A Handbook on Flood Hazard Mapping Methodologies a Handbook on Flood Hazard Mapping Methodologies MAPAS DE PELIGROSIDAD (INGLES):MaquetaciN 1 27/11/09 12:27 PGina 1

Total Page:16

File Type:pdf, Size:1020Kb

A Handbook on Flood Hazard Mapping Methodologies a Handbook on Flood Hazard Mapping Methodologies MAPAS DE PELIGROSIDAD (INGLES):Maquetaci�N 1 27/11/09 12:27 P�Gina 1 PORTADA:Maquetaci n 1 27/11/09 12:26 P gina 1 PUBLICATIONS OF THE GEOLOGICAL SURVEY OF SPAIN (IGME) Series: GEOLOGICAL HAZARDS/GEOTECHNICS No. 2 A Handbook on Flood Hazard Mapping Methodologies A Handbook on Flood Hazard Mapping Methodologies MAPAS DE PELIGROSIDAD (INGLES):Maquetacin 1 27/11/09 12:27 Pgina 1 A Handbook on Flood Hazard Mapping Methodologies Authors: A. Díez-Herrero L. Laín-Huerta M. Llorente-Isidro GEOLOGICAL SURVEY OF SPAIN Madrid 2009 MAPAS DE PELIGROSIDAD (INGLES):Maquetacin 1 27/11/09 12:27 Pgina 2 Series: GEOLOGICAL HAZARDS/GEOTECHNICS No. 2 Authors: A. Díez-Herrero L. Laín-Huerta M. Llorente-Isidro A Handbook on Flood Hazard Mapping Methodologies / Geological Survey of Spain. Area of Research in Geological Risks and Hazards; Díez-Herrero, A., Laín-Huerta, L., Llorente-Isidro, M. Madrid: Spanish Geological Survey, 2009 190 pgs; 86 figs; 29 cm (Geological Hazards/Geotechnics series) ISBN 978-84-7840-813-9 1. Flood hazard map 2. Floods. 3. Legend 4. Handbook. I. Geological Survey of Spain. II. Díez-Herrero, A. III. Laín-Huerta, L. IV. Llorente-Isidro, M. 556, 551.3, 911.2, 626, 627 This guide forms part of the products of the Geological Survey of Spain project entitled: “Investigación metodológica para la elaboración de cartografía de peligrosidad y riesgo ante avenidas e inundaciones (METAVENIDAS).” [Research on methodologies for flood hazard and risk mapping (METAVENIDAS)] directed by Luis Laín Huerta. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photography, record- ing or any information storage system without the prior written permission of the authors and publishers. Collaborators: Juan Antonio Ballesteros Cánovas, Virginia Ruiz Villanueva, María Jesús Mancebo Mancebo, Fernando Pérez Cer- dán, Ángel Martín-Serrano, Ángel Salazar Rincón, Francisco Nozal Martín and Miguel Mejías Moreno (IGME); An- tonio Cendrero Uceda (University of Cantabria); Jorge Olcina Cantos (University of Alicante); Antonio Jiménez Ál- varez and Concepción Marcuello Olona (CEDEX); Elena Fernández Iglesias (INDUROT, University of Oviedo); Mayte Rico Herrero (IPE-CSIC); José Francisco Martín Duque (UCM); Javier Lastra Fernández (Acunor); Montse- rrat Ferrer i Julià (Tecnosylva); Eduardo García Meléndez (University of León). Translation: Michael McCain Production and composition: Area of Research in Geological Risks and Hazards Department of Geoscientific Research and Prospective Geological Survey of Spain Layout: Soluciones Gráficas Chile S.L.L. Illustration: Cristóbal Aparicio Photomechanical reproduction and printing: Soluciones Gráficas Chile S.L.L. © GEOLOGICAL SURVEY OF SPAIN c/ Ríos Rosas, 23 – 28003 Madrid Tel.: +34 913495700. Fax: +34 914426216 Web: http://www.igme.es Laboratories: c/ La Calera, 1. 28760 Tres Cantos (Madrid) Tel.: +34 918032200. Fax: +34 918032200 I.S.B.N.: 978-84-7840-813-9 N.I.P.O.: 474-09-044-5 Depósito Legal: M-50313-2009 MAPAS DE PELIGROSIDAD (INGLES):Maquetacin 1 27/11/09 12:27 Pgina 3 INTRODUCTION Floods are the natural disasters with the greatest socio-economic impact after droughts, both globally and in Spain itself. Suffice it to recall the consequences of the floods which have in recent decades affected countries like Mozambique, the Philippines, China, Venezuela, the United States and Myanmar (Burma), to cite a few events which have received wide media coverage. In Europe, the great floods which took place in the centre of the continent in 2002 were an inflection point in the level of concern of European