Glycemic Index & Glycemic Load
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phd Thesis (PDF, 6.88MB)
COPYRIGHT AND USE OF THIS THESIS This thesis must be used in accordance with the provisions of the Copyright Act 1968. Reproduction of material protected by copyright may be an infringement of copyright and copyright owners may be entitled to take legal action against persons who infringe their copyright. Section 51 (2) of the Copyright Act permits an authorized officer of a university library or archives to provide a copy (by communication or otherwise) of an unpublished thesis kept in the library or archives, to a person who satisfies the authorized officer that he or she requires the reproduction for the purposes of research or study. The Copyright Act grants the creator of a work a number of moral rights, specifically the right of attribution, the right against false attribution and the right of integrity. You may infringe the author’s moral rights if you: - fail to acknowledge the author of this thesis if you quote sections from the work - attribute this thesis to another author - subject this thesis to derogatory treatment which may prejudice the author’s reputation For further information contact the University’s Director of Copyright Services sydney.edu.au/copyright APPENDIX Clinical Application of the Food Insulin Index to Diabetes Mellitus Kirstine Bell B.Nutr&Diet (Hons), GradCertDiabEd (Dist) Submitted in total fulfillment of the requirements of the degree of Doctor of Philosophy 5 September 2014 Appendix Table of Contents Section 1: Carbohydrate Counting Systematic Review and Meta-Analysis Appendix 1: Published journal article -
Dietary Glycemic Index and Load and the Risk of Type 2 Diabetes: Assessment of Causal Relations
nutrients Review Dietary Glycemic Index and Load and the Risk of Type 2 Diabetes: Assessment of Causal Relations Geoffrey Livesey 1,* , Richard Taylor 1, Helen F. Livesey 1, Anette E. Buyken 2, David J. A. Jenkins 3,4,5,6, Livia S. A. Augustin 4,7, John L. Sievenpiper 3,4,5,6, Alan W. Barclay 8, Simin Liu 9, Thomas M. S. Wolever 3,4, Walter C. Willett 10, Furio Brighenti 11 , Jordi Salas-Salvadó 12,13 , Inger Björck 14, Salwa W. Rizkalla 15, Gabriele Riccardi 16, Carlo La Vecchia 17 , Antonio Ceriello 18, Antonia Trichopoulou 19, Andrea Poli 20, Arne Astrup 21 , Cyril W. C. Kendall 3,4,22, Marie-Ann Ha 23 , Sara Baer-Sinnott 24 and Jennie C. Brand-Miller 25 1 Independent Nutrition Logic Ltd, 21 Bellrope Lane, Wymondham NR180QX, UK; [email protected] (R.T.); [email protected] (H.F.L.) 2 Institute of Nutrition, Consumption and Health, Faculty of Natural Sciences, Paderborn University, 33098 Paderborn, Germany; [email protected] 3 Departments of Nutritional Science and Medicine, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; [email protected] (D.J.A.J.); [email protected] (J.L.S.); [email protected] (T.M.S.W.); [email protected] (C.W.C.K.) 4 Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada; [email protected] 5 Division of Endocrinology and Metabolism, Department of Medicine, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada 6 Li Ka Shing Knowledge Institute, St. -
GRAINS of TRUTH for DIABETES by Jeanne Brown, RD,CDE, LD
GRAINS OF TRUTH FOR DIABETES By Jeanne Brown, RD,CDE, LD Avoiding pasta to lower your blood sugar? Wondering how to identify whole grains? Does the glycemic index (GI) of grains matter? Here are some grains of truth for diabetes. Whole grains provide fiber, vitamins, minerals, antioxidants and in general have a lower GI which reduces the risk of diabetes. Researchers have found a 30 % lower risk of diabetes with high fiber diets from grains. People who eat at least 2 servings per week of brown rice have a 11% lower risk of Type 2 Diabetes than those that eat less. The risk of getting Type 2 Diabetes was 2 ½ times greater for people who had the highest glycemic load and lowest fiber intake in the study. The GI measures how a carbohydrate- containing food raises blood sugar. The GI ranges from 0 to 100. The higher the number, the more likely it will raise blood sugars. The GI is also affected by how the food is processed, how it is cooked and the ripeness of fruit. Pasta cooked just until it is firm and chewy has a lower GI than overcooked pasta. A ripe banana will spike blood sugar more than an unripe banana. Tips: Look for the word “WHOLE” grain. “Whole” ensures they used the entire grain which includes the fiberous bran, and nutrient dense germ. “Wheat bread” or “wheat flour” is not necessarily whole grain unless it states “whole wheat" in the beginning of the ingredient list. Products such as: 100% whole wheat bread, shredded wheat cereal and Triscuit crackers are 100 % whole grains. -
