Disertaciones Astronómicas Boletín Número 31 De Efemérides Astronómicas 16 De Abril De 2020

Total Page:16

File Type:pdf, Size:1020Kb

Disertaciones Astronómicas Boletín Número 31 De Efemérides Astronómicas 16 De Abril De 2020 Disertaciones astronómicas Boletín Número 31 de efemérides astronómicas 16 de abril de 2020 Realiza Luis Fernando Ocampo O. ([email protected]), Noticias de la semana. China quiere una porción de la Luna. Acá los detalles de cómo quiere lograrlo. La nación planea lanzar la misión Change 5 que traerá muestras lunares para finales del presente año. Imagen 1: Imagen de la Luna como la observó la sonda Clementina en 1994. NASA Un vistazo de cómo China planea manipular muestras de la Luna revela los pasos a se- guir para el almacenamiento, procesamiento y preparación de las muestras. La misión de la luna robótica Chang'e 5 de China está programada para lanzarse a finales de este año. Esa empresa representa la tercera fase del programa de exploración lunar Chang'e de China: devolver muestras de la luna. La región de aterrizaje candidata reportada para Chang'e 5 es la región de Rümker, ubi- cada en el norte de Oceanus Procellarum ("Océano de tormentas"). El área es geológica- mente compleja y conocida por su actividad volcánica. La misión Chang'e 5 tiene cuatro partes principales: un módulo orbitador, ascendente, aterrizador y de re-entrada en la Tierra, que contendrá hasta 4.4 libras. (2 kilogramos) de muestras de superficie lunar y sub-superficial. Imagen 2: China planea lanzar la ambiciosa misión de retorno de la muestra lunar Chang'e 5 a finales de 2020. (Crédito de la imagen: usado con permiso: Loren Roberts / The Planetary Society en https://www.planetary.org/) La ex Unión Soviética ejecutó con éxito tres misiones robóticas de retorno de muestras lunares. Luna 16 devolvió una pequeña muestra (101 gramos) de Mare Fecunditatis ("Mar de la fertilidad") en septiembre de 1970; en febrero de 1972, Luna 20 devolvió 55 gramos de suelo de la región de las tierras altas de Apolonio; y Luna 24 recuperó 170.1 gramos de muestras lunares del Mare Crisium de la luna ("Mar de Crisis") para regresar a la Tierra en agosto de 1976. Estados Unidos trajo mucho más material lunar. Las seis misiones Apolo que aterrizaron en la superficie lunar de 1969 a 1972 recogieron 842 libras. (382 kg) de muestras luna- res en diferentes sitios de aterrizaje en la superficie lunar, incluyendo rocas, muestras de núcleos, tierra lunar y polvo. En un artículo que estaba programado para ser presentado el mes pasado en la Confe- rencia de Ciencia Lunar y Planetaria (LPSC), que terminó siendo cancelado debido a las preocupaciones sobre el nuevo coronavirus, el autor principal GL Zhang del Observatorio Astronómico Nacional, Academia de Ciencias de China, detalla las tareas principales del Sistema de Aplicación de Investigación Terrestre (GRAS) del proyecto de exploración lu- nar del país. Estas tareas incluyen: recibir muestras lunares del sistema de naves espaciales; estable- cer instalaciones y laboratorios especiales para el almacenamiento local permanente de muestras y el almacenamiento de respaldo en otra ubicación; y preparación y preproce- samiento de muestras lunares. De acuerdo con los requisitos de la misión, GRAS formó un plan completo de preprocesa- miento, almacenamiento y preparación de muestras lunares. Este plan incluye principalmente: traspaso y transferencia de muestras lunares del sis- tema de naves espaciales a GRAS, desempaquetado, separación (separación de muestras perforadas de las recogidas), almacenamiento (muestras recogidas y perforadas) y pre- paración de muestras. Primero, las muestras lunares devueltas se dividirán en muestras recogidas y muestras perforadas después de ingresar al laboratorio. Las muestras recogidas y perforadas se dividirán en cuatro categorías: muestras de almacenamiento permanente, muestras de almacenamiento permanente de respaldo, muestras de investigación científica y mues- tras de exhibición. "Todas las herramientas que entran en contacto con la muestra lunar están hechas de acero inoxidable, teflón, vidrio de cuarzo o materiales de composición conocida para con- trolar estrictamente los factores que afectarán el análisis científico posterior. El contenido de agua y oxígeno en la guantera, lleno de [ nitrógeno], será estrictamente monitoreado para evitar que las muestras lunares se afecten, o se contaminen con la Tierra ", señala el documento LPSC. "Parecen estar adoptando un enfoque muy similar a cómo procesamos (y seguimos) pro- cesando y curando