institutions with respect to this problem. In Spain, according to a study carried out by the Spanish Geological Survey (IGME) in collab- oration with the Consortium of Insurance Compensation1 in 2004, the direct economic losses resulting from floods during the period 1987-2002 reached nearly EUR 12 billion, that is to say, the equivalent of 0.1% of GDP. In addition, nearly EUR 26 billion in losses are predicted over the next 30 years. If we speak of the cost in terms of human life, there is a steady flow of victims each year (over 200 mortal victims in the past decade) due to events which have sparked profound social alarm. The floods in Biescas, with 86 mortal victims, Badajoz, with 21 victims, or Yebra (Guadalajara), with 10 victims, are proof of the latter point. Bearing this in mind, the action taken by public administrations must be steered towards adequate management of flood-related risks in an attempt to minimize them and mitigate their consequences. To achieve this, there are three traditional groups of measures: predictive, preventative and corrective. The predictive measures and techniques for floods are still in their incipient stages of development and include, among others, meteorolog- ical tracking of convective cells, or real-time hydrologic information systems. As regards the adoption of cor- rective measures, that is, post-catastrophe actions, or the financial assistance expressed through disaster zone declarations, it is clear that mere adoption per se unaccompanied any other type of measures logically results in social dissatisfaction. This is why most public administrations in developed countries have chosen, for decades, to focus their action on what we call preventative measures, which encompass those traditionally de- fined as ´non-structural´: spatial planning, assurance systems, civil protection and risk education. To be implemented, all of the measures, particularly non-structural preventative ones, require, as a preliminary and fundamental step in management, that a flood risk analysis be carried out, which involves a conducting de- tailed study of the risk elements (hazard, exposure and vulnerability). In this context, flood hazard mapping is a basic component in flood risk analysis studies as it permits the effective evaluation of the spatial distribution of the various elements of severity (such as water surface level, flow velocity, sediment transport, or character- istic times) and frequency (return periods or exceedance probability) of the flood phenomenon. Furthermore, they offer the utility of being able to link the maps and their associated databases to exposure and vulnerabil- ity maps in order to analyse and predict risk in an integrated manner using such tools as geographic informa- tion systems (GIS). In order for the production and publishing of these maps to fulfil the functions of accurate mapping and prac- tical utility, it is desirable to harmonise the methodologies used to make them, standardize the criteria and ar- rive at a consensus on which elements to represent and legends. To that end, a basic starting point in prevent- ing risk would be to draw up methodological guides which provide an inventory of the data-gathering and rep- resentation methods, map scales, zoning criteria and available computer programs. It is in this context that the publication of IGME’s “A handbook on flood hazard mapping methodologies” takes on its fullest meaning. José Pedro Calvo Sorando Director General of the Geological Survey of Spain 1 Consorcio de Compensación de Seguros. 