FOOD CARBS and ARTIFICIAL PANCREAS Last Year's Research Project Focused on Perception of Sweetness and Its Relationship to Glucose and Food Processing
FOOD CARBS AND ARTIFICIAL PANCREAS Last year's research project focused on perception of sweetness and its relationship to glucose and food processing. In this year's project, new questions were raised with emphasis on a diabetic diet and diabetes treatment by means of an artificial pancreas. The project had two parts. In its science part, in addition to glucose, the concentration of sucrose and lactose were measured in 6 solid, 6 viscous and 6 liquid foods; the concentration of fructose was researched. The 2021 science project methodology was built on 2020 project based on measuring glucose % by using URS-1G test strips; color change after 30 sec was matched to controls. Controls were made by using glucose dilutions to create 2%, 1%, 0.5%, 0.25%, 0.125%, and 0.0625% concentrations; water was 0%. It was expanded; it involved testing invertase and lactase activity and determining glucose linear time point in order to measure sucrose and lactose concentrations. The foods' Glycemic Index, Glycemic Load, Insulin Index and Carb Factor were examined; their meaning in diabetic diet was discussed. In the engineering part, an artificial pancreas model, a device of continuous sensor providing the information to auto-correcting pump how much chemical (insulin) should be given, was created. The engineering part involved assembling the electrical circuit on the breadboard, making the conductivity sensor and then testing the artificial pancreas model by applying the concept of acid/base chemistry and an electrical circuit. FOOD CARBS AND ARTIFICIAL PANCREAS TABLE OF CONTENT Introduction Review of Literature Methodology. Part I: Food Carbs Methodology. -
A Dozen Tips for Better Blood Sugar Control: Glycemic Index And
A Dozen Tips for Better Blood Sugar Control: Glycemic Index and Glycemic Load Human bodies depend on a steady supply of glucose (blood sugar) as their principal fuel, in order for muscles to stretch and contract, nerves to fire, brains to function—and so much more. Glucose comes from carbohydrates, so the quality and quantity of carbohydrates we eat hugely impacts our energy levels and overall health. Too little glucose, and we starve many bodily functions (especially the brain, which uses 11–20% of the glucose we produce). Too much, and our body scrambles to produce enough insulin to process all that blood sugar—and we may develop heart disease, eye, kidney, and nerve damage. Ideally, our food delivers a steady stream of just the right amount of glucose. But how do we distinguish foods, meals, and diets that raise our blood sugar too high and too fast from those that dole out their fuel slowly and steadily to support good health? Understanding glycemic index, glycemic load and glycemic response can help. Glycemic Index (GI) ranks the quality of individual carbohydrate-rich foods on a scale of 1–100 by measuring how glucose levels rise after someone eats an amount of that food containing 50 grams of carbohydrate. Foods with a low GI score (under 55) provide steady fuel to support energy levels and overall health, while those with a high GI score (70 and up) are likely to provide an unhealthy quick rush of blood sugar followed by a sharp crash. Glycemic Load (GL) combines quality and quantity, allowing us to rank how the typical serving size of a food affects blood sugar. -
Effect of Glycemic Index and Glycemic Load on Type 2 Diabetes Mellitus