muestras de Apolo (y otros astromateriales en nuestra colección)", dijo Ryan Zeigler, curador de muestras de Apolo de la NASA y gerente de la adquisición y curación de astromateriales. Oficina de la División de Ciencia de Investigación y Explora- ción de Astromateriales en el Centro Espacial Johnson de la NASA en Houston. "Hay algunas diferencias menores, pero eso es de esperarse ya que cada misión tiene ca- racterísticas únicas", dijo Zeigler a Inside Outer Space. Los chinos claramente se están tomando en serio el manejo, el almacenamiento y el exa- men preliminar de un conjunto potencial de nuevas muestras lunares. La tecnología des- crita es en muchos aspectos similar a la tecnología en el Laboratorio de muestras lunares de la NASA, señaló Carlton Allen, un ex curador de astro-materiales de la NASA. (Ahora está retirado). "El uso de una atmósfera de nitrógeno para la preparación, subdivisión y almacena- miento ha demostrado ser necesario y suficiente durante 50 años de curación lunar en la NASA", dijo Allen. Las fotos de la caja de guantes muestran que el nitrógeno se mantiene a presión positiva con respecto a la atmósfera del laboratorio, lo que ha sido importante para el control de la contaminación. También se reconoce la importancia de restringir los materiales que entran en contacto con las muestras, otro aspecto importante del control de la contami- nación. La tecnología descrita por G. L. Zhang y sus colegas "tiene el potencial de hacer que es- tas futuras muestras lunares sean directamente comparables con las muestras Apollo y Luna, lo que podría aumentar significativamente el valor de cada conjunto de muestras", dijo Allen. Asteroide con gran acercamiento se deja ver antes del sobrevuelo a la Tierra el 29 de abril. Imagen 3: El Observatorio de Arecibo capturó esta imagen de radar del gran asteroide OR2 1998 el 18 de abril de 2020. 1998 OR2 volará por la Tierra a una distancia de 3.9 millones de millas (6.3 millones de kilómetros) el 29 de abril. (Imagen: © Observatorio de Arecibo / NASA / NSF) Ahora tenemos una buena imagen de la gran roca espacial que volará por la Tie- rra la próxima semana. El sábado (18 de abril), el Observatorio de Arecibo en Puerto Rico capturó una imagen de radar del asteroide 1998 OR2, que se acercará a 3,9 millones de millas (6,3 millones de kilómetros) de nuestro planeta el 29 de abril. Para la perspectiva: la luna orbita la Tierra a una distancia promedio de aproximada- mente 239,000 millas (385,000 km). Así que no tenemos nada que temer del sobrevuelo de la Tierra del asteroide 1998 OR2 el 29 de abril, enfatizan los científicos. Imagen 4: El asteroide se mantendrá a una distancia de 6,3 millones de kilómetros de nuestro planeta. Imagen NASA. Los miembros del equipo de Arecibo han estado usando máscaras en el lugar de trabajo para ayudar a minimizar la propagación del nuevo coronavirus, y aparentemente se ven un poco a sí mismos en la roca espacial que se aproxima. "#TeamRadar y el personal de @NAICobservatory están tomando las medidas de seguridad adecuadas a medida que continuamos con las observaciones. Esta semana hemos estado observando el asteroide cercano a la Tierra 1998 OR2, ¡que parece que está usando una máscara! ¡Tiene al menos 1,5 km de ancho y pasa a 16 “distancias lunares de distancia!" los miembros del equipo tuitearon el sábado a través de la cuenta @AreciboRadar. (@AreciboRadar no es una cuenta oficial de Arecibo. Pero @NAICobservatory sí lo es, y retuiteó la publicación del 18 de abril). Imagen 5: Imagen de radar del asteroide OR2/1998 asemeja las imágenes en Tierra por el uso de tapabocas en la población. Imagen Arecibo. Los investigadores de Arecibo no son los únicos que vigilan el OR2 de 1998. Por ejemplo, el astrofísico italiano Gianluca Masi, que dirige el Proyecto del telescopio virtual en línea, también ha estado rastreando el asteroide. Y Masi continuará haciéndolo. El 28 de abril, de hecho, realizará una transmisión por In- ternet en vivo sobre el OR2 de 1998 que contará con vistas telescópicas del objeto. Los astrónomos estiman que el OR2 de 1998 tiene entre 1.1 y 2.5 millas (1.8 a 4.1 kiló- metros) de ancho, lo suficientemente grande como para que un impacto pueda amenazar la civilización humana. Pero, para repetir, no hay nada que temer aquí; el asteroide no se acercará por un amplio margen el 29 de abril. Constelación de la semana: Andromeda (Andrómeda). Con respecto a la mitología griega, Andrómeda era la hija del Rey Cefeo de Etiopia y la Reyna de Casiopea, ésta ofendió a las ninfas del mar al decir que era más bella