3 MAPAS DE PELIGROSIDAD (INGLES):Maquetacin 1 27/11/09 12:27 Pgina 4 MAPAS DE PELIGROSIDAD (INGLES):Maquetacin 1 27/11/09 12:27 Pgina 5 FOREWORD In the past few decades, numerous plans, programmes, projects and systems for analyzing and mapping flood hazards have been implemented in Spain and in the rest of the developed countries. To cite a few examples in the international arena: the National Flood Insurance Program (NFIP) maps in the United States, the Flood Risk Prevention Plans in France2, or the recent European Community Directive 2007/60/EC on the assessment and management of flood risks, which lays down in its Chapter III the need to prepare flood hazard maps and flood risk maps for specific hydrographic areas by the year 2013. In Spain, the different public administrations at the government, Autonomous Region, county and local levels have implemented various initiatives, such as the National Flood Zone Mapping System3, promoted by the Di- rectorate-General of Water4 (Ministry of the Environment and Rural and Marine Affairs5), Autonomous Region master plan maps focused on spatial planning (PATRICOVA and Region of Murcia) and civil protection (Inun- cat, RICAM, Inunbal, Inungal), the compulsory natural risk maps in the environmental sustainability reports provided for in the Land Law (8/2007)6; in addition to other experiences in which potential flood-prone zones were mapped for different return periods (100 and 500 years), such as the LINDE and PICHRA programmes, the flood hazard studies by the River Basin Authorities for the protection of the public water domain7, etc. However, almost all of these initiatives lack clear and concise methodological handbooks making it possible to harmonise the resulting maps and thereby avoid inconsistencies and discrepancies in the administrative boundaries for which they were carried out. For this reason, what is lacking is an element of standardization, similar to the role played by the EXCIMAP exchange group in preparing the maps associated with the above- mentioned European Directive. Moreover, the Earth Sciences play an indispensable role in studying the origins and consequences of flash flood and flood inundation events. It is in this line of thought that the recent modification was made to the Royal De- cree on the Regulations on the Public Water Domain8 (RD 9/2008 of 11 January, Official Gazette9 No. 14 of 16 January 2008) which considers all of the methods valid with respect to delimitations since no priorities are es- tablished on this matter. In light of the above, this methodological handbook written by IGME on preparing flash flood and flood inun- dation hazard maps comes at an opportune moment as it provides methods and criteria pertinent to all of the abovementioned master plans and projects, as well as those to come in the short and middle term. Vicente Gabaldón López Director of the Department of Geoscientific Research and Prospective 2 Plan de prévention des risques d’inondation (PPRI).
Recommended publications
  • 1948 MACKIN Gradedriver G
    BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA VOL. 69. PP. 463-512, 1 FIG. MAY 1948 CONCEPT OF THE GRADED RIVER BY J. HOOVER MACKIN CONTENTS Page Abstract 464 Introduction 465 Acknowledgments 466 Velocity and load 466 General statement 466 Energy and velocity 466 Competence 468 Capacity 468 The total load 469 The concept of grade 470 Examples of streams at grade 472 The graded stream as a system in equilibrium 475 The shifting equilibrium 477 Factors controlling the slope of the graded profile 479 General statement 479 Downvalley increase in discharge 479 Downvalley increase in ratio of load to discharge 480 Downvalley decrease in ratio of load to discharge 480 Downvalley decrease in caliber of load 481 Relationship between channel characteristics and slope 483 The concept of adjustment in section 484 Adjustment in section in the straight channel 485 Adjustment in section in the shifting channel 486 Effect of variation in channel characteristics on the graded profile 487 Local variation from mean slope 490 Backwater and draw-down effects 490 Effects of differences in rock resistance 491 Summary 491 Response of the graded stream to changes in control .. 492 General statement 492 Increase in load 493 Decrease in load 494 Changes in discharge 494 Rise of base level 496 Lowering of base level 498 Classification of changes in control 499 Regrading with progress of the erosion cycle 499 Short-term changes 501 Deposits of graded and aggrading streams 502 Secondary effects of aggradation 503 Decrease in supplied load 503 Decrease in discharge
