspond to foreground, interpretable structuring elements (SEs). “negative weights” to background, and 0s for DNC – it differs Recently, a few deep neural networks have emerged based in some important aspects. For example, elements in a hit-or- on morphological operations like dilation, erosion, opening, miss SE indicate the absolute intensity levels in the target and closing [4], [27]. In [4], Mellouli et al. explored pseudo- shape whereas weights in a convolution filter indicate relative dilation and pseudo-erosion defined in terms of an weighted levels/importance. Another difference is that the sum operation counter harmonic mean, which can be carried out as the gives equal importance to all operands versus max (or min) ratio of two convolution operations. However, their network is in the hit-or-miss. On this premises, we propose a new ex- not an end-to-end morphological network, rather a hybrid of tension to convolution, referred to as generalized convolution traditional convolution and pseudo-morphological operations. hereafter, by replacing the sum with the generalized mean. In [27], Nogueira et al. proposed a neural network based on bi- The use of a parametric generalized mean allows one to nary SEs (consisting of 1s and 0s) indicating which pixels are choose how values in the local neighborhood contribute to relevant to the target pattern. Their proposed implementation the result; e.g., all contribute equally (as in the case of the requires a large number of parameters, specifically s2 binary mean) or just one drives the result (as in max), or something filters
Recommended publications
  • Morphological Image Processing Introduction
    Morphological Image Processing Introduction • In many areas of knowledge Morphology deals with form and structure (biology, linguistics, social studies, etc) • Mathematical Morphology deals with set theory • Sets in Mathematical Morphology represents objects in an Image 2 Mathematic Morphology • Used to extract image components that are useful in the representation and description of region shape, such as – boundaries extraction – skeletons – convex hull (italian: inviluppo convesso) – morphological filtering – thinning – pruning 3 Mathematic Morphology mathematical framework used for: • pre-processing – noise filtering, shape simplification, ... • enhancing object structure – skeletonization, convex hull... • segmentation – watershed,… • quantitative description – area, perimeter, ... 4 Z2 and Z3 • set in mathematic morphology represent objects in an image – binary image (0 = white, 1 = black) : the element of the set is the coordinates (x,y) of pixel belong to the object a Z2 • gray-scaled image : the element of the set is the coordinates (x,y) of pixel belong to the object and the gray levels a Z3 Y axis Y axis X axis Z axis X axis 5 Basic Set Operators Set operators Denotations A Subset B A ⊆ B Union of A and B C= A ∪ B Intersection of A and B C = A ∩ B Disjoint A ∩ B = ∅ c Complement of A A ={ w | w ∉ A} Difference of A and B A-B = {w | w ∈A, w ∉ B } Reflection of A Â = { w | w = -a for a ∈ A} Translation of set A by point z(z1,z2) (A)z = { c | c = a + z, for a ∈ A} 6 Basic Set Theory 7 Reflection and Translation Bˆ = {w ∈ E 2 : w
    [Show full text]
  • Lecture 5: Binary Morphology
    Lecture 5: Binary Morphology c Bryan S. Morse, Brigham Young University, 1998–2000 Last modified on January 15, 2000 at 3:00 PM Contents 5.1 What is Mathematical Morphology? ................................. 1 5.2 Image Regions as Sets ......................................... 1 5.3 Basic Binary Operations ........................................ 2 5.3.1 Dilation ............................................. 2 5.3.2 Erosion ............................................. 2 5.3.3 Duality of Dilation and Erosion ................................. 3 5.4 Some Examples of Using Dilation and Erosion . .......................... 3 5.5 Proving Properties of Mathematical Morphology .......................... 3 5.6 Hit-and-Miss .............................................. 4 5.7 Opening and Closing .......................................... 4 5.7.1 Opening ............................................. 4 5.7.2 Closing ............................................. 5 5.7.3 Properties of Opening and Closing ............................... 5 5.7.4 Applications of Opening and Closing .............................. 5 Reading SH&B, 11.1–11.3 Castleman, 18.7.1–18.7.4 5.1 What is Mathematical Morphology? “Morphology” can literally be taken to mean “doing things to shapes”. “Mathematical morphology” then, by exten- sion, means using mathematical principals to do things to shapes. 5.2 Image Regions as Sets The basis of mathematical morphology is the description of image regions as sets. For a binary image, we can consider the “on” (1) pixels to all comprise a set of values from the “universe” of pixels in the image. Throughout our discussion of mathematical morphology (or just “morphology”), when we refer to an image A, we mean the set of “on” (1) pixels in that image. The “off” (0) pixels are thus the set compliment of the set of on pixels. By Ac, we mean the compliment of A,or the off (0) pixels.