y preciosa que ellas. En consecuencia, las ninfas se quejaron con el dios del mar Poseidón, este envió un monstruo marino, Cetus para destruyera e inundara las tierras de Cepheus como un castigo por la vanidad que tenía su esposa. Entonces cuando el Rey pidió el consejo al Oráculo de Ammón para poder evitar la destrucción general de sus tierras, estos le informaron que la forma de calmar y apaciguar a los dioses y las ninfas era sacrificar y ofrendar a su hija a Cetus. Una vez dado estos acontecimientos, Andrómeda fue encadenada a una roca para que la destruyera el monstruo, pero llegó Perseo y la salva. Luego los dos se casaron donde tuvieron seis hijos, incluido Gorgophonte, que engendró Tyndareus, el famoso Rey Espartano, y Perses, que fue un antepasado de los persas. Imagen 6: Quizás sea el objeto más significativo de la constelación: su galaxia espiarl M31.
Recommended publications
  • ANNUAL REPORT 2014-2015 School of Sciences and Mathematics Annual Report 2014‐2015
    ANNUAL REPORT 2014-2015 School of Sciences and Mathematics Annual Report 2014‐2015 Executive Summary The 2014 – 2015 academic year was a very successful one for the School of Sciences and Mathematics (SSM). Our faculty continued their stellar record of publication and securing extramural funding, and we were able to significantly advance several capital projects. In addition, the number of majors in SSM remained very high and we continued to provide research experiences for a significant number of our students. We welcomed four new faculty members to our ranks. These individuals and their colleagues published 187 papers in peer‐reviewed scientific journals, many with undergraduate co‐authors. Faculty also secured $6.4M in new extramural grant awards to go with the $24.8M of continuing awards. During the 2013‐14 AY, ground was broken for two 3,000 sq. ft. field stations at Dixie Plantation, with construction slated for completion in Fall 2014. These stations were ultimately competed in June 2015, and will begin to serve students for the Fall 2015 semester. The 2014‐2015 academic year, marked the first year of residence of Computer Science faculty, as well as some Biology and Physics faculty, in Harbor Walk. In addition, nine Biology faculty had offices and/or research space at SCRA, and some biology instruction occurred at MUSC. In general, the displacement of a large number of students to Harbor Walk went very smoothly. Temporary astronomy viewing space was secured on the roof of one of the College’s garages. The SSM dean’s office expended tremendous effort this year to secure a contract for completion of the Rita Hollings Science Center renovation, with no success to date.
    [Show full text]
  • Exoplanetologia – Em Busca De Um Planeta Habitável
    Exoplanetologia - Em busca de um planeta habitável Ruben Romano Borges Barbosa Mestrado em Desenvolvimento Curricular pela Astronomia Departamento de Física e Astronomia 2015 Orientador Pedro Viana, Professor Auxiliar, Faculdade de Ciências da Universidade do Porto FCUP 2 Exoplanetologia – Em busca de um planeta habitável Todas as correções determinadas pelo júri, e só essas, foram efetuadas. O Presidente do Júri, Porto, ______/______/_________ FCUP 3 Exoplanetologia – Em busca de um planeta habitável Agradecimentos Foi um estado de insuficiência revelado por uma sensação desagradável de falta que me impulsionou na concretização desta escalada ao “cume de Maslow”. Os mais próximos contribuíram com fortes incentivos, palavras de motivação, sugestões, críticas valiosas e outros apoios de difícil quantificação. A sua importância na expressão qualitativa e quantitativa deste trabalho assume uma propriedade tão peculiar que sem eles, com toda a certeza, teria sido muito difícil alcançar um resultado digno de registo. Mencionar aqui o nome dessas pessoas constitui um pilar de justiça e de homenagem sentida da minha parte. A todos os Professores que tive o prazer de conhecer na Faculdade de Ciências da Universidade do Porto, João Lima, Mário João Monteiro, Catarina Lobo e Jorge Gameiro, deixo uma palavra de agradecimento pelos valiosos conhecimentos transmitidos, elevada disponibilidade e pelo carinho no trato. Ao Professor Pedro Viana, além de enquadrado no parágrafo anterior, foi também orientador do Seminário e desta dissertação, pelo que agradeço a completa disponibilidade sempre demonstrada para me auxiliar na escrita deste trabalho, tal como o empenho, as sugestões, os esclarecimentos, os comentários, as correções e o todo o material didático que me disponibilizou.