    [Show full text]
  • The Origins and Dynamics of Phosphorus in Maine's Lake
    The Origins and Dynamics of Phosphorus in Maine’s Lake Auburn Watershed An Honors Thesis Presented to The Faculty of the Environmental Studies Program Bates College In partial fulfillment of the requirements for the Degree of Bachelor of Arts By Lars Gundersen Lewiston, Maine March 31st, 2020 ACKNOWLEDGEMENTS When I came to Bates, I did not expect to write a scientific thesis. I had enjoyed natural and field science throughout high school, but found it intimidating. Then, as a second semester first- year, I took Scientific Approaches to Environmental Issues with my future advisor, Holly Ewing. This was the class that, far more so than any other class I took at Bates, changed the trajectory of my academic, intellectual, and career interests. Holly thinks and talks about the natural sciences in a way that makes sense to me and has consistently gone out of her way to help me and my learning. Throughout our three classes together, a summer research job (when the groundwork for this thesis was laid), and the process of researching, writing and revising this thesis, she has approached my position as a relative newcomer to science with humor, generosity, and mentorship and pushed me to the edge of my intellectual abilities. Thank you, Holly. Thanks also to Ellen Labbe, my high school biology teacher, who introduced me to the natural and field sciences and piqued my interest in learning more in college. Thank you to Dan Fortin, Chris Curtis, and everyone at the AWD/LWD for providing me with data, teaching me the basics of watershed sampling (both as a summer research assistant with Holly and this year), and answering all my questions.
    [Show full text]
  • The Water' Cycle
    'I ." Name'~~_~__-,,__....,......,....,......, ~ Class --,-_......,...._------,__ Date ....,......,-.:-_ ..: .•..'-' .. M.ODERN EARTH SCIENCE Section 1s.i The Water' Cycle • Read each statement below. If the statement .ls true, write T in the space provided. If the statement is false, write Fin tbe space provided. -'- 1. The hydrologic cycle is also called the water cycle. 2. Most water evaporating from the earth's surface evaporates from rivers and lakes. 3. When water vapor rises in the atmosphere, it expands and cools. 4. Evapotranspiration increases with increasing temperature. 5. Most water used by industry is recycled. 6. Irrigation is often necessary in areas having high evapotranspiration. Cboose the one best response. Write tbe letter of tbat cboice in tbe space provided. 7. Which of the following is an artificial means of producing fresh water from ocean water? .--i a. desalination b. saltation • c. evapotranspiration d. condensation 8. Which of the following is represented by this diagram? a. the earth's water budget b. local water budget . c. groundwater movement -·d. surface runoff 9. The arrow labeled X represents: a. absorption. b. evaporation.. c. rejuvenation. d. transpiration. _ 10. Approximately what percentage of the earth's precipitation falls-on the ocean? a. 5% b. 25% c. 750/0 d. 99% t • Chapter 13 47 l H_R_w_..._"_ter"_:_al_....._p_yrighted undernotice appearing earlier in thisworic. .'. Name _ Class _ Date -­ MODERN EARTH SCIENCE .... '''; ... .secti~n'· if2 River Systems Choose the one best response. Write the letter of that choice in the space provided. 1. What is the term for the main stream and tributaries of a river? a.