International Journal of Health Sciences and Research www.ijhsr.org ISSN: 2249-9571 Review Article Effect of Glycemic Index and Glycemic Load on Type 2 Diabetes Mellitus Towhid Hasan1, Marjia Sultana1, Lincon Chandra Shill1, Nafisa Habib Purba1, Sara Sultana2 1Department of Food Technology and Nutrition Science, Noakhali Science and Technology University, Noakhali-3814, Bangladesh 2Department of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh Corresponding Author: Marjia Sultana ABSTRACT Worldwide diabetes mellitus especially type 2 diabetes mellitus (T2DM) has become a common and rapidly growing chronic non-communicable disease with potentially devastating complications, posing major public health and socioeconomic challenges. The role of glycemic index (GI) and glycemic load (GL) in the control of the T2DM remain controversial. However, a number of mechanisms have been proposed through which dietary GI and/or GL can reduce the risk of T2DM, but all are suggestive. So, the present review is aimed to investigate the current understanding of the effect of GI and/or GL on the risk of T2DM.PubMed, Google Scholar, Cochrane library and several other databases were searched up to December 2018 to identify and select relevant studies. Research conducted using human are only considered eligible. Among the eighteen prospective cohort studies, eight have found no significant association of dietary GI and/or GL with T2DM risk, six studies revealed an association and four studies identified positive association only with GI but not with the GL. Among the ten interventional studies, only two indicated that the risk of T2DM increased with the increment of GI and GL. In conclusion, research on the glycemic response of foods needs to be expanded in order to get a broad and clear knowledge which will provide assurance that how dietary GI and/or GL have play role on the risk of T2DM. -
Dietary Glycemic Index, Glycemic Load, Fiber, Simple Sugars, and Insulin Resistance the Inter99 Study
Pathophysiology/Complications ORIGINAL ARTICLE Dietary Glycemic Index, Glycemic Load, Fiber, Simple Sugars, and Insulin Resistance The Inter99 study 1,2 1,4 CATHRINE LAU, MSC OLUF PEDERSEN, MD, DMSC he rising prevalence of disorders as- 1,2 1 KRISTINE FÆRCH, MSC BENDIX CARSTENSEN, MSC sociated with insulin resistance, 1,3 3 CHARLOTTE GLUMER¨ , MD, PHD TORBEN JØRGENSEN, MD, DMSC 2 1 including type 2 diabetes, cardio- NGE ETENS MSC, PHD NUT ORCH OHNSEN MD, DMSC T I T , K B -J , vascular disease, and the metabolic syn- drome, is commonly attributed to changes over time in dietary patterns and physical activity levels (1–4). Preventive strategies against these disorders, therefore, often in- OBJECTIVE — To examine the relationship between daily glycemic index, daily glycemic corporate dietary recommendations. How- load, simple sugars, dietary fiber, and the prevalence of a measure of insulin resistance in 30- to 60-year-old nondiabetic Danish men and women. ever, only few observational studies have investigated the independent effects of car- RESEARCH DESIGN AND METHODS — The Inter99 study is a nonpharmacological bohydrate-related dietary factors and obe- intervention study. We used baseline data and examined cross-sectional associations between sity on the degree of insulin resistance. The carbohydrate-related dietary factors and an estimate of insulin resistance in 5,675 subjects at official carbohydrate-related recommen- 30–60 years. The dietary intake was estimated from a self-administered food frequency ques- dations are high intake of fiber-rich car- tionnaire, and insulin resistance was estimated using the homeostasis model assessment of bohydrates (Ͼ55 E% [energy percent] insulin resistance (HOMA-IR). -
POTATOES and the GLYCEMIC INDEX How to Reduce the GI of Potatoes and Gain the Benefits of Resistant Starch