    [Show full text]
  • A Pathfinder for Imaging Exo-Earths
    mission control A pathfnder for imaging exo-Earths SCExAO is an instrument on the Subaru Telescope that is pushing the frontiers of what is possible with ground- based direct imaging of terrestrial exoplanets, explains Thayne Currie, on behalf of the SCExAO team. ver the past ten years, high-contrast Keck/NIRC2 Subaru/SCExAO/CHARIS c imaging systems and now dedicated (Conventional AO) (Extreme AO) Oextreme adaptive optics (AO) systems c on ground-based telescopes have revealed the first direct detections of young, self-luminous Jovian extrasolar planets on Solar System-like e scales, up to one million times fainter than the stars they orbit1. A key goal of the upcoming 30-m-class Extremely Large Telescopes (ELTs) d is to image a rocky, Earth-sized planet in d 0.5” the habitable zone around a nearby M star. 20 au However, doing so requires achieving planet- to-star contrasts 100 times deeper at 10 times Fig. 1 | Two near-infrared images of the HR 8799 system. The left image is from a leading conventional closer angular separations than currently (facility) AO system using the near-infrared camera on the Keck telescope (NIRC2); on the right is demonstrated with leading instruments like a SCExAO/CHARIS image, which exhibits higher signal-to-noise detections of planets HR 8799c and the Gemini Planet Imager (GPI) or SPHERE HR 8799d and a detection of HR 8799e. at the Very Large Telescope. The Subaru Coronagraphic Extreme Adaptive Optics project (SCExAO)2 utilizes stars as faint as 12th magnitude in the optical. sufficient to image some exoplanets in and will further mature key advances in These deep contrasts translate into a new reflected light.
    [Show full text]
  • IAU Division C Working Group on Star Names 2019 Annual Report
    IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ ​ WGSN Email: [email protected] ​ The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. ​ ​ ​ WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the ​ internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials.
    [Show full text]
  • An Explanation of Stability of Extrasolar Systems Based on the Universal Stellar Law
    Chaotic Modeling and Simulation (CMSIM) 4: 513-529, 2017 An explanation of stability of extrasolar systems based on the universal stellar law Alexander M. Krot1 1 Laboratory of Self-Organization Systems Modeling, United Institute of Informatics Problems of National Academy of Sciences of Belarus, Minsk, Belarus (E-mail: [email protected]) Abstract: This work investigates the stability of exoplanetary systems based on the statistical theory of gravitating spheroidal bodies. The statistical theory for a cosmogonical body forming (so-called spheroidal body) has been proposed in our previous works. Starting the conception for forming a spheroidal body inside a gas-dust protoplanetary nebula, this theory solves the problem of gravitational condensation of a gas-dust protoplanetary cloud with a view to planetary formation in its own gravitational field. This work develops the equation of state of an ideal stellar substance based on conception of the universal stellar law (USL) connecting temperature, size and mass of a star. This work also shows that knowledge of some orbital characteristics for multi-planet extrasolar systems refines own parameters of stars based on the combined Kepler 3rd law with universal stellar law (3KL–USL). The proposed 3KL–USL predicts statistical oscillations of circular motion of planets around stars. Thus, we conclude about a possibility of presence of statistical oscillations of orbital motion, i.e. the oscillations of the major semi-axis and the orbital angular velocity of rotation of planets and bodies around stars. Indeed, this conclusion is completely confirmed by existing the radial and the axial orbital oscillations of bodies for the first time described by Alfvén and Arrhenius.
