1 Large Evaporite Provinces: Geothermal rather than Solar Origin? 2 3 Z.J. Qin1,2, C.A. Tang3,4*, T.T. Chen5, X.J. Liu6, Y.S. Li1,2, Z. Chen7, L.T. Jiang8, X.Y. 4 Zhang1,2 5 6 1Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake 7 Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 8 810008, China 9 2Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, 10 Xining 810008, China 11 3 State Key Laboratory of Coastal & Offshore Engineering, Dalian University of 12 Technology, Dalian 116024, China 13 4 State Key Laboratory of Geological Processes and Mineral Resources, China 14 University of Geosciences (Wuhan) 430074, China 15 5School of Resources and Civil Engineering, Northeastern University, Shenyang 16 110819, China 17 6College of Geography and Environmental Science, Northwest Normal University, 18 Lanzhou 730070, China 19 7School of Earth Sciences and Geological Engineering, Sun Yat-sen University, 20 Guangzhou 510275, China 21 8Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of 22 Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China 23 24 *Correspondence to:
[email protected] 25 26 27 28 29 30 31 32 33 34 35 36 37 Large evaporite provinces (LEPs) represent prodigious volumes of evaporites 38 widely developed from the Sinian to Neogene. The reasons why they often 39 quickly develop on a large scale with large areas and thicknesses remain 40 enigmatic. Possible causes range from warming from above to heating from 41 below. The fact that the salt deposits in most salt-bearing basins occur mainly in 42 the Sinian-Cambrian, Permian-Triassic, Jurassic-Cretaceous, and Miocene 43 intervals favours a dominantly tectonic origin rather than a solar driving 44 mechanism.