POTATOES AND THE GLYCEMIC INDEX How to reduce the GI of potatoes and gain the benefits of resistant starch Potatoes are a highly nutritious wholefood. They contribute a range of nutrients associated with good health, including fibre, vitamin B6, vitamin C, potassium and phytonutrients. You might also be surprised to know that potatoes can have a lower glycemic index (GI) than you might think. What is the Glycemic Index? The GI is a measure of the speed at which a food makes blood sugar rise. AT A GLANCE GI is calculated by measuring the change in blood glucose (BGL) over a The GI of potatoes is two-hour period after eating a 50 gram carbohydrate portion of a single food relative to the change in blood glucose after eating a 50g carbohydrate influenced by: portion of a reference food (glucose or white bread). • Variety of potato (and its carbohydrate, fibre and When it is not possible to measure this directly, GI tables are used to provide polyphenol content) an estimate of BGL response, however, there are large fluctuations in BGL response to foods both within and between individuals. • Serving size The lower a food’s GI, the slower BGLs rise after eating that food. There are • Cooking method/preparation many factors affecting GI in nuts and potatoes. GI less than 55 is considered and storage low, 56-69 moderate and 70+ high. • Fibre and resistant starch content (higher amounts = To better understand a food’s effect on BGLs, you need to know how quickly lower GI, leave the skin on) its glucose enters the bloodstream and how much glucose per serving it can deliver. -
Low–Glycemic Index Diets in the Management of Diabetes a Meta-Analysis of Randomized Controlled Trials
Clinical Care/Education/Nutrition ORIGINAL ARTICLE Low–Glycemic Index Diets in the Management of Diabetes A meta-analysis of randomized controlled trials 1 2 JENNIE BRAND-MILLER, PHD PETER PETOCZ, PHD ticularly with regard to the glycemic in- 2 3 SUSAN HAYNE, BSC STEPHEN COLAGIURI, MD dex (GI) of foods (5). Current dietary recommendations emphasize the quantity rather than the quality of carbohydrate, despite the fact that carbohydrate source and nature pro- OBJECTIVE — The use of diets with low glycemic index (GI) in the management of diabetes foundly influence postprandial glycemia is controversial, with contrasting recommendations around the world. We performed a meta- (6,7). Research on GI indicates that even analysis of randomized controlled trials to determine whether low-GI diets, compared with conventional or high-GI diets, improved overall glycemic control in individuals with diabetes, as when foods contain the same amount of assessed by reduced HbA or fructosamine levels. carbohydrate (i.e., carbohydrate ex- 1c changes), there are up to fivefold differ- RESEARCH DESIGN AND METHODS — Literature searches identified 14 studies, ences in glycemic impact (8). In addition, comprising 356 subjects, that met strict inclusion criteria. All were randomized crossover or several prospective observational studies parallel experimental design of 12 days’ to 12 months’ duration (mean 10 weeks) with modifi- have found that the overall GI and glyce- cation of at least two meals per day. Only 10 studies documented differences in postprandial mic load (GI ϫ g carbohydrate) of the glycemia on the two types of diet. diet, but not total carbohydrate content, are independently related to the risk of RESULTS — Low-GI diets reduced HbA by 0.43% points (CI 0.72–0.13) over and above 1c developing type 2 diabetes (9,10), cardio- that produced by high-GI diets. -
Dietary Patterns, Foods and Nutrients, and Health Outcomes What Is The
Appendix E-2.27: Evidence Portfolio Appendix E2.27: Evidence Portfolio Part D. Chapter 2: Dietary Patterns, Foods and Nutrients, and Health Outcomes What is the relationship between dietary patterns and measures of body weight or obesity? Conclusion Statement: The DGAC concurs with the 2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity1 that strong evidence demonstrates that, preferably as part of a comprehensive lifestyle intervention carried out by multidisciplinary teams of professionals or nutrition professionals, overweight and obese adults can achieve weight loss through a variety of dietary patterns that achieve an energy deficit. Clinically meaningful weight losses that were achieved ranged from 4 to 12 kg at 6-month follow-up. Thereafter, slow weight regain is observed, with total weight loss at 1 year of 4 to 10 kg and at 2 years of 3 to 4 kg. However, some dietary patterns may be more beneficial in the long-term for cardiometabolic health. DGAC Grade: Strong The DGAC concurs with the NEL Dietary Patterns Systematic Review Project2 that moderate evidence indicates dietary patterns that are higher in vegetables, fruits, and whole grains; include seafood and legumes; are moderate in dairy products (particularly low and non-fat dairy) and alcohol; lower in meats (including red and processed meats), and low in sugar-sweetened foods and beverages, and refined grains are associated with favorable outcomes related to healthy body weight (including lower BMI, waist circumference, or percent body fat) or risk of obesity. Components of the dietary patterns associated with these favorable outcomes include higher intakes of unsaturated fats and lower intakes of saturated fats, cholesterol, and sodium. -