    [Show full text]
  • Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland)
    Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland) American Astronomical Society August, 2019 100 — New Discoveries scope (JWST), as well as other large ground-based and space-based telescopes coming online in the next 100.01 — Review of TESS’s First Year Survey and two decades. Future Plans The status of the TESS mission as it completes its first year of survey operations in July 2019 will bere- George Ricker1 viewed. The opportunities enabled by TESS’s unique 1 Kavli Institute, MIT (Cambridge, Massachusetts, United States) lunar-resonant orbit for an extended mission lasting more than a decade will also be presented. Successfully launched in April 2018, NASA’s Tran- siting Exoplanet Survey Satellite (TESS) is well on its way to discovering thousands of exoplanets in orbit 100.02 — The Gemini Planet Imager Exoplanet Sur- around the brightest stars in the sky. During its ini- vey: Giant Planet and Brown Dwarf Demographics tial two-year survey mission, TESS will monitor more from 10-100 AU than 200,000 bright stars in the solar neighborhood at Eric Nielsen1; Robert De Rosa1; Bruce Macintosh1; a two minute cadence for drops in brightness caused Jason Wang2; Jean-Baptiste Ruffio1; Eugene Chiang3; by planetary transits. This first-ever spaceborne all- Mark Marley4; Didier Saumon5; Dmitry Savransky6; sky transit survey is identifying planets ranging in Daniel Fabrycky7; Quinn Konopacky8; Jennifer size from Earth-sized to gas giants, orbiting a wide Patience9; Vanessa Bailey10 variety of host stars, from cool M dwarfs to hot O/B 1 KIPAC, Stanford University (Stanford, California, United States) giants. 2 Jet Propulsion Laboratory, California Institute of Technology TESS stars are typically 30–100 times brighter than (Pasadena, California, United States) those surveyed by the Kepler satellite; thus, TESS 3 Astronomy, California Institute of Technology (Pasadena, Califor- planets are proving far easier to characterize with nia, United States) follow-up observations than those from prior mis- 4 Astronomy, U.C.
    [Show full text]
  • The Tessmann Planetarium Guide to Exoplanets
    The Tessmann Planetarium Guide to Exoplanets REVISED SPRING 2020 That is the big question we all have: Are we alone in the universe? Exoplanets confirm the suspicion that planets are not rare. -Neil deGrasse Tyson What is an Exoplanet? WHAT IS AN EXOPLANET? Before 1990, we had not yet discovered any planets outside of our solar system. We did not have the methods to discover these types of planets. But in the three decades since then, we have discovered at least 4158 confirmed planets outside of our system – and the count seems to be increasing almost every day. We call these worlds exoplanets. These worlds have been discovered with the help of new and powerful telescopes, on Earth and in space, including the Hubble Space Telescope (HST). The Kepler Spacecraft (artist’s conception, below) and the Transiting Exoplanet Survey Satellite (TESS) were specifically designed to hunt for new planets. Kepler discovered 2662 planets during its search. TESS has discovered 46 planets so far and has found over 1800 planet candidates. In Some Factoids: particular, TESS is looking for smaller, rocky exoplanets of nearby, bright stars. An earth-sized planet, TOI 700d, was discovered by TESS in January 2020. This planet is in its star’s Goldilocks or habitable zone. The planet is about 100 light years away, in the constellation of Dorado. According to NASA, we have discovered 4158 exoplanets in 3081 planetary systems. 696 systems have more than one planet. NASA recognizes another 5220 unconfirmed candidates for exoplanets. In 2020, a student at the University of British Columbia, named Michelle Kunimoto, discovered 17 new exoplanets, one of which is in the habitable zone of a star.