    [Show full text]
  • Studies of Longitudinal Stream Profiles in Virginia and Maryland
    Studies of Longitudinal Stream Profiles in Virginia and Maryland By JOHN T. HACK SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL. SURVEY PROFESSIONAL PAPER 294-B Preliminary results of a study of the form of small river valleys in relation to geology. Some factors controlling the longitudinal profiles of streams are described in q'uantitative terms UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1957 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price 75 cents (paper cover) CONTENTS Page Peg* AbstractL 45 Relation of particle size of material on the bed to stream IntroductionL 47 lengthL 68 Methods of study and definitions of factors measuredL 47 Mathematical expression of the longitudinal profile and Description of areas studied L 49 its relation to particle size of material on the bedL 69 Middle River basinL 50 Mathematical expression in previous work on longitudinal North River basinL 50 profilesL 74 Alluvial terrace areasL 50 Origin and composition of stream-bed materialL 74 Calfpasture River basinL 50 Franks Mill reach of the Middle RiverL 76 Tye River basin L 52 Eidson CreekL 81 Gillis FallsL 52 East Dry BranchL 82 Coastal Plain streamsL 53 North RiverL 84 Factors determining the slope of the stream channelL 53 Calfpasture ValleyL 84 Discharge and drainage areaL 54 Gillis FallsL 85 Size of material on the stream bedL 54 Ephemeral streams in areas of residuumL 85 Channel cross sectionL 61 Some factors controlling variations in size: conclusions_ _ _ 86 Summary of factors controlling channel slopeL 61 The longitudinal profile and the cycle of erosionL 87 Factors determining the position of the channel in space: the References cited L 94 shape of the long profileL 63 IndexL 95 Relation of stream length to drainage area L 63 ILLUSTRATIONS Pag e Page PLATE99.
    [Show full text]
  • Settling Sediments Adapted From: SEDIMENTATOR Copyright 1996 Janeval Toys, Inc
    Sedimentation Settling Sediments Adapted from: SEDIMENTATOR Copyright 1996 Janeval Toys, Inc. ACADEMIC STANDARDS: ENVIRONMENT & ECOLOGY Grade Level: Basic/Intermediate 10th Grade Duration: 40 minutes 4.1 A Describe the changes that occur from a streams origin to its final outflow. 4.1 B Explain the relationships among landforms, vegetation, and the amount and Setting: classroom speed of water. Analyze a stream’s physical characteristics. Summary: Investigating sediment Explain how the speed of water and vegetation cover relates to erosion. deposition using a Sedimentator that 4.1 C Describe the physical characteristics of a stream and determine the types of students construct. organisms found in aquatic environments. Describe and explain the physical factors that affect a stream and the Objectives: Students will learn how organisms living there. sediments are deposited in different Identify the types of organisms that would live in a stream based on the stream’s physical characteristics. aquatic environments. Students will be able to distinguish among ACADEMIC STANDARDS: SCIENCE & TECHNOLOGY different sediment types and 7th Grade recognize the rocks produced from 3.5A Describe earth features and processes. sediments. Describe the processes involved in the creation of geologic features (e.g. folding, faulting, volcanism, sedimentation) and that these processes seen today (e.g. erosion, weathering, crustal plate movement) are similar to those Vocabulary: chemical weathering, seen in the past. mechanical weathering, sediment, Distinguish
    [Show full text]
  • Slopes and Streams Fluvial Landforms Are All Formed by Stream Erosion A
    Slopes and Streams Fluvial landforms are all formed by stream erosion a. True b. False* Identify the erosional landform developed by streams a. Mississippi delta b. Grand Canyon* Which would you expect to have a higher sediment yeidl a. a draingage basin with shallow gradients b. a drainage basin with steeper gradients* Which of the following influences rates of erosion in the drainage base? a. amount of precipitation b. relief c. lithologies present d. human impacts e. all of these* When rivers deposit sediments along the coast, these can form a.rills b. cliffs c. deltas* d. alluvial fans A flood with a recurrence interval of 100 years means that the flood occurs every 100 years a. True b. False* Saltating sand is part of the a. bedload* b. suspended load c. dissolved load d. muddy load Water in a river with a large suspended load is more competent than a river moving large boulders a. True b. False* If the sediment supply to a river increases so much that it overwhelms the ability of the stream to carry the sediment then this will occur a. transport b. eriosion c. flooding d. aggradation* Commonly, a river is said to be graded when the longitudinal profile is _________and neither _______ or _______occurs a. unstable, transport, erosion of channel floor b. stable, transport, erosion of channel floor c. unstable, agradation, erosion of channel floor d. stable, agradation, erosion of channel floor* Which is typically the greatest amount of river sediment load? a. bed load b. suspended load* c. dissolved load Where is a stream’s load deposited? a.