Comparison of Carbohydrate Counting and Food
Official Title of the study: Comparison of Carbohydrate Counting and Food Insulin Index Methods in the Determination of Insulin Doses for High-and Low-Glycemic Index Meals in Adolescents with Type 1 Diabetes NCT number: Document Date:21 November 2018 (The date on which the uploaded document was approved by a human subjects protection review board.) 1. Background Type 1 diabetes is an autoimmune disease characterized by chronic hyperglycemia resulting from an absolute endogenous insulin deficiency. In type 1 diabetes management, premeal insulin dosage and physiological insulin requireme0nt must be matched to maintain optimal blood glucose control (1). Intensive insulin therapy is the preferred treatment for individuals with type 1 diabetes. It can be an effective way of controlling blood glucose levels and minimising the risk of long term diabetic complications (2, 3). Insulin delivery is achieved subcutaneously using multiple daily injections or subcutaneous insulin infusion using insulin pumps. It provides the calculation of insulin doses according to the carbohydrate content of the meal and pre-meal blood glucose levels. It can also provide a less restricted lifestyle to individuals with type 1 diabetes by providing flexibility in meal time, quantity and frequency (4, 5). Achieving glycemic control is important for patients with diabetes because it effects the development of diabetic complications. Diabetes control is mainly assessed according to HbA1c, fasting blood glucose and blood glucose measured two hours after meal consumption. In the control of type 1 diabetes, not only regular use of insulin is sufficient, but also important in balanced diet and regular physical activity. An individualized diet plan in particular is the corner-stone to proper metabolic control (6). -
A Comparison of the Glycemic Index (Gi) Results Obtained from Two Techniques on a Group of Healthy and a Group of Mixed Subjects
A COMPARISON OF THE GLYCEMIC INDEX (GI) RESULTS OBTAINED FROM TWO TECHNIQUES ON A GROUP OF HEALTHY AND A GROUP OF MIXED SUBJECTS by Elizabeth Delport Submitted in fulfillment of the requirements of the MAGISTER IN DIETETICS in the FACULTY OF HEALTH SCIENCES UNIVERSITY OF PRETORIA PRETORIA MAY 2006 Promoter: GJ Gericke ACKNOWLEDGEMENTS I would like to thank the following persons from the bottom of my heart: The Lord without Whom this research would not have been completed Ms Gerda J Gericke for your valuable guidance and support throughout the duration of the study Prof HT Groeneveld for your guidance in and statistical processing of the data Sam Mawson and Michelle van den Berg for your invaluable technical assistance Anne and Pete Grantham for perusing the document for grammatical correctness Dr Mark Wickham and his team of medical technologists at Du Buisson and Partners Pathologists - for the generous sponsorship and friendly assistance during part one of the study Pioneer Food Group and specifically Bokomo Breakfast Foods, Ceres Fruit Juices and Sasko Milling and Baking for your generous sponsorship of the study Novo Nordisk for your handsome sponsorship of the study All the test subjects for your sacrifice, diligence and selfless testing during part one and two of the study Elizabeth Combrink and Marinda Venter, my partners at our consulting rooms, for standing in for me so often during all the times I had to take study leave My husband, children, parents and friends for your prayers, encouragement and support during the course of the study i TABLE OF CONTENTS Abstract Page List of Tables vi List of Figures viii List of Addenda xi List of Abbreviations xii Abstract xiii 1.