    [Show full text]
  • Astronomy Magazine 2011 Index Subject Index
    Astronomy Magazine 2011 Index Subject Index A AAVSO (American Association of Variable Star Observers), 6:18, 44–47, 7:58, 10:11 Abell 35 (Sharpless 2-313) (planetary nebula), 10:70 Abell 85 (supernova remnant), 8:70 Abell 1656 (Coma galaxy cluster), 11:56 Abell 1689 (galaxy cluster), 3:23 Abell 2218 (galaxy cluster), 11:68 Abell 2744 (Pandora's Cluster) (galaxy cluster), 10:20 Abell catalog planetary nebulae, 6:50–53 Acheron Fossae (feature on Mars), 11:36 Adirondack Astronomy Retreat, 5:16 Adobe Photoshop software, 6:64 AKATSUKI orbiter, 4:19 AL (Astronomical League), 7:17, 8:50–51 albedo, 8:12 Alexhelios (moon of 216 Kleopatra), 6:18 Altair (star), 9:15 amateur astronomy change in construction of portable telescopes, 1:70–73 discovery of asteroids, 12:56–60 ten tips for, 1:68–69 American Association of Variable Star Observers (AAVSO), 6:18, 44–47, 7:58, 10:11 American Astronomical Society decadal survey recommendations, 7:16 Lancelot M. Berkeley-New York Community Trust Prize for Meritorious Work in Astronomy, 3:19 Andromeda Galaxy (M31) image of, 11:26 stellar disks, 6:19 Antarctica, astronomical research in, 10:44–48 Antennae galaxies (NGC 4038 and NGC 4039), 11:32, 56 antimatter, 8:24–29 Antu Telescope, 11:37 APM 08279+5255 (quasar), 11:18 arcminutes, 10:51 arcseconds, 10:51 Arp 147 (galaxy pair), 6:19 Arp 188 (Tadpole Galaxy), 11:30 Arp 273 (galaxy pair), 11:65 Arp 299 (NGC 3690) (galaxy pair), 10:55–57 ARTEMIS spacecraft, 11:17 asteroid belt, origin of, 8:55 asteroids See also names of specific asteroids amateur discovery of, 12:62–63
    [Show full text]
  • Macrocosmo Nº33
    HA MAIS DE DOIS ANOS DIFUNDINDO A ASTRONOMIA EM LÍNGUA PORTUGUESA K Y . v HE iniacroCOsmo.com SN 1808-0731 Ano III - Edição n° 33 - Agosto de 2006 * t i •■•'• bSÈlÈWW-'^Sif J fé . ’ ' w s » ws» ■ ' v> í- < • , -N V Í ’\ * ' "fc i 1 7 í l ! - 4 'T\ i V ■ }'- ■t i' ' % r ! ■ 7 ji; ■ 'Í t, ■ ,T $ -f . 3 j i A 'A ! : 1 l 4/ í o dia que o ceu explodiu! t \ Constelação de Andrômeda - Parte II Desnudando a princesa acorrentada £ Dicas Digitais: Softwares e afins, ATM, cursos online e publicações eletrônicas revista macroCOSMO .com Ano III - Edição n° 33 - Agosto de I2006 Editorial Além da órbita de Marte está o cinturão de asteróides, uma região povoada com Redação o material que restou da formação do Sistema Solar. Longe de serem chamados como simples pedras espaciais, os asteróides são objetos rochosos e/ou metálicos, [email protected] sem atmosfera, que estão em órbita do Sol, mas são pequenos demais para serem considerados como planetas. Até agora já foram descobertos mais de 70 Diretor Editor Chefe mil asteróides, a maior parte situados no cinturão de asteróides entre as órbitas Hemerson Brandão de Marte e Júpiter. [email protected] Além desse cinturão podemos encontrar pequenos grupos de asteróides isolados chamados de Troianos que compartilham a mesma órbita de Júpiter. Existem Editora Científica também aqueles que possuem órbitas livres, como é o caso de Hidalgo, Apolo e Walkiria Schulz Ícaro. [email protected] Quando um desses asteróides cruza a nossa órbita temos as crateras de impacto. A maior cratera visível de nosso planeta é a Meteor Crater, com cerca de 1 km de Diagramadores diâmetro e 600 metros de profundidade.