    [Show full text]
  • Hit-Or-Miss Transform
    Hit-or-miss transform • Used to extract pixels with specific neighbourhood configurations from an image • Grey scale extension exist • Uses two structure elements B1 and B2 to find a given foreground and background configuration, respectively C HMT B X={x∣B1x⊆X ,B2x⊆X } • Example: 1 Morphological Image Processing Lecture 22 (page 1) 9.4 The hit-or-miss transformation Illustration... Morphological Image Processing Lecture 22 (page 2) Objective is to find a disjoint region (set) in an image • If B denotes the set composed of X and its background, the• match/hit (or set of matches/hits) of B in A,is A B =(A X) [Ac (W X)] ¯∗ ª ∩ ª − Generalized notation: B =(B1,B2) • Set formed from elements of B associated with B1: • an object Set formed from elements of B associated with B2: • the corresponding background [Preceeding discussion: B1 = X and B2 =(W X)] − More general definition: • c A B =(A B1) [A B2] ¯∗ ª ∩ ª A B contains all the origin points at which, simulta- • ¯∗ c neously, B1 found a hit in A and B2 found a hit in A Hit-or-miss transform C HMT B X={x∣B1x⊆X ,B2x⊆X } • Can be written in terms of an intersection of two erosions: HMT X= X∩ X c B B1 B2 2 Hit-or-miss transform • Simple example usages - locate: – Isolated foreground pixels • no neighbouring foreground pixels – Foreground endpoints • one or zero neighbouring foreground pixels – Multiple foreground points • pixels having more than two neighbouring foreground pixels – Foreground contour points • pixels having at least one neighbouring background pixel 3 Hit-or-miss transform example • Locating 4-connected endpoints SEs for 4-connected endpoints Resulting Hit-or-miss transform 4 Hit-or-miss opening • Objective: keep all points that fit the SE.
    [Show full text]
  • Digital Image Processing
    Digital Image Processing Lecture # 11 Morphological Operations 1 Image Morphology 2 Introduction Morphology A branch of biology which deals with the form and structure of animals and plants Mathematical Morphology A tool for extracting image components that are useful in the representation and description of region shapes The language of mathematical morphology is Set Theory 3 Morphology: Quick Example Image after segmentation Image after segmentation and morphological processing 4 Introduction Morphological image processing describes a range of image processing techniques that deal with the shape (or morphology) of objects in an image Sets in mathematical morphology represents objects in an image. E.g. Set of all white pixels in a binary image. 5 Introduction foreground: background I(p )c I(p)0 This represents a digital image. Each square is one pixel. 6 Set Theory The set space of binary image is Z2 Each element of the set is a 2D vector whose coordinates are the (x,y) of a black (or white, depending on the convention) pixel in the image The set space of gray level image is Z3 Each element of the set is a 3D vector: (x,y) and intensity level. NOTE: Set Theory and Logical operations are covered in: Section 9.1, Chapter # 9, 2nd Edition DIP by Gonzalez Section 2.6.4, Chapter # 2, 3rd Edition DIP by Gonzalez 7 Set Theory 2 Let A be a set in Z . if a = (a1,a2) is an element of A, then we write aA If a is not an element of A, we write aA Set representation A{( a1 , a 2 ),( a 3 , a 4 )} Empty or Null set A 8 Set Theory Subset: if every element of A is also an element of another set B, the A is said to be a subset of B AB Union: The set of all elements belonging either to A, B or both CAB Intersection: The set of all elements belonging to both A and B DAB 9 Set Theory Two sets A and B are said to be disjoint or mutually exclusive if they have no common element AB Complement: The set of elements not contained in A Ac { w | w A } Difference of two sets A and B, denoted by A – B, is defined as c A B { w | w A , w B } A B i.e.