    [Show full text]
  • A Protocol for Establishing Sediment Tmdls
    GA_CON.QXD 4/16/02 11:52 AM Page 1 a protocol for establishing sediment TMDLs DEVELOPED FOR THE GEORGIA CONSERVANCY AND THE UGA INSTITUTE OF ECOLOGY BY THE SEDIMENT TMDL TECHNICAL ADVISORY GROUP ALICE MILLER KEYES ADVISORY GROUP CONVENER THE GEORGIA CONSERVANCY DAVID RADCLIFFE WRITING WORKGROUP CHAIRPERSON CROP AND SOIL SCIENCES DEPARTMENT UNIVERSITY OF GEORGIA FEBRUARY 25, 2002 GA_CON.QXD 4/16/02 11:52 AM Page 2 contents 1 EXECUTIVE SUMMARY 3 MEMBERS OF THE TAG 4 I) INTRODUCTION • CHALLENGES OF MEETING TMDL REQUIREMENTS • BACKGROUND OF THE TMDL FORUM AND THE TAG • THE TAG PROCESS 5 II) BACKGROUND – THE RELATIONSHIP BETWEEN WATER AND ITS SEDIMENT LOAD • QUANTIFYING SUSPENDED SEDIMENT IN THE WATER COLUMN - SSC, TSS, NTU, KTU, AND FTU • BEDLOAD • RE G U L A TOR Y LIMITS ON SEDIMENT • BIOLOGICAL EFFECTS OF SUSPENDED SEDIMENT CONCENTRATION AND BEDLOAD • BED PARTICLE SIZE • HISTORIC SEDIMENT ISSUES IN GEORGIA • PREDICTING SUSPENDED SOLID CONCENTRATION 12 III) OBJECTIVES AND TAG RECOMMENDATIONS • GOALS OF TMDLs • SETTING PRIORITIES • PHASE I TMDLs PROBLEM IDENTIFICATION WATER QUALITY INDICATORS Reference stream available Reference stream not available OTHER RECOMMENDED CONDITIONS CALCULATING THE LOAD CAPACITY ALLOCATING THE LOAD CAPACITY Calculating percent reductions and the current load Margin of safety Future growth MANAGING STORED SEDIMENT IMPLEMENTATION PLAN MONITORING PLAN • PHASE II TMDLs 22 IV) RESEARCH NEEDS 23 V) REFERENCES 25 GLOSSARY OF TERMS 29 APPENDIX A – SAMPLE CALCULATION OF ANNUAL LOADS AND DAILY LOADS 31 APPENDIX B – CLEAN WATER ACT SECTION 303(d) GA_CON.QXD 4/16/02 11:52 AM Page 3 executive summary ection 303(d) of the 1972 Clean Water Act be determined from scientific literature.