    [Show full text]
  • Tabetha Boyajian's CV
    Dr. Tabetha Boyajian Yale University, Department of Astronomy, 52 Hillhouse Ave., New Haven, CT 06520 USA [email protected] • +1 (404) 849-4848 • http://www.astro.yale.edu/tabetha PROFESSIONAL Yale University, Department of Astronomy, New Haven, Connecticut, USA EXPERIENCE Postdoctoral Fellow 2012 – present • Supervisor: Dr. Debra Fischer Center for high Angular Resolution Astronomy (CHARA), Georgia State University Hubble Fellow 2009 – 2012 • Supervisor: Dr. Harold McAlister EDUCATION Georgia State University, Department of Physics and Astronomy, Atlanta, Georgia, USA Doctor of Philosophy (Ph.D.) in Astronomy 2005 – 2009 • Adviser: Dr. Harold McAlister Master of Science (M.S.) in Physics 2003 – 2005 • Adviser: Dr. Douglas Gies College of Charleston, Charleston, South Carolina, USA Bachelor of Science (B.S.) in Physics with concentration in astronomy 1998 – 2003 • Graduated with Departmental Honors PROFESSIONAL Secretary, International Astronomical Union, Division G 2015 – 2018 SERVICE Steering Committee, International Astronomical Union, Division G 2015 – 2018 Review panel member NASA Kepler Guest Observer program, NASA K2 Guest Observer program, NSF-AAG program Referee The Astronomical Journal, Astronomy & Astrophysics, PASA Telescope time allocation committee member CHARA, OPTICON (external) AREAS OF Fundamental properties of stars: diameters, temperatures, exoplanet detection and characterization, SPECIALIZATION Optical/IR interferometry, stellar spectroscopy (radial velocities, abundances, activity), absolute AND INTEREST
    [Show full text]
  • School of Sciences and Mathematics Annual Report 2013-2014 1
    School of Sciences and Mathematics Annual Report 2013-2014 1 School of Sciences and Mathematics Annual Report 2013-2014 Executive Summary The 2013 – 2014 academic year was a very successful one for the School of Sciences and Mathematics (SSM). We welcomed six new faculty, our faculty continued their stellar record of publication and securing extramural funding, and we were able to significantly advance several capital projects. In addition, the number of majors in SSM remained very high, we ranked with the major South Carolina research institutions in producing graduates in STEM fields, and we continued to provide research experiences for a significant number of our students. We are very proud that our six new faculty members include three that are minorities or female, underscoring our commitment to enhance diversity among our faculty. These individuals and their colleagues published 185 papers in peer-reviewed scientific journals, many with undergraduate co- authors. Faculty also secured $2.4M in new extramural grant awards to go with the $13.1M of continuing awards. The build-out of 19,000 sq. ft. of space in the SSMB was completed in December 2013, permitting the Department of Geology to re-unify in the building in January 2014. The new space includes faculty offices, teaching and research laboratories, and specialized research facilities. During the 2013-14 AY, ground was broken for two 3,000 sq. ft. field stations at Dixie Plantation, with construction slated for completion in Fall 2014. In addition, the SSM dean’s office expended tremendous effort this year to secure adequate swing space for the renovation of the Rita Hollings Science Center and completed programming for the new facility.
    [Show full text]
  • Meteor.Mcse.Hu
    MCSE 2016/3 meteor.mcse.hu A Mars négy arca SZJA 1%! Az MCSE adószáma: 19009162-2-43 A Tharsis-régió három pajzsvulkánja és az Olympus Mons a Mars Express 2014. június 29-én készült felvételén (ESA / DLR / FU Berlin / Justin Cowart). TARTALOM Áttörés a fizikában......................... 3 GW150914: elõször hallottuk az Univerzum zenéjét....................... 4 A csillagászat ............................ 8 meteorA Magyar Csillagászati Egyesület lapja Journal of the Hungarian Astronomical Association Csillagászati hírek ........................ 10 H–1300 Budapest, Pf. 148., Hungary 1037 Budapest, Laborc u. 2/C. A távcsövek világa TELEFON/FAX: (1) 240-7708, +36-70-548-9124 Egy „klasszikus” naptávcsõ születése ........ 18 E-MAIL: [email protected], Honlap: meteor.mcse.hu HU ISSN 0133-249X Szabadszemes jelenségek Kiadó: Magyar Csillagászati Egyesület Gyöngyházfényû felhõk – történelmi észlelés! .. 22 FÔSZERKESZTÔ: Mizser Attila A hónap asztrofotója: hajnali együttállás ....... 27 SZERKESZTÔBIZOTTSÁG: Dr. Fûrész Gábor, Dr. Kiss László, Dr. Kereszturi Ákos, Dr. Kolláth Zoltán, Bolygók Mizser Attila, Dr. Sánta Gábor, Sárneczky Krisztián, Mars-oppozíció 2014 .................... 28 Dr. Szabados László és Dr. Szalai Tamás SZÍNES ELÕKÉSZÍTÉS: KÁRMÁN STÚDIÓ Nap FELELÔS KIADÓ: AZ MCSE ELNÖKE Téli változékony Napok .................38 A Meteor elôfizetési díja 2016-ra: (nem tagok számára) 7200 Ft Hold Egy szám ára: 600 Ft Januári Hold .........................42 Az egyesületi tagság formái (2016) • rendes tagsági díj (jogi személyek számára is) Meteorok
    [Show full text]