    [Show full text]
  • Introduction to Mathematical Morphology
    COMPUTER VISION, GRAPHICS, AND IMAGE PROCESSING 35, 283-305 (1986) Introduction to Mathematical Morphology JEAN SERRA E. N. S. M. de Paris, Paris, France Received October 6,1983; revised March 20,1986 1. BACKGROUND As we saw in the foreword, there are several ways of approaching the description of phenomena which spread in space, and which exhibit a certain spatial structure. One such approach is to consider them as objects, i.e., as subsets of their space of definition. The method which derives from this point of view is. called mathematical morphology [l, 21. In order to define mathematical morphology, we first require some background definitions. Consider an arbitrary space (or set) E. The “objects” of this :space are the subsets X c E; therefore, the family that we have to handle theoretically is the set 0 (E) of all the subsets X of E. The set p(E) is incomparably less arbitrary than E itself; indeed it is constructured to be a Boolean algebra [3], that is: (i) p(E) is a complete lattice, i.e., is provided with a partial-ordering relation, called inclusion, and denoted by “ c .” Moreover every (finite or not) family of members Xi E p(E) has a least upper bound (their union C/Xi) and a greatest lower bound (their intersection f7 X,) which both belong to p(E); (ii) The lattice p(E) is distributiue, i.e., xu(Ynz)=(XuY)n(xuZ) VX,Y,ZE b(E) and is complemented, i.e., there exist a greatest set (E itself) and a smallest set 0 (the empty set) such that every X E p(E) possesses a complement Xc defined by the relationships: XUXC=E and xn xc= 0.
    [Show full text]
  • Chapter III: Opening, Closing
    ChapterChapter III:III: Opening,Opening, ClosingClosing Opening and Closing by adjunction Algebraic Opening and Closing Top-Hat Transformation Granulometry J. Serra Ecole des Mines de Paris ( 2000 ) Course on Math. Morphology III. 1 AdjunctionAdjunction OpeningOpening andand ClosingClosing The problem of an inverse operator Several different sets may admit a same erosion, or a same dilate. But among all possible inverses, there exists always a smaller one (a larger one). It is obtained by composing erosion with the adjoint dilation (or vice versa) . The mapping is called adjunction opening, structuring and is denoted by element γ Β = δΒ εΒ ( general case) XoB = [(X B) ⊕ Β] (τ-operators) Erosion By commuting the factors δΒ and εΒ we obtain the adjunction closing ϕ ==εε δ ? Β Β Β (general case), X•Β = [X ⊕ Β) B] (τ-operators). ( These operators, due to G. Matheron are sometimes called morphological) J. Serra Ecole des Mines de Paris ( 2000 ) Course on Math. Morphology III. 2 PropertiesProperties ofof AdjunctionAdjunction OpeningOpening andand ClosingClosing Increasingness Adjunction opening and closing are increasing as products of increasing operations. (Anti-)extensivity By doing Y= δΒ(X), and then X = εΒ(Y) in adjunction δΒ(X) ⊆ Y ⇔ X ⊆ εΒ(Y) , we see that: δ ε ε δ ε (δ ε ) ε (ε δ )ε εεΒ δδΒ εεΒ ==ε==εεεΒ δΒΒ εΒΒ(X)(X) ⊆ ⊆XX ⊆⊆ εΒΒ δΒΒ (X) (X) hence Β Β Β ⊆ Β ⊆ Β Β Β⇒ Β Β Β Β Idempotence The erosion of the opening equals the erosion of the set itself. This results in the idempotence of γ Β and of ϕΒ : γ γ = γ γΒΒ γΒΒ = γΒΒand,and, εΒ (δΒ εΒ) = εΒ ⇒ δΒ εΒ (δΒ εΒ) = δΒ εΒ i.e.
    [Show full text]
  • M-Idempotent and Self-Dual Morphological Filters ا
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 4, APRIL 2012 805 Short Papers___________________________________________________________________________________________________ M-Idempotent and Self-Dual and morphological filters (opening and closing, alternating filters, Morphological Filters alternating sequential filters (ASF)). The quest for self-dual and/or idempotent operators has been the focus of many investigators. We refer to some important work Nidhal Bouaynaya, Member, IEEE, in the area in chronological order. A morphological operator that is Mohammed Charif-Chefchaouni, and idempotent and self-dual has been proposed in [28] by using the Dan Schonfeld, Fellow, IEEE notion of the middle element. The middle element, however, can only be obtained through repeated (possibly infinite) iterations. Meyer and Serra [19] established conditions for the idempotence of Abstract—In this paper, we present a comprehensive analysis of self-dual and the class of the contrast mappings. Heijmans [8] proposed a m-idempotent operators. We refer to an operator as m-idempotent if it converges general method for the construction of morphological operators after m iterations. We focus on an important special case of the general theory of that are self-dual, but not necessarily idempotent. Heijmans and lattice morphology: spatially variant morphology, which captures the geometrical Ronse [10] derived conditions for the idempotence of the self-dual interpretation of spatially variant structuring elements. We demonstrate that every annular operator, in which case it will be called an annular filter. increasing self-dual morphological operator can be viewed as a morphological An alternative framework for morphological image processing that center. Necessary and sufficient conditions for the idempotence of morphological operators are characterized in terms of their kernel representation.