    [Show full text]
  • Alphabetical Glossary of Geomorphology
    International Association of Geomorphologists Association Internationale des Géomorphologues ALPHABETICAL GLOSSARY OF GEOMORPHOLOGY Version 1.0 Prepared for the IAG by Andrew Goudie, July 2014 Suggestions for corrections and additions should be sent to [email protected] Abime A vertical shaft in karstic (limestone) areas Ablation The wasting and removal of material from a rock surface by weathering and erosion, or more specifically from a glacier surface by melting, erosion or calving Ablation till Glacial debris deposited when a glacier melts away Abrasion The mechanical wearing down, scraping, or grinding away of a rock surface by friction, ensuing from collision between particles during their transport in wind, ice, running water, waves or gravity. It is sometimes termed corrosion Abrasion notch An elongated cliff-base hollow (typically 1-2 m high and up to 3m recessed) cut out by abrasion, usually where breaking waves are armed with rock fragments Abrasion platform A smooth, seaward-sloping surface formed by abrasion, extending across a rocky shore and often continuing below low tide level as a broad, very gently sloping surface (plain of marine erosion) formed by long-continued abrasion Abrasion ramp A smooth, seaward-sloping segment formed by abrasion on a rocky shore, usually a few meters wide, close to the cliff base Abyss Either a deep part of the ocean or a ravine or deep gorge Abyssal hill A small hill that rises from the floor of an abyssal plain. They are the most abundant geomorphic structures on the planet Earth, covering more than 30% of the ocean floors Abyssal plain An underwater plain on the deep ocean floor, usually found at depths between 3000 and 6000 m.
    [Show full text]
  • CE/SC 10110-20110: Planet Earth Streams and Floods Earth Portrait of a Planet Fifth Edition
    CE/SC 10110-20110: Planet Earth Streams and Floods Earth Portrait of a Planet Fifth Edition Chapter 17 Stream Runoff – Draining the Land 2 Hydrologic Cycle 3 Rivers & Streams: Basics River = big stream! Reach = any segment along the length of the stream. Meander = curving reach. Sheetwash: unchanneled sheet of water, especially in deserts (no vegetation). Channel flow – in a channel! This is where a river/stream is most of the time. Deepest part of the channel = Thalweg. 4 Rivers & Streams: Basics Types of Runoff: Depends on surface roughness and flow velocity. Laminar: water moves slowly along a smooth channel, following straight, parallel lines, follows slope of containing boundary. More friction in wider, shallower streams In a curved channel, the fastest and deepest flow shifts towards the outer edge of the stream (over the THALWEG). The water follows a spiral path - surface water flows faster toward the outer bank, water deeper down must flow toward the inner bank to replace the 5 surface water. Rivers & Streams: Basics Velocity changes with: Depth of channel. River bendiness – fastest on outside of curves – further to travel. 6 Rivers & Streams: Basics Turbulent: water moves along an erratic path, deflected by the sides and bed of the channel (and obstructions) with the formation of eddies and swirls (shearing motion). 7 Rivers & Streams: Basics Flood Plain: flat area adjacent to the river channel that periodically floods. Fertile soil. Natural Levee: natural sediment build up that resists floods. Banks: sides of river channel Channel: where the water flows during non-flood stages. Stream Velocity: moderate ~5 km/h; flood >25 km/h.Velocity is a function of: Stream gradient: vertical distance/ horizontal distance.
    [Show full text]
  • Enhancing the Sediment Transport Modeling Capability of a Watershed Modeling Framework
    2nd Joint Federal Interagency Conference, Las Vegas, NV, June 27 - July 1, 2010 ENHANCING THE SEDIMENT TRANSPORT MODELING CAPABILITY OF A WATERSHED MODELING FRAMEWORK Earl J. Hayter, Research Hydraulic Engineer, US Army Corps of Engineers Engineer Research and Development Center, Vicksburg, MS, [email protected]; Jack Kittle Jr., AQUA TERRA Consultant, Decatur, GA, [email protected]; Anthony S. Donigian Jr., AQUA TERRA Consultant, Mountain View, CA, [email protected] Abstract The Strategic Environmental Research and Development Program (SERDP) identified the need to provide Fort Benning, Georgia (and eventually other military installations) with models that can be implemented for long-term watershed planning and management. This paper discusses one of the objectives of this SERDP-funded project that focuses on the development of a watershed modeling system for Fort Benning, GA using the U.S. EPA BASINS (BASINS) modeling framework. The project objective described in this paper is the enhancement of BASINS through the integration of more robust models for channel flow (EFDC) and channel sediment transport (SEDZLJ) into BASINS, as well as the capability to represent channel bank erosion using an empirical bank erosion algorithm. This paper reports the project's approach for accomplishing the stated objective. INTRODUCTION Observations have identified the vulnerability of the stream banks within the portion of the Upatoi Creek watershed within Fort Benning, GA to erosion and failure under both wet and dry weather conditions. Fort Benning is located on the fall line between the Piedmont and Coastal Plain provinces in Central Western Georgia (see Figure 1). Wet weather bank erosion can occur due to several water-driven phenomena on top of or within the bank materials (e.g., rotational or planar failure) or within the stream channel (e.g., scour of the bank toe).
