Combining Imaging + RV’s

Jusn R. Crepp

Frank M. Freimann Professor Department of Physics University of Notre Dame [email protected] Connecng Two Disnct Techniques Doppler Trends

30 HD 19467 20

10

0

ï10 dv/dt=é1.37+/é0.09 m/s/yr

Radial Velocity [m/s] ï20 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 Movaon • High detecon efficiency. • Break sin(i) degeneracy, construct 3d-orbits. • Dynamical of companions. • Calibrate evoluonary models.

Kappa Andromedae  Determine fpl for wide orbits.

“b”

HR 8799 Marois et al. 2010 Carson et al. 2012 Paral Orbits

Isaac Newton What informaon can be gleaned? (1) Minimum dynamical (Torres 1999). (2) Physical separaon (Howard et al. 2010). Minimum Mass

2 ⎛ M ⎞ ⎛ d ρ ⎞ d(RV ) min⎜ B ⎟ =1.39E − 5 ⎜ ⎟ ⎝ MSun ⎠ ⎝ pc arcsec⎠ dt where RV acceleraon is measured in m s-1 yr-1. € Physical Separaon

d(RV ) GMB ⎛ rAB ⎞ ρ = 2 cosθ, ⎜ ⎟ sinθ = dt rAB ⎝ AU⎠ π

where rAB is the instantaneous true physical separaon.

€ € 3d-Orbits and Dynamical Mass

Radial Velocities:

K, P, e, ω, tp : * a, i, P, e, ω, tp, Ω

How much informaon do we need to calculate the orbit and mass? Murray & Dermo 1998 At What Point Can We Calculate the Orbit?

4π 2a3 p2 = G (M + m) * Noce that precise is essenal (Dupuy & Kraus 2013) € When do constraints become interesng? s “with accuracies of a few mas, it is possible to place strong constraints on KBO orbits even from very short (e.g., 24 hour) arcs … reflex moon is easily σast detected giving a measure of distance to “Yes, of course the the target in less than an hour.” “I don’t trust anyone’s results inclinaon falls out - Bernstein & Khushalani 2000 unl I see 2 phase wraps.” immediately.” - Andy Boden (Caltech) - Jessica Lu (IfA) Galacc Center Comets

PMS Binaries

100 10-1 10-2 10-3 10-4 10-5 10-6 10-7 We are here. σast / s

How Do We Fit Observaons?

• Bayesian stascal framework. (“Data Analysis: A Bayesian Tutorial” by Sivia) • Assume we understand uncertaines. • Keplerian orbit model. Single companion. • Markov-Chain Monte Carlo (MCMC) analysis. (“Quanfying the Uncertainty in the Orbits of Extrasolar Planets”, Ford 2005, AJ, 129, 1706) Markov Chain Monte Carlo

• Many degrees of freedom {P, e, i, ω, tp, Ω, …}. • Metropolis-Hasngs algorithm.

P

e X (Working in N-dimensional space) i

Metropolis-Hastings Pseudo-Code:

(1) Cull P, a, e, i, ω, tp, Ω, + nuissance parameters. (2) Calculate Likelihood, L, for parameters. Use both RV, Imaging data simultaneously.

(3) if (L > L0) record new chain entries. else

if (rand[0,1] < L / L0) record new chain entries. else record old chain entries. end end (4) Wash, Rinse, Repeat to determine posterior. Dynamical Masses

HR 7672  G0 primary L4 companion d=17.1 pc Liu et al. 2002

Crepp et al. 2012a, ApJ Direct Image, Keck/NIRC2 2011

2011.37 LiuLiu etet al.al. 20022002 BoccalettiBoccaletti etet al.al. 20032003 SerabynSerabyn etet al.al. 20092009 é0.5 presentNACO 279.C studyé5052(A)

present study Towards

é0.6

2007.73 North offset (") North offset (") é0.7 2006.69

2001.64 2002.54 2001.94

0.5 0.4 0.3 0.2 EastEast offsetoffset (")(") Crepp et al. 2012a, ApJ All Six Orbit Parameters 3d-Orbit and Dynamical Mass

More accurate and precise than Crepp et al. 2012a, ApJ theorecal evoluonary models(!) Mass of a Directly Imaged Brown Dwarf Crepp et al. 2012b, ApJ [K2, NIRC2] [K1, HIRES] California Planet Search (CPS)

Kappa CrB

MRVELS

trend=1.7 m/s/yr

Johnson et al. 2008

Astrometry Measurements

Doppler Measurements

m > 0.260+/-0.010Msun

Old and Cold T-Dwarf

30 HD 19467 20

10

0

ï10 dv/dt=é1.37+/é0.09 m/s/yr

Radial Velocity [m/s] ï20 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 Benchmark T dwarf

[Fe/H] = -0.15+/-0.04 Age > 4.6 Gyr

Mass > 52MJup Spectrum from Project 1640 now in hand. … Arst Impression Methane Absorpon

CH4 Short

CH4 Long Can we detect planets? Yes!

80

min dynamical mass at 0.2" ) 70 min dynamical mass at 0.4"

Jup 60 min dynamical mass at 0.8" NIRC2 L’ mass sensitivity 50 0.8" 0.4" 40 0.2"

30

20

10 minimum mass (M

0 20 40 60 target star number ï4 Non-detecons x 10

7 RV andOnly Imaging 6 100 ) ) Aperture 5 Masking Jup Jup 4

3 10 GPI mass (M mass (M 2 Determine giant planet occurrence rates(!) 1 oo 1 ii == 5050 0 10 100 1000 10000 period (yrs) The Frequency of Giant Planets around M-dwarfs

Montet et al. 2014, ApJ, 781, 28 Conclusion #1 6.5% +/- 3.0% of M-dwarfs host a giant planet between 0 < a < 20 AU.

Can explain why high-contrast imaging discoveries are found orbing more massive . Conclusion #2: Planet occurrence-metallicity correlaon appears to hold for large orbital separaons.

Evidence for core- accreon beyond the snow-line. Conclusion #3: Our results are consistent with gravitaonal microlensing. Summary  Combined RV+Imaging is more powerful than sum of individual parts.  TRENDS high-contrast survey: - HD 114174 B [WD age discrepancy] - HD 19467 B [benchmark T-dwarf]  Non-detecons are Important: (i) M-dwarfs have few gas giant planets

(6.5%+/-3.0%) from 0-20 AU for 1-13MJup. (ii) Planet-metallicity correlaon holds at wide orbit separaons. (iii) First independent check of microlensing results for wide-separaon planets.