    [Show full text]
  • Grayscale Mathematical Morphology Václav Hlaváč
    Grayscale mathematical morphology Václav Hlaváč Czech Technical University in Prague Czech Institute of Informatics, Robotics and Cybernetics 160 00 Prague 6, Jugoslávských partyzánů 1580/3, Czech Republic http://people.ciirc.cvut.cz/hlavac, [email protected] also Center for Machine Perception, http://cmp.felk.cvut.cz Courtesy: Petr Matula, Petr Kodl, Jean Serra, Miroslav Svoboda Outline of the talk: Set-function equivalence. Top-hat transform. Umbra and top of a set. Geodesic method. Ultimate erosion. Gray scale dilation, erosion. Morphological reconstruction. A quick informal explanation 2/42 Grayscale mathematical morphology is the generalization of binary morphology for images with more gray levels than two or with voxels. 3 The point set A ∈ E . The first two coordinates span in the function (point set) domain and the third coordinate corresponds to the function value. The concepts supremum ∨ (also the least upper bound), resp. infimum ∧ (also the greatest lower bound) play a key role here. Actually, the related operators max, resp. min, are used in computations with finite sets. Erosion (resp. dilation) of the image (with the flat structuring) element assigns to each pixel the minimal (resp. maximal) value in the chosen neighborhood of the current pixel of the input image. The structuring element (function) is a function of two variables. It influences how pixels in the neighborhood of the current pixel are taken into account. The value of the (non-flat) structuring element is added (while dilating), resp. subtracted (while eroding) when the maximum, resp. minimum is calculated in the neighborhood. Grayscale mathematical morphology explained via binary morphology 3/42 It is possible to introduce grayscale mathematical morphology using the already explained binary (black and white only) mathematical morphology.
    [Show full text]
  • Morphological Image Compression Using Skeletons
    Morphological Image Compression using Skeletons Nimrod Peleg Update: March 2008 What is Mathematical Morphology ? “... a theory for analysis of spatial structures which was initiated by George Matheron and Jean Serra. It is called Morphology since it aims at the analyzing the shape and the forms of the objects. It is Mathematical in the sense that the analysis is based on set theory, topology, lattice, random functions, etc. “ (Serra and Soille, 1994). Basic Operation: Dilation • Dilation: replacing every pixel with the maximum value of its neighborhood determined by the structure element (SE) X B x b|, x X b B Original SE Dilation Dilation demonstration Original Figure Dilated Image With Circle SE Dilation example Dilation (Israel Map, circle SE): Basic Operation: Erosion • Erosion: A Dual operation - replacing every pixel with the minimum value of its neighborhood determined by the SE C XBXB C Original SE Erosion Erosion demonstration Original Figure Eroded Image With Circle SE Erosion example Erosion (Lena, circle SE): Original B&W Lena Eroded Lena, SE radius = 4 Composed Operations: Opening • Opening: Erosion and than Dilation‎ removes positive peaks narrower than the SE XBXBB () Original SE Opening Opening demonstration Original Figure Opened Image With Circle SE Opening example Opening (Lena, circle SE): Original B&W Lena Opened Lena, SE radius = 4 Composed Operations: Closing • Closing: Dilation and than Erosion removes negative peaks narrower than the SE XBXBB () Original SE Closing Closing demonstration Original Figure Closed Image With Circle SE Closing example • Closing (Lena, circle SE): Original B&W Lena Closed Lena, SE radius = 4 Cleaning “white” noise Opening & Closing Cleaning “black” noise Closing & Opening Conditioned dilation Y ()()XXBY • Example: Original Figure Opened Figure By Circle SE Conditioned Dilated Figure Opening By Reconstruction Rec( mask , kernel ) lim( mask ( kernel )) n n • Open by rec.