    [Show full text]
  • Techniques and Interpretation: the Sediment Studies of G. K. Gilbert
    Geological Society of America Special Paper I83 I980 Techniques and interpretation: The sediment studies of G. K. Gilbert LUNA B. LEOPOLD 400 Vermonr A venue, Berkelev. Caliyornia 94707 ABSTRACT the trough, thicker upstream than downstream, until the bed acquired a slope sufficient for the transport of introduced sedi- The laboratory experiments on sediment transport conducted ment. Discharge was specified, and Gilbert controlled it by an by G. K. Gilbert differed importantly in technique from such orifice opening. The load also was specified; sediment was put in by studies of more recent date. Gilbert’s flume was level and could not gravity through a feed system where the sand was made mobile by be altered in slope. Sediment was introduced at the upper end at a having a small amount of water coming in on top of the sediment predetermined rate and by deposition built a bed gradient storage tank. The dependent variable was the slope of the debris sufficient to transport the introduced load. The adjustment of bed. slope in Gilbert’s flume has contributed to the idea widely held by As sediment came from the hopper, deposition occurred in the geologists that a river achieves equilibrium by adjustingits slope to upstream end of the flume, and a wedge of sediment gradually provide just the velocity required for the transportation of the extended itself downstream until the slope of the debris bed supplied load. became more or less uniform. In Gilbert’s own words: In fact, slope adjusts but little to a change in amount of introduced sediment load. The adjustment takes place principally Near the head of the trough sand was dropped into the water at a uniform among other hydraulic factors: width, depth, velocity, bed forms, rate, the sand grains being of approximately uniform size.
    [Show full text]
  • The Evolution of Gravel-Bed Rivers During the Post-Regulation Period in the Polish Carpathians
    water Article The Evolution of Gravel-Bed Rivers during the Post-Regulation Period in the Polish Carpathians El˙zbietaGorczyca 1,*, Kazimierz Krzemie ´n 1 and Krzysztof Jarzyna 2 1 Institute of Geography and Spatial Management, Faculty of Geography and Geology, Jagiellonian University in Kraków, Gronostajowa Str. 7, 30-387 Kraków, Poland; [email protected] 2 Independent Researcher, 30-638 Kraków, Poland; [email protected] * Correspondence: [email protected] Received: 13 December 2019; Accepted: 14 January 2020; Published: 16 January 2020 Abstract: This study provides a conceptual model of the functioning of gravel-bed rivers during the post-regulation period in Poland and forecasts their subsequent evolution. The main difference between fluvial processes during the pre-regulation and post-regulation period is that they are limited to a zone that is currently several times narrower and trapped in a deep-cut channel. During the river post-regulation period, the construction of additional river training works was significantly limited in river channels. Moreover, all forms of economic activity were significantly reduced in the channel free migration zone, particularly bed gravel extraction operations. As a result of these changes, a limited recovery of the functioning and hydromorphology of the river channel occurred via a return to conditions in effect prior to river regulation. In recovering sections of river, the channel gradually broadens, and its sinuosity and number of threads increase. The overall process can be called spontaneous renaturalization, which yields a characteristic post-regulation river channel. The conceptual model was developed on the basis of the evolution of the gravel-bed river, the Raba River, during the post-regulation period in the Polish Carpathian Mountains.
    [Show full text]