    [Show full text]
  • Computer Vision – A
    CS4495 Computer Vision – A. Bobick Morphology CS 4495 Computer Vision Binary images and Morphology Aaron Bobick School of Interactive Computing CS4495 Computer Vision – A. Bobick Morphology Administrivia • PS7 – read about it on Piazza • PS5 – grades are out. • Final – Dec 9 • Study guide will be out by Thursday hopefully sooner. CS4495 Computer Vision – A. Bobick Morphology Binary Image Analysis Operations that produce or process binary images, typically 0’s and 1’s • 0 represents background • 1 represents foreground 00010010001000 00011110001000 00010010001000 Slides: Linda Shapiro CS4495 Computer Vision – A. Bobick Morphology Binary Image Analysis Used in a number of practical applications • Part inspection • Manufacturing • Document processing CS4495 Computer Vision – A. Bobick Morphology What kinds of operations? • Separate objects from background and from one another • Aggregate pixels for each object • Compute features for each object CS4495 Computer Vision – A. Bobick Morphology Example: Red blood cell image • Many blood cells are separate objects • Many touch – bad! • Salt and pepper noise from thresholding • How useable is this data? CS4495 Computer Vision – A. Bobick Morphology Results of analysis • 63 separate objects detected • Single cells have area about 50 • Noise spots • Gobs of cells CS4495 Computer Vision – A. Bobick Morphology Useful Operations • Thresholding a gray-scale image • Determining good thresholds • Connected components analysis • Binary mathematical morphology • All sorts of feature extractors, statistics (area, centroid, circularity, …) CS4495 Computer Vision – A. Bobick Morphology Thresholding • Background is black • Healthy cherry is bright • Bruise is medium dark • Histogram shows two cherry regions (black background has been removed) Pixel counts Pixel 0 Grayscale values 255 CS4495 Computer Vision – A. Bobick Morphology Histogram-Directed Thresholding • How can we use a histogram to separate an image into 2 (or several) different regions? Is there a single clear threshold? 2? 3? CS4495 Computer Vision – A.
    [Show full text]
  • Morphological Operations on Matrix-Valued Images
    Morphological Operations on Matrix-Valued Images Bernhard Burgeth, Martin Welk, Christian Feddern, and Joachim Weickert Mathematical Image Analysis Group Faculty of Mathematics and Computer Science, Bldg. 27 Saarland University, 66041 Saarbruc¨ ken, Germany burgeth,welk,feddern,weickert @mia.uni-saarland.de f g http://www.mia.uni-saarland.de Abstract. The output of modern imaging techniques such as diffusion tensor MRI or the physical measurement of anisotropic behaviour in materials such as the stress-tensor consists of tensor-valued data. Hence adequate image processing methods for shape analysis, skeletonisation, denoising and segmentation are in demand. The goal of this paper is to extend the morphological operations of dilation, erosion, opening and closing to the matrix-valued setting. We show that naive approaches such as componentwise application of scalar morphological operations are unsatisfactory, since they violate elementary requirements such as invariance under rotation. This lead us to study an analytic and a geo- metric alternative which are rotation invariant. Both methods introduce novel non-component-wise definitions of a supremum and an infimum of a finite set of matrices. The resulting morphological operations incorpo- rate information from all matrix channels simultaneously and preserve positive definiteness of the matrix field. Their properties and their per- formance are illustrated by experiments on diffusion tensor MRI data. Keywords: mathematical morphology, dilation, erosion, matrix-valued imaging, DT-MRI 1 Introduction Modern data and image processing encompasses more and more the analysis and processing of matrix-valued data. For instance, diffusion tensor magnetic reso- nance imaging (DT-MRI), a novel medical image acquisition technique, measures the diffusion properties of water molecules in tissue.
    [Show full text]
  • Minimal Representations for Translation-Invariant Set
    Minimal Representations for Translation-Invariant Set Mappings by Mathematical Morphology Author(s): Gerald Jean Francis Banon and Junior Barrera Source: SIAM Journal on Applied Mathematics, Vol. 51, No. 6 (Dec., 1991), pp. 1782-1798 Published by: Society for Industrial and Applied Mathematics Stable URL: http://www.jstor.org/stable/2102371 . Accessed: 02/04/2013 13:46 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Society for Industrial and Applied Mathematics is collaborating with JSTOR to digitize, preserve and extend access to SIAM Journal on Applied Mathematics. http://www.jstor.org This content downloaded from 200.130.19.189 on Tue, 2 Apr 2013 13:46:44 PM All use subject to JSTOR Terms and Conditions SIAM J. APPL. MATH. ? 1991 Society for Industrial and Applied Mathematics Vol. 51, No. 6, pp. 1782-1798, December 1991 018 MINIMAL REPRESENTATIONS FOR TRANSLATION-INVARIANT SET MAPPINGS BY MATHEMATICAL MORPHOLOGY* GERALD JEAN FRANCIS BANONt AND JUNIOR BARRERAt Abstract. In his 1975 book, Matheron introduced a pair of dual representations, written in terms of erosions and dilations, for increasing translation invariant set mappings, using the concept of a kernel. Based on hit-miss topology, Maragos, in his 1985 Ph.D.